
Leveling Up
as a Tech Lead

GROWING AS A TECHNICAL, PROJECT,
AND PEOPLE LEADER

ANEMARI FISER
foreword by PATRICK KUA

Becoming a tech lead is one of the most challenging transitions in a technical career. You’re
no longer just writing code; now you’re guiding people, aligning teams, and translating strategy
into execution. Suddenly, your calendar’s packed, Slack is blowing up, and you’re still somehow
expected to ship code. You’re not building systems anymore, you’re building people. And no
one gave you the manual—until now.

Leveling Up as a Tech Lead gives you the clarity and tools to lead with confidence while
maintaining your technical edge. Drawing on her years as a Thoughtworks tech lead and a
trainer to hundreds of other technical leaders, Anemari Fiser shares practical frameworks,
real-world examples, and plug-and-play scripts you can use right away. Whether you’re just
stepping into the role or looking to sharpen your skills, this book helps you lead with clarity,
empathy, and real impact.

•	 Understand the true expectations of the tech lead role in your context
•	 Communicate effectively and manage stakeholders with confidence
•	 Build trust and collaboration across your team
•	 Delegate, mentor, and coach to grow others and yourself
•	 Balance hands-on technical work with people leadership
•	 Lead through uncertainty, conflict, and change

Anemari Fiser is a tech leadership coach and trainer who helps engineers grow into confident,
people-centered tech leads. A former software engineer and tech lead herself, she’s coached
500+ engineers and trained hundreds of tech leads around the world. She’s the creator of
O’Reilly’s Soft Skills for Tech Leads course and the Level Up as a Tech Lead newsletter. She also
shares regular leadership advice with a 30,000+ tech audience on LinkedIn.

TECH LE ADER SHIP

“Anemari presents a comprehensive look at modern-day tech leadership (including
GenAI use), grounded in actionable examples from her career, and provides sound
advice on how to navigate trade-offs. New tech leads can learn a lot, but experienced
tech leads can get some pointers too.”

— Rebecca Parsons, coauthor of Building Evolutionary Architectures and former CTO/CTO Emerita of Thoughtworks

Leveling Up as a Tech Lead
GROWING AS A TECHNICAL, PROJECT, AND PEOPLE LEADER

ISBN: 978-1-098-17751-5
US $45.99 CAN $57.99

Leveling Up
as a Tech Lead

Growing as a Technical, Project,
and People Leader

Anemari Fiser
Foreword by Patrick Kua

978-1-098-17751-5

[LSI]

Leveling Up as a Tech Lead
by Anemari Fiser

Copyright © 2026 Anemari Fiser. All rights reserved.

Published by O’Reilly Media, Inc., 141 Stony Circle, Suite 195, Santa Rosa, CA 95401.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: David Michelson

Development Editor: Shira Evans

Production Editor: Gregory Hyman

Copyeditor: Liz Wheeler

Proofreader: Piper Content Partners

Indexer: Sue Klefstad

Cover Designer: Susan Thompson

Cover Illustrator: Susan Thompson

Interior Designer: Monica Kamsvaag

Interior Illustrator: Kate Dullea

December 2025: First Edition

Revision History for the First Edition
2025-11-19: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098177515 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Leveling Up as a Tech Lead,
the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent the publisher’s
views. While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and the author
disclaim all responsibility for errors or omissions, including without limitation responsibility
for damages resulting from the use of or reliance on this work. Use of the information and
instructions contained in this work is at your own risk. If any code samples or other technology
this work contains or describes is subject to open source licenses or the intellectual property
rights of others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098177515

Contents

 | Foreword v

 | Preface ix

1 | The Role of a Tech Lead 1

2 | How to Become a Tech Lead 33

3 | Building Relationships 59

4 | Running One-on-Ones with Your Team 85

5 | Unlocking the Power of Feedback 107

6 | Delegating 137

7 | Building and Scaling Tech Teams 167

8 | Addressing Technical Challenges 221

9 | Managing Technical Projects 267

10 | Bringing It All Together: Navigating Technical
Leadership 305

11 | Beyond Tech Lead: Charting Your Career Path 339

 | Index 357

iii

Foreword

In my first role as a tech lead, a long time ago now, it felt like I was given a
blank map and told to chart a course through unknown lands. I had no guide,
no proven path, and no certainty that I was heading in the right direction. I
had no idea what “good” looked like in this role. Somehow, I must have done
something right, because a few years later, I was asked to run tech lead training
for my colleagues at Thoughtworks, which eventually grew into a global program.
During that time, I realized my struggles were not unique. Many others faced the
same uncertainty with very few resources to support them. When I searched for
books to recommend, I found only three. Two were management-focused books,
and only one of those, Becoming a Technical Leader by the late Gerald Weinberg
(Dorset House), truly addressed technical leadership. More than a decade ago, I
wrote Talking with Tech Leads (CreateSpace) to help fill that gap.

Since publishing that book, I have trained thousands of tech leads, engi-
neering managers, and staff engineers and coached dozens of CTOs. Over that
time, our industry has shifted dramatically. We moved from on-premises to
cloud-based software, from desktop to web to mobile, and from big-bang releases
to continuous delivery. Yet, despite these changes, newly appointed tech leads
keep asking the same questions, such as What is expected of me? Where should I be
spending my time? How much hands-on coding should I be doing?

While these fundamental questions remain constant, the role itself has also
become far more demanding. Some tech leads guide teams with a shared techni-
cal background, such as a team of Java developers. Others lead cross-functional
teams that demand knowledge across fields like web, mobile, backend, data sci-
ence, and more. Even a so-called “full-stack developer” cannot be an expert across
such a broad range, and the rapid adoption of AI-driven tools has only increased
the complexity. The confusion surrounding the tech lead role has deepened with
the emergence of newer roles such as engineering manager and staff engineer,

v

where responsibilities often overlap. On top of all this, many teams now follow a
“You build it, you run it” model, adding operational and support work to the tech
lead’s responsibilities. The modern tech lead role is more multifaceted than ever
before.

Despite the increased complexity, dedicated resources for tech leads remain
rare. Our industry has produced excellent books like The Manager’s Path (Camille
Fournier), The Staff Engineer’s Path (Tanya Reilly), and The Engineering Executive’s
Primer (Will Larson) (all O’Reilly). But tech leads still lack the same breadth of
practical guidance, which is why I am excited about this book.

When Anemari asked me to write this foreword, she reminded me that she
took part in one of my tech lead courses in Barcelona, which helped her grow
into the role. This book is a testament to her continued growth, and in its pages,
she shares the lessons, experiences, and tools that helped her succeed.

She begins with the most pressing and complicated question: What is the
scope of the tech lead role? It is a difficult question because every organization sets
different expectations. Even when role descriptions exist, each team and situation
demands a different approach, something described as situational leadership.
Anemari provides a starting point to help you define what matters most in your
current situation.

From there, the book lays out a map of common responsibilities across both
people and technical domains. On the people side, you will learn how to build
relationships, foster a strong feedback culture, and guide your team toward high
performance. On the technical side, you will explore how to understand, define,
and improve your system architecture, align technical decisions with business
goals, and cultivate strong technical practices that allow your team to make
continuous changes to your systems with confidence.

In addition to these responsibilities, Anemari highlights common challenges
every tech lead will face. These include avoiding micromanagement, navigating
difficult conversations, and addressing technical debt. For each, she offers practi-
cal strategies you can apply immediately, grounded in her own experience.

VI |

With the ideas, tools, and experiences Anemari shares, I am confident this
book will help you navigate the uncertainty of the tech lead role and prepare you
to lead with intent. No book can give you every answer, but this one offers you
the tools to chart your own path as a tech lead. And that, in the end, is what
leadership is all about.

—Patrick Kua, CTO coach,
founder of the Tech Lead Academy,
coauthor of Building Evolutionary

Architectures (with Neal Ford,
Rebecca Parsons, and Pramod

Sadalage; O’Reilly), and author
of Talking with Tech Leads

and The Retrospective Handbook
(both CreateSpace)

Berlin, Germany (August 2025)

 | VII

Preface

Early in my career, I realized I wanted to become a tech lead, although at the
time, my understanding of the role was limited. What motivated me most was
the impact we could have as a team rather than my individual contributions.

While the engineers around me were diving deep into the latest technologies
and tackling more complex technical challenges, I found myself questioning the
value of the work we were doing. I was more drawn to solving team-related
problems and taking the initiative to move things forward. I wanted to have
more influence on how the team operated, so when the scrum master left, I
saw an opportunity and stepped into that role. While others were focused on
building new features, I constantly found myself documenting the existing ones,
improving communication, and streamlining our processes.

To make it happen, I moved to another country and joined Thoughtworks: a
company that supported my growth into the tech lead role. I started working with
my tech lead at the time to develop the necessary skills, and I said yes to every
training opportunity that came my way. When I learned that the team’s tech lead
was leaving, I asked to take over. They said yes.

Once I realized that the type of impact I wanted could happen only in the
tech lead role, I began focusing on the skills I believed were necessary for the
position. I worked hard to sharpen my technical abilities, thinking that to lead
a technical team, I needed to be the most technical person on the team. I was
wrong.

The more I learned about the tech lead role, the more I felt like I didn’t
know. There are just so many opinions out there on what the role actually is. The
more I talked to other tech leads about it, the more I realized they didn’t know
either. Everyone seems to have their own definition, but the tech industry cannot
agree on what exactly the role is.

ix

This confusion isn’t unique to the tech lead role; it applies to most roles in
tech, from junior developer to CTO, or anything in between. But when it comes
to the tech lead role, things get even more fuzzy. As proof, I couldn’t find a single
book out there focusing solely on it. There are plenty of general engineering
leadership books, but as a tech lead, it’s up to you to figure out what’s relevant
to your specific situation. This can get overwhelming quickly, and I definitely felt
that struggle when I was starting out.

Why I Wrote This Book

I wrote this book to save other tech leads, like you, from the painful process
of going through countless resources, trying to figure out what applies to your
specific role. You can think of it as your go-to guide for navigating the unique
challenges of being a tech lead.

This book draws from my personal experience as a tech lead at Thought-
works, insights from other more and less seasoned tech leads I’ve worked with,
and what I learned from training and coaching over 300 tech leads across various
companies, cultures, and environments over the past three years.

How to Effectively Use This Book

No matter where you are in your journey as a tech lead—just starting out,
mid-career, or very experienced—this book provides valuable insights, tools, and
lessons. If you’re an aspiring tech lead, aiming to step into the role, I recommend
starting with the first two chapters:

Chapter 1, “The Role of a Tech Lead”
This chapter gives you a clear, high-level picture of what the role actually
involves. You’ll explore the day-to-day responsibilities, how to define the
scope of the role in your context, what’s expected of you, and the different
paths that can lead to becoming a tech lead. This chapter also helps you
assess if the role is a good fit for you right now.

Chapter 2, “How to Become a Tech Lead”
Once you’ve decided you’re ready (or almost ready) to make the move,
Chapter 2 helps you build a personal growth plan. It walks you through
mindset shifts, how to assess your current strengths and gaps, and what
steps to take to grow into the role with intention. It also highlights the com-
mon challenges new tech leads face and how to navigate them early on.

x | PREFACE

It’s also worth scanning through the entire book to familiarize yourself with
the common scenarios you’ll likely encounter in the role.

If you’ve just stepped into the role, this book will be your go-to reference
for troubleshooting and solving the daily challenges you’ll face. It’s packed with
real-world scenarios, so you can easily find the relevant chapters and get practical
advice and ideas for handling specific issues.

If you’ve been in the role for a while now, this book can help you refine
your leadership skills by identifying areas for improvement, and discover new
strategies for dealing with the ongoing challenges of the role.

The more I was learning about the role from training, observing my experi-
enced tech lead, and talking with others in the role, the clearer it became: being
a tech lead is less about tech and more about people. When I finally stepped into
the role myself, it all clicked: the tech lead is 100% more about people than tech.

Reaching this conclusion was a long and challenging journey of self-
development and learning, a process I see tech leads go through every day. That’s
why this book addresses both the technical aspects and the equally important
people and business side of the role.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file
extensions.

O’Reilly Online Learning

For more than 40 years, O’Reilly Media has provided tech-
nology and business training, knowledge, and insight to
help companies succeed.

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training courses,
in-depth learning paths, interactive coding environments, and a vast collection of
text and video from O’Reilly and 200+ other publishers. For more information,
visit https://oreilly.com.

PREFACE | xi

https://oreilly.com
https://oreilly.com

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

141 Stony Circle, Suite 195

Santa Rosa, CA 95401

800-889-8969 (in the United States or Canada)

707-827-7019 (international or local)

707-829-0104 (fax)

support@oreilly.com

https://oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at https://oreil.ly/leveling-up-tech-
lead.

For news and information about our books and courses, visit https://
oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.
Watch us on YouTube: https://youtube.com/oreillymedia.

Acknowledgments

First, I want to thank my partner, Radu Chilom. You’ve been there the whole
time, through deadlines, meltdowns, and ups and downs. You encouraged me,
debated leadership scenarios and technical stories with me at midnight, and kept
me sane when the process made me a little crazy. Thank you!

To my friends, Elena Garcia, Stefania Rosca, Sorin Mihai, Eduard Almasque,
Elisa Cutrin, Valentina Servile, thank you not just for your thoughtful feedback
on the book but for keeping my spirits high with advice, encouragement, and
friendship. Many of you I met at Thoughtworks, and I’m grateful for every
moment there. The people, the international network, the opportunities, and the
trust pushed me out of my comfort zone and shaped the way I lead today. Much
of what’s in this book is rooted in those experiences.

A huge thank-you to everyone who showed interest in reviewing the book.
When I asked for volunteers, I definitely didn’t expect more than 160 peo-
ple, including friends, former colleagues, and even people I only knew from

xii | PREFACE

mailto:support@oreilly.com
https://oreilly.com/about/contact.html
https://oreil.ly/leveling-up-tech-lead
https://oreil.ly/leveling-up-tech-lead
https://oreilly.com
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://youtube.com/oreillymedia

LinkedIn. I couldn’t take everyone into the official reviewing process, but every
application and comment boosted my confidence that this book was needed.

Which brings me to my tech reviewers. Special thanks to those who read
carefully, shared their stories and experience, debated topics with me, and made
the book so much better: Alex Geogea, Sonu Kapoor, Jeff Zinger, Hermann
(“Ham”) Vocke, Kaitlyn Tierney, Andra Popa, Ivo Pinto, Sergio Visinoni, Joe Sey-
mour, Mireia Angles, Michael Di Prisco, Mihaela Pasculescu, Aleix Morgadas,
Yanqi Luo, Alex Lau, Rodrigo Borrego, Dani Roman, Nicolas Gonzalez Avalis,
Dariusz Sadowski, Dagna Bieda.

To all the companies who trusted me to grow their tech leads, and to the tech
leads themselves, whose challenges, questions, and stories inspired so much of
this book, thank you. Every conversation shaped these pages.

A warm thank-you to Pat Kua for your generous foreword and endorsement
of this book, and to Birgitta Böckeler for your insights and collaboration on the
AI sections, your thoughtful contributions made it stronger and more complete.

And last but not least, my gratitude to the team at O’Reilly. It was a pleasure
working with each and every one of you. David Michelson, who got me on board,
my editors Jill Leonard, Gregory Hyman, and especially Shira Evans, thank you
for your guidance, accountability, and support. You took my messy drafts and
helped me shape them into something I’m truly proud of. And to all the other
people who contributed in ways I may never know about, thank you.

PREFACE | xiii

The Role of
a Tech Lead

The tech lead role is one of the most misunderstood positions in the tech indus-
try. It’s a role that exists at the intersection of people, technology, and business,
and yet there’s little consensus on what it actually means. This lack of clarity
often leaves new tech leads feeling unsure about what’s expected of them and
how to approach the role effectively.

Every company seems to have its own version of the tech lead role, shaped
by their culture, processes, and priorities. Some see the role as deeply technical,
while others focus heavily on team dynamics and processes. Understanding
these differences and defining what it means within your specific context is the
first step to succeeding as a tech lead.

That’s why, in this chapter, I’ll outline the essential aspects of the tech lead
role to help you understand what to expect and how to approach it. I’ll begin by
defining what a tech lead is, including the scope and daily responsibilities. Then,
I’ll explore how to make sense of the expectations placed on you, whether you
have a formal job description or not, and offer guidance on evaluating whether
this role is right for you.

I’ll also look at the different paths people take to become a tech lead, from
transitioning within your current team to forming entirely new ones. Finally,
I’ll cover the critical skills and mindset shifts you’ll need to go through in this
transition.

1

| 1

What Is a Tech Lead?

When I ask tech leads, “What’s expected of you?” the responses are wildly differ-
ent, covering a wide range of skills and responsibilities.

At one extreme, some describe the tech lead as the most technical person
on the team, someone with deep expertise in the tech stack who makes all
the decisions and contributes code daily, often at the same level as any other
engineer. The role is seen as highly hands-on, deeply technical, and rooted in
direct contributions to the team’s output.

At the other end of the spectrum, the tech lead is described as someone
who rarely codes, either due to lack of time or because they deliberately choose
to focus on other priorities, like people, processes, and shielding the team from
distractions. In this view, the tech lead is more of a facilitator, working closely
with the product manager (PM) to manage the backlog and ensure smooth
collaboration.

Figure 1-1 shows a word cloud compiled from typical responses I get when
training groups of tech leads and asking, “What words do you associate with ‘tech
lead’?”

Figure 1-1. Common words associated with “tech lead”

2 | LEVELING UP AS A TECH LEAD

These examples show just how varied the expectations can be, from being
a hands-on technical expert to focusing entirely on people and processes. The
reality is that the tech lead role sits somewhere in the middle, requiring a careful
balance between technical leadership, team development, and stakeholder align-
ment. That balance isn’t fixed. It can shift over time, depending on the maturity
of your team, the phase of the project, or even the specific challenges you’re
facing.

A tech lead is expected to guide the team through decision making, ensuring
that everyone’s input is heard and considered, rather than just making decisions
unilaterally. This requires a breadth of knowledge, not just about technical areas
like infrastructure, architecture, and the tech stack but also about the business
context and stakeholder management.

At the same time, a tech lead must support the team’s delivery while helping
individual team members grow. It’s a role that demands both technical expertise
and people skills, combining them effectively to build alignment, encourage
teamwork, and deliver impactful results.

This wide range of interpretations of the role can be confusing, especially for
new tech leads, but it also highlights why the role is so critical, and why defining
it within your context is essential.

DEFINING THE SCOPE

Given how widely the tech lead role can vary, it’s helpful to look at how different
experts and industry leaders define it. Each brings a slightly different lens, tech-
nical, organizational, or people-focused, reflecting the fluid nature of the role
across different companies and team setups.

Camille Fournier, in The Manager’s Path (O’Reilly), describes the tech lead
as a senior individual contributor who helps a team of engineers work together
effectively. She emphasizes coordination, communication, and supporting the
team in delivering high-quality work. As she explains it, the tech lead isn’t
necessarily the strongest coder but the one ensuring that things move forward
smoothly.

Will Larson, in Staff Engineer (self-published), presents the tech lead as an
archetype of staff-plus roles: “The Tech Lead guides the approach and execution
of a particular team. They partner closely with a single manager, but sometimes
they partner with two or three managers within a focused area. Some companies

THE ROLE OF A TECH LEAD | 3

https://learning.oreilly.com/library/view/the-managers-path/9781491973882/
https://staffeng.com/book

also have a Tech Lead Manager role, which is similar to the Tech Lead archetype
but exists on the engineering manager ladder and includes people management
responsibilities.” His framing emphasizes the tech lead’s proximity to execution
and operational leadership.

Pat Kua, in his book Talking with Tech Leads (CreateSpace), defines the role
as “a leader, responsible for a (software) development team, who spends at least
30 percent of their time writing code with the team.” His definition underscores
the hybrid nature of the role: still technical but with an added layer of responsibil-
ity for team effectiveness and communication.

Pat’s work had a lasting influence on how I approached the role early in my
career. One of my first tech lead trainings was with him, back when we were
both at Thoughtworks, and many of the lessons from that experience continue to
shape how I teach and support tech leads today.

These perspectives highlight different, but overlapping, facets of the tech
lead role: from deep technical execution to team coordination and stakeholder
alignment. And that diversity reflects what I’ve consistently observed in practice.

Drawing from my own experience as a tech lead, and from training hun-
dreds of tech leads over the years, I’ve seen this role take shape in many forms.
The tech leads I’ve worked with have come from a wide range of environments:
product companies and consultancies, startups and large enterprises, and teams
at varying levels of maturity. This includes fintech, ecommerce, and SaaS (soft-
ware as a service) organizations; agile and less agile teams; both layered and flat
hierarchies; and setups ranging from internal tooling to customer-facing product
teams.

Based on this broad exposure and firsthand experience, I’ve come to see a
clear throughline in what great tech leads do. While the role flexes based on
context, there’s a common core. Here’s how I define it:

The tech lead is a software engineer responsible for leading a develop-

ment team and accountable for the technical deliverables of that team.

Being accountable for technical deliverables also means ensuring that the
team’s work aligns with stakeholder expectations. This alignment places the tech
lead role right at the intersection of people, business, and technology. It’s a
balancing act that requires understanding both the technical and nontechnical
aspects of the role, as shown in Figure 1-2.

4 | LEVELING UP AS A TECH LEAD

Figure 1-2. What a tech lead is

So, to be an effective tech lead, you need to successfully implement several
tasks, described in the following sections.

Build a strong, high-performing team

First, you need to focus on building a strong, high-performing team. It took me a
while to figure out what that really means, but here’s what I’ve learned: a strong
team delivers value consistently. They work together like a well-oiled machine,
complementing each other’s skills and continuously growing. They don’t wait to
be told what to do; they take initiative, and responsibility is shared across the
team.

To build and maintain a team like this, you’ll need to invest time and energy
into your people. That means mentoring and coaching them, creating opportuni-
ties for growth through delegation, and providing feedback that actually helps
them improve. It also means supporting collaboration by addressing conflict,
facilitating open conversations, and building strong relationships. It’s challeng-
ing work, but it’s worth it. Because without effective collaboration, you don’t have
a team; you just have a group of individuals trying to work together. More on this
in the section “Building a High-Performing Team” on page 180.

But there’s another layer here that’s often overlooked: as a tech lead, you’ll
also play a critical role in shaping career growth and performance outcomes for
your team. While you might not be the one making final decisions on things
like promotions or compensation, your input carries weight, especially during
performance review cycles.

Your role in performance reviews and career development can vary widely
depending on your company’s structure and culture. In some organizations,
tech leads are deeply involved in performance review cycles, mentoring team
members toward the next level, providing structured feedback, and partnering

THE ROLE OF A TECH LEAD | 5

closely with engineering managers to support individual growth. In others, tech
leads are barely involved at all, as the expectation is that team leads or engineer-
ing managers will take care of the heavy lifting when it comes to reviews and
development.

Still, even in companies where your formal involvement is limited, your
perspective and feedback are often sought, especially when it comes to evaluating
technical growth, impact, and readiness for more responsibility. In many cases,
your input may also be requested for engineers outside your team, particularly
when you’ve collaborated on cross-functional work. Promotion cycles can be
intense, and tech leads often find themselves at the center of them, writing
feedback, assessing performance, and advocating for the people they work with
every day.

For a deeper dive into this part of the role, including how to navigate perfor-
mance reviews, see the section “How to Approach Performance Reviews” on
page 197.

Lead technical topics

As a tech lead, you need to ensure your team can deliver on expectations and
handle any technical challenges thrown their way. But this doesn’t mean you
need to be the most technical person on the team or take on every technical
decision, code review, or pull request yourself.

A strong technical background is certainly important, and some familiarity
with the technologies your team uses is definitely helpful. However, you don’t
need to have deep expertise in every part of the tech stack. What’s important is
having enough knowledge to code alongside your team when necessary, staying
informed about code changes, and effectively troubleshooting issues that arise.
This foundation allows you to guide your team in building a technical strategy,
making informed decisions, and solving production problems.

The good news is, you don’t need to carry the weight of technical expertise
on your own. As a tech lead, you have tools at your disposal to share responsibil-
ity and create a balanced workflow. Delegation is key. Delegating tasks to team
members who have deeper expertise in certain areas, or who are eager to learn,
ensures the workload is distributed effectively while supporting their growth.
This approach not only increases your team’s overall technical capabilities but
also reinforces collaboration and trust.

Equally important is ensuring commitment to the technical strategy and
the results you aim to achieve. A great way to do this is by facilitating open,

6 | LEVELING UP AS A TECH LEAD

productive conversations within your team. Ensure that everyone has a chance to
contribute, share their ideas, and be involved in decision making.

I’ve seen this approach work firsthand. I once led a team of six developers
to deliver a major feature with high business impact on time, under a tight
three-month deadline, despite having limited knowledge of the tech stack and
business context, no prior relationships within the company, and multiple depen-
dencies on other teams. Instead of trying to become the technical expert, I leaned
on team members with deeper expertise in the technology. My focus was on
unblocking the team, addressing pain points like backlog alignment, consistent
refinement, knowledge sharing, and creating a process that enabled us to deliver
value continuously. By fully utilizing everyone’s skills and providing clarity on
what to work on and how to approach tasks, we achieved our goals together.

Leading technical topics isn’t about knowing everything or doing everything;
it’s about enabling your team to deliver efficiently on expectations.

Bridge tech and business

I’d argue this is one of the most important responsibilities you have as a tech
lead because it’s something only you can do. You’re the go-to person for your
stakeholders, and while other developers on your team can take the lead on
technical strategy or mentoring, bridging tech and business isn’t something you
can delegate. It’s your job to make your team’s successes visible and proactively
communicate potential blockers, risks, or delivery impacts to stakeholders. That
includes translating technical decisions, like technical debt, refactoring needs, or
scaling constraints, into terms that make sense to nontechnical partners.

To do this well, you need to constantly invest in building relationships with
your team’s stakeholders, rather than just waiting for them to come to you. Set
up regular one-on-ones, progress updates, or tracking processes to provide visi-
bility into your team’s work. I have seen too many tech leads suffering because
they overlooked this, forgetting how much these relationships can influence your
team’s direction and your ability to lead effectively.

Your role doesn’t stop there. You’re also responsible for bringing back any
relevant information to your team, whether it’s feedback, shifting priorities, or
risks. And when needed, you have to shield your team from external pressures
that might disrupt their focus or morale. This balance between keeping stake-
holders informed and protecting your team ensures everyone stays aligned and
focused. It’s a fine line, but when done right, it can make a huge difference in
how your team performs and how smoothly everything runs.

THE ROLE OF A TECH LEAD | 7

By balancing these three core responsibilities, building a strong team, lead-
ing technical topics, and bridging tech with business, you’re setting your team
up for success. Each of these areas demands attention and focus, as they are all
interconnected. A high-performing team requires a clear technical strategy and
alignment with business goals. There is no way around it.

TECH LEAD VERSUS TEAM LEAD VERSUS LEAD DEVELOPER
VERSUS ENGINEERING MANAGER

Throughout the writing of this book, I received a lot of feedback questioning
whether I was actually describing a team lead, a lead developer, or even an
engineering manager (EM). The confusion is completely justified.

Different companies define these roles differently. Titles are often inconsis-
tent, and responsibilities are distributed in ways that reflect the company’s size,
culture, and maturity. But after playing this role with different clients, as well
as training and coaching over 300 tech leads from companies of all shapes and
sizes over the past three years, I keep coming to the same conclusion:

The tech lead role is a people management role.

Even if the job description doesn’t say so. Even if it doesn’t sound like it.
Even if some techies don’t like it.

Because while tech is the first word in the title, it’s the word lead that truly
defines the role.

Anyone who has stepped into the tech lead position quickly realizes that the
job involves far more people-related work than they expected. I’ve heard many
say:

“This role is way more people-focused than I thought.”

“This is not what I signed up for.”

“I don’t want to be responsible for people’s growth.”

The reality is that even if a tech lead is officially responsible only for delivery,
product quality, and technical decision making, these responsibilities are impos-
sible to fulfill without managing people effectively. How do you ensure quality
and delivery without regular check-ins? How do you grow technical excellence
without giving feedback, resolving conflict, and motivating others?

So, let’s clear up some common misunderstandings that can arise from the
various job titles and roles that overlap with being a tech lead.

8 | LEVELING UP AS A TECH LEAD

Tech lead

The tech lead is a software engineer who leads a technical team and is accounta-
ble for the outcomes of that team. The keyword is accountable. When something
breaks or slips, the tech lead is the one who answers for it. That’s why they’re
involved in everything that affects those outcomes: planning, delivery, technical
guidance, mentoring, stakeholder management, and people growth.

Even if your company doesn’t explicitly define this as people management, it
is people management in practice.

Tech lead versus team lead

The team lead role is often conflated with the tech lead. Traditionally, people
think of the tech lead as handling technical direction and the team lead as
focusing on people. But in most teams I’ve seen, there isn’t a strict split; it’s the
same person doing both jobs under one title called one or the other.

Some companies might formally separate them, but it’s rare to see both
roles within a single team. In practice, the difference is mostly semantic. Even
if both roles do exist in the same team, it very often happens that they struggle
to align due to significant overlap. To avoid stepping on each other’s toes, they
need to establish very clear boundaries, and that takes strong communication
and alignment skills on both sides.

Tech lead versus lead developer

The lead developer is a progression from senior developer. The focus is still
highly technical, but the impact is broader, usually going beyond the current
team. Lead developers drive initiatives, contribute to architecture, and mentor
others, often across multiple teams. They might take on responsibilities like
chapter lead or security champion, extending their influence without formally
leading a team.

In terms of hierarchy, lead developers are often at the same level as tech
leads, just with a different scope: where the tech lead is accountable for a single
team’s output, the lead developer often works horizontally and is responsible for
leading different initiatives, working closely with the tech lead and supporting
them in raising the overall technical quality.

Tech lead versus engineering manager

The engineering manager (EM) role is another title with highly inconsistent defi-
nitions across companies, and it often overlaps with or absorbs responsibilities

THE ROLE OF A TECH LEAD | 9

commonly associated with tech leads. While both roles involve leadership, the
nature of that leadership is different.

Tech leads are deeply embedded in the team, driving technical delivery,
mentoring engineers, and ensuring the day-to-day runs smoothly. EMs, on the
other hand, tend to operate at a broader level. They often support multiple teams,
focus on people development, manage compensation, and shape long-term team
health and organizational strategy. In setups where each team has a tech lead,
this division works particularly well: the EM supports the tech leads, while the
tech leads support the engineers.

In some organizations, tech leads take on all leadership responsibilities
because there are no engineering managers. In others, engineering managers
handle both people and technical leadership because there are no designated tech
leads. The setup varies greatly, and there’s no one-size-fits-all model, only what
works best for the team and the context.

I see the EM role as a natural career progression in tech after the tech lead
role. You can read more about the EM role and how it compares to the tech lead
path in the section “Advancing to Engineering Manager” on page 344.

DAY-TO-DAY RESPONSIBILITIES

Now that you have a better understanding of a tech lead’s responsibilities, let’s
translate them into what a typical day for a tech lead might look like.

Meetings

Yes! You’ll be spending a lot of time in meetings. There’s no way around it. No
matter how good your async communication skills are, meetings are essential for
alignment (standups, plannings, retros, strategy sessions, discoveries), support-
ing your team (one-on-ones, feedback sessions, addressing conflicts), and staying
informed about changes (all-hands meetings).

But that doesn’t mean meetings should consume all your time. Over time,
you’ll learn which ones truly require your presence, which can be delegated to
others, and which can be cut altogether. This allows you to balance your time
with two other equally important areas: coding and thinking time.

Coding

I made the mistake once of staying away from the code for too long, and one day,
I jumped back in only to realize I didn’t even recognize it anymore. Trust me,
you don’t want to get to that point.

10 | LEVELING UP AS A TECH LEAD

It’s easy as a tech lead to get swept up in meetings and high-level discus-
sions, but staying hands-on, coding alongside your team weekly, makes all the
difference. It keeps you connected to the work, helps you stay in tune with code
quality, and ensures you’re better equipped to make technical decisions together
with the team.

Pairing with team members is another great way to stay close to both the
code and the people. It helps you spot issues early and understand how each
developer is progressing, and serves as a powerful mentoring tool. Beyond
pairing, reviewing others’ code, looking through the codebase, and regularly
checking pull requests are also useful ways to stay updated, even if you’re not
writing much code yourself.

And don’t forget about architecture and system design. These are key areas
where tech leads are expected to provide guidance and oversight. Staying involved
in design discussions keeps your technical context sharp and ensures the team is
making aligned, scalable decisions.

Another key area that takes up a surprising amount of time is writing and
reviewing technical documentation and plans. Whether you’re drafting a design
doc, reviewing an RFC (request for comments), or commenting on a team mem-
ber proposal, this kind of written work is essential to maintain alignment and
drive thoughtful technical decision making. It keeps you connected to the work,
helps you stay in tune with code quality, and ensures you’re better equipped to
make technical decisions together with the team.

One important thing to mention here is that, as your coding time naturally
decreases and your focus becomes more dynamic, you should avoid becoming
a bottleneck for your team. Try not to take on critical tasks that have many
dependencies or are on the critical path.

Thinking time

This is something many tech leads tend to overlook: stepping away from the
team and giving yourself some quiet time to reflect. Taking this time to think
lets you step back, look at how things are going, spot gaps, and plan the team’s
strategy moving forward. It’s one of those things that can save you from being
blindsided when things go off track.

For me, Friday afternoons became my go-to time for this. The week was
winding down, the chaos was usually settling, and I’d use the time to review my
notes, reflect on the week, and figure out what I might be missing. It was also
the perfect moment to plan for the next week. This practice was a game-changer:

THE ROLE OF A TECH LEAD | 11

it gave me clarity, helped me feel more in control, and stopped me from just
getting swept up in the day-to-day flow.

Of course, some days will be different than others. Some tech leads prefer
saving days just for coding, while others might spend a full day planning. And
then there are days when everything goes off track, and you’re just putting out
fires. What’s important is that you’re aware of these various activities and ensure
each gets the proper attention throughout the week.

In conclusion, if you’re stepping into the role for the first time, expect to
navigate ambiguity, resolve conflict, influence without authority, and spend as
much time on communication as you do on code.

Job titles may differ and responsibilities may be shuffled around, but the
bottom line is:

No matter how technical the tech lead role may look on paper, it is funda-

mentally about leading people.

I’ll be honest. I still find it hard to fully embrace this truth every single
day. There are moments when I question myself, wondering if I’ve overstated
the people part. But then I talk to another tech lead, about their daily chal-
lenges, their struggles, their people issues, and my conviction comes back again:
unfortunately, I am right.

Even if some people don’t want to hear it. Even if it’s hard to accept.
And maybe that’s part of the problem. If we were more up-front about just

how much people leadership is required to succeed in this role, there would be
far less confusion, and far fewer tech leads left wondering why the job feels so
hard.

Because most of the struggle comes from underestimating this part of the
work.

Understanding the Expectations of Your Role

With so many assumptions about what the tech lead role involves, ranging from
being the most technical person on the team to focusing entirely on people
and processes, it’s impossible to meet every expectation. Some view the role as
highly hands-on, expecting the tech lead to contribute code daily and make all
the decisions. Others view it as a facilitator’s role, focused on guiding processes,
supporting the team, and encouraging collaboration.

12 | LEVELING UP AS A TECH LEAD

The key to being effective is understanding your specific context, including
your company, team, and stakeholders, and what they expect from you. This
clarity will help you define your priorities as a tech lead and focus on what truly
matters in your environment.

READ THE JOB DESCRIPTION

Most tech leads I talk to have never read the official company job description
for their role. They just made their own assumptions about what is expected of
them. No surprise they often ended up in conversations with their managers on
how they “are not focusing on the right thing.”

So, your first task when jumping into the tech lead role is to read the job
description and understand what the people around you expect from you.

REFLECT ON WHAT APPLIES TO YOU AND HOW

Job descriptions for tech lead roles are often vague, filled with phrases like adapt-
ability and openness to new ideas, grow team members, or come up with innovative
solutions. While these may sound inspiring, they leave a lot open to interpreta-
tion. To make these expectations meaningful, take the time to reflect on how they
apply to your day-to-day work and the current stage of your team.

Your gut feeling is not enough to assess whether you’re doing a good job as
a tech lead. To truly understand your role and align with others, you need clarity
and agreement from your team and stakeholders.

Start by asking the right questions. In one-on-ones with team members,
ask, “What do you expect from me as a tech lead?” Juniors might say they want
mentoring, guidance, and technical expertise. Seniors, on the other hand, may
expect alignment, support, and help in removing blockers. Both perspectives are
important, so note their inputs and adapt your approach.

Don’t stop with your team. Extend the conversation to other stakeholders like
clients, product managers, or department leads. Ask them the same question and
listen closely to their answers. They may highlight areas you hadn’t considered,
like managing external dependencies, aligning with broader business goals, or
improving communication across teams.

You can also make this process simpler by using a form to collect responses
from multiple people at once. Adding prompts like “What’s one thing I can do
to better support you?” or “What areas do you think I should focus on as a tech
lead?” can help you get more specific and useful feedback.

THE ROLE OF A TECH LEAD | 13

Once you’ve gathered input, it’s time to synthesize these expectations and
share them with your team and manager. Define what’s realistic and clarify
what’s not. For example, if you’re expected to “come up with new product ideas
that increase revenue,” but your focus for the next six months is migrating a
monolith to microservices, make that clear. Similarly, if some team members
expect you to code as much as they do, explain why that may not be feasible.

The goal is to ensure everyone is aligned and understands your priorities.
Setting clear expectations early on helps avoid misunderstandings, disappoint-
ment, and potential conflicts down the line.

WHAT IF THERE IS NO JOB DESCRIPTION?

It’s rare, but it happens. I like to see this as an opportunity. If there’s no job
description, create your own by applying the same principles:

• Jot down what you think is expected from your role.•

• Ask your stakeholders and team members about their expectations.•

• Compile all inputs into a document.•

• Share it with your manager and team to get agreement.•

An added bonus: you can make this document visible across the company
and ask for more input. It might just kick-start the creation of an official job
description.

IS THIS ROLE A GOOD FIT FOR ME?

Deciding if the tech lead role is right for you is deeply personal and unique to
your situation. No one can answer this question but you. Start by exploring what
the role entails and how it aligns with your goals.

Here are some activities that can help you decide:

• Talk to other tech leads about their day-to-day experiences, and see how•
you feel about what they are sharing. Do you like what you hear?

• Read through your company’s expectations for the role. Keep in mind that•
it varies by company, so explore which environment aligns with your own
definition. Don’t let anyone fool you: no matter how technical the role
looks on paper, there will always be a lot of “dealing with people” in the
role.

14 | LEVELING UP AS A TECH LEAD

• Get feedback. Ask people around you how they perceive your fit for the•
role and why. What strengths do they see that align with it? What might
hold you back?

• Talk it over with someone objective. People often bring up this topic to me•
in coaching. Surprisingly, very often, after just an hour of deep diving into
their reasoning and worries, they get clarity on wanting to pursue the role
or not.

This being said, the only way to really know is to try it out.

Common Pathways to Becoming a Tech Lead

There are three main pathways that can lead you to a tech lead role. In this
section, I’ll break them down one by one, sharing insights into how each works,
the pros and cons, and how they might align with your own journey.

TAKING OVER THE ROLE ON YOUR CURRENT TEAM

The tech lead of your team announces they’re leaving, and you realize this could
be your chance. This is exactly how I became a tech lead at Thoughtworks. When
my current tech lead announced he was rolling off the project, I immediately
offered to step in. It felt like the natural next step for both me and my team,
aligning perfectly with my long-term goals, and the timing was perfect.

I had already been preparing to jump into a leadership role for a while.
I took part in multiple leadership trainings, and I was taking on more and
more responsibilities in my current team and outside of the team that required
leadership skills. I was leading big initiatives that involved direct and constant
interaction with the clients, growing other people in the company, and becoming
more and more visible inside and outside the company by speaking at different
events.

Having been on the team for nearly two years, I was the person with the
longest tenure on the team (I was in a consultancy environment, where people
rotate teams way more often than in a product company), so I had the most
context on our products and technical solutions. In addition, I was the most
excited candidate and felt confident I could take on the role.

Based on these reasons, it was no surprise when the leadership team said
yes to my request, with the condition that I prepare for a smooth transition.
Together with my current tech lead, we built a plan that allowed me to step into

THE ROLE OF A TECH LEAD | 15

the role gradually. I initially took on the position of secondary tech lead (the
tech lead-in-training, preparing to take over), allowing me to get a feel for the
responsibilities while still having support.

Here’s how the transition played out over the two months before my tech
lead rolled off the project.

We kicked things off by setting up a clear two-month timeline. I started
attending meetings with stakeholders and other teams, shadowing my tech lead
at first, then gradually taking over and leading them on my own. Each week,
we held handover sessions where I got a behind-the-scenes look at the tasks my
tech lead was handling and caught up on team initiatives I hadn’t been directly
involved in before.

I began stepping into decision-making conversations within the team, ini-
tially with my tech lead there to guide me. After each session, we’d debrief, and
I’d get feedback on what to tweak or improve. I also took over the tough conversa-
tions (risks, delays in delivery) with the client, knowing my tech lead would step
in if things got tricky. On the internal side, I started handling progress updates
and addressing potential issues with stakeholders, again with my tech lead as a
safety net if I needed backup.

Looking back, there’s one key area I would approach differently if given
the chance: ensuring clear communication with the team during the leadership
transition. Here’s what I wish had happened, and what I actually did:

What I wish had happened
In retrospect, my plan should have included clear communication to the
team from my tech lead or someone on the leadership team about the
transition, explaining that I would be taking over the role, when it would
happen, and outlining the plan for the transition.

What happened
When I transitioned into the tech lead role, there was no official communi-
cation from leadership to my team; only the stakeholders were informed.
I assumed the team knew, as I became less involved in daily tasks and
focused on the handover plan. After my tech lead left, I started leading
meetings and setting up one-on-ones. This confused the team, making
them feel like I was overstepping.

During a one-on-one, someone finally said, “So, you’re the tech lead
now? I assumed, but no one confirmed.” That’s when I realized there had

16 | LEVELING UP AS A TECH LEAD

been a lack of clarity. I asked leadership to officially announce my new role,
and once they did, along with an apology for the oversight, things fell into
place.

This experience taught me the importance of clear communication. If you’re
transitioning into a leadership role, ensure this step is part of the process. It
saves confusion, builds trust, and sets the tone for your leadership journey.

And sometimes, it’s the other way around: your team might know, but stake-
holders or other supporting functions may be left out. Even when a promotion
is announced internally, it’s not always obvious across functions. That can lead
to confusion about responsibilities, misalignment in collaboration, and delays in
support. So, when planning your transition, think about everyone that needs to
be in the loop and make sure they are informed.

The benefits of this pathway are as follows: the transition process into the
role becomes smoother since you’re already familiar with the team, the technol-
ogy, and the product, and you have your current tech lead by your side to guide
your first steps.

The main downside of this approach is that your team members already
know you as a fellow developer, and it can take time for them to start seeing
you as a leader. I experienced this myself: because they knew me so well, it took
longer for them to trust me in a leadership role. People became more hesitant to
share everything with me, and at times, my authority wasn’t taken as seriously.
However, these issues can be managed by setting clear expectations with the
team and addressing any concerns early through honest conversations.

There’s also a variation of this situation that can be even trickier: when the
outgoing tech lead doesn’t leave the team but instead moves into an individual
contributor (IC) role. While this can be a healthy shift if managed well, it often
creates confusion or even tension. The new tech lead may struggle to fully
establish authority if the previous lead’s presence looms too large, especially if
they continue contributing heavily or unintentionally undermine decisions. This
inverted power dynamic can make it harder for the new lead to bring change, and
requires strong alignment, communication, and mutual respect between the two.

What I’d advise in this case is to sit down with the previous tech lead and
align clearly on how you’ll move forward together. It can really make a difference
if you ask this person to actively support you during the transition, even if your
leadership style ends up being different from theirs. This alignment is ongoing
work.

THE ROLE OF A TECH LEAD | 17

Overall, transitioning to being the lead of your current team remains one of
the smoothest ways to step into the tech lead role.

TAKING OVER THE ROLE ON ANOTHER TEAM

Sometimes, you spot the opportunity yourself. Maybe another team needs a
tech lead, and you proactively put yourself forward. This could be because you
feel ready to grow into the role or because you’re curious to go through the
process and get feedback. You might also bring it up in a conversation with your
manager, asking for their support. Taking this kind of initiative is already a sign
of leadership, even before you formally step into the role.

Other times, the opportunity comes to you. For example, the tech lead of
another team is leaving, and your manager asks you to step in because you’re the
best fit based on your skills and experience. You accept the challenge.

To make the transition smoother, it often helps to jump in as soon as
possible and have some overlap with the current tech lead. This gives you a
chance to cocreate a transition plan, absorb context directly, and ease into the
role gradually (like I did with my tech lead; more on this in the previous section,
“Taking Over the Role on Your Current Team” on page 15). That said, overlap
isn’t always possible, or even preferable in every situation.

In some cases, stepping in after the previous tech lead has fully left can
actually create space for the team to open up more freely, reflect on what wasn’t
working, and give you a chance to establish your own leadership approach right
from the start. The absence of overlap can create a clean slate, but it also means
you’ll have to work harder to reconstruct context and rebuild trust without that
direct handover.

There’s no universal right answer here. Both approaches have trade-offs,
and what works best will depend on the team’s dynamics, the outgoing lead’s
leadership style, and how much change the team is ready for.

Transitioning to a leadership role in another team does come with a few
extra challenges. Beyond just transitioning to tech lead, you also have to go
through a full onboarding process with the new team. They’ve already estab-
lished their own way of working, and as a new leader, you may face some friction
as they adjust to you.

If overlap with the outgoing tech lead isn’t possible, the best approach you
can take is to start by focusing on building relationships and gathering as much
information as possible about the product and team dynamics before you start to
rock the boat. Forming a few allies early on can help you access the knowledge
you need and get a better sense of how the team operates.

18 | LEVELING UP AS A TECH LEAD

All this makes it a bit trickier than taking over a team you’re already familiar
with, where you know the people, product, and technical solutions.

The upside is you’re walking into a fresh start: new team, new people, new
rules. This is a chance to define how you want to be seen as a leader right from
the beginning.

BUILDING AND LEADING A BRAND-NEW TEAM

As your company grows, a new team is formed, and it needs a tech lead. Whether
you’re asked to take on the role or you volunteer, you’re starting from scratch.
Everything is new, for you and the team. This gives you a unique opportunity to
shape the team’s culture, processes, and technical direction right from the start.

Pros: Everything is new, not just for you but for everyone involved. This
gives you the opportunity to start fresh, define your role as a leader, improve on
your previous experiences, and bring people into the team that are aligned with
the culture you want to create. Your team members are also likely to be more
engaged and curious, eager to contribute and take initiative at this stage.

Cons: Everything is new, and you don’t have someone on the team to guide
your first steps.

There’s a model that can help make sense of this: the Tuckman model, also
known as Tuckman’s stages of group development, outlines the typical phases
teams go through as they form and mature. You can see all the stages illustrated
in Figure 1-3.

Figure 1-3. Tuckman’s team development model

THE ROLE OF A TECH LEAD | 19

Every new joiner sends a team back to the forming phase, but for a brand-
new team this phase comes with added complexity. You’re not just onboarding
someone into an existing rhythm; you’re building that rhythm from scratch. In
this setup, the early stages tend to be longer and more uncertain.

You might find yourself moving back and forth between forming, storming,
and norming as the team evolves, experiments, and learns how to work together.
These stages are rarely linear.

To start with, you’ll need to understand what your team will build, why it
matters, and how you’ll go about it. This often involves aligning with stakehold-
ers, exploring technical options, and finding your team’s purpose within the
broader organization.

At the same time, you’ll need to start shaping the team’s culture and estab-
lishing ways of working. This can take anywhere from a few weeks to several
months, depending on team size, past working relationships, organizational
maturity, and how often you actually get to collaborate.

People also need time to get to know each other and find their rhythm. Even
experienced engineers need space to build trust and learn how to collaborate
effectively.

And as the team’s scope evolves, you may need to bring new people on
board, adding another layer of transition and adjustment.

These phases don’t happen one at a time. They overlap, repeat, and evolve.
But knowing they exist helps you recognize where your team is and respond with
more clarity, patience, and intention.

Required Skills and Mindset Shifts

As a tech lead, you’ll need more than just technical expertise or leadership skills;
it’s about embracing a new way of thinking.

In this section, I’ll first explore the technical skills you’ll need, focusing on
the importance of understanding the software development lifecycle and how it
shapes your team’s work. Then, I’ll dive into the leadership skills and mindset
shifts that will help you empower your team, align with stakeholders, and adapt
to the complexities of this role.

TECHNICAL SKILLS

In the section “Defining the Scope” on page 3, I explain why having technical
breadth as a tech lead often matters more than being an expert in every technol-
ogy your team uses. Your goal is to ensure that your team collectively has the
capabilities to meet the expectations of the work. Of course, this doesn’t mean

20 | LEVELING UP AS A TECH LEAD

you can skip technical knowledge entirely; you still need to understand enough to
guide your team effectively.

Let’s start with an overview of all the different stages in your team’s develop-
ment cycle. I’m a big fan of teams having autonomy over what they build, which
is why I embrace the “you build it, you run it” methodology. This approach
requires your team to handle every stage of the software development lifecycle
(Figure 1-4), from planning and analysis to design, implementation, testing,
deployment, and maintenance.

Figure 1-4. Software development lifecycle (SDLC)

When your team owns the full lifecycle, there’s no way around it: you need
to understand your product at every stage. This requires a solid high-level under-
standing of the whole process:

Planning, analysis, and design
A big part of your role is planning and analysis. Planning includes priori-
tizing competing features, estimating effort (as frustrating as that may be),
setting milestones, and contributing to roadmap and capacity planning.
While you may not own all of these tasks outright, and the responsibility
for getting them done is shared across the team, product managers, and
stakeholders, you’re often expected to guide or influence the process. More
on this in the section “Planning and Keeping a Project on Track” on page
291.

THE ROLE OF A TECH LEAD | 21

Analysis is about understanding what you’re building and why, long before
any code is written. That could mean working directly with customers or
collaborating closely with a product manager to understand requirements.
It also involves balancing cross-functional concerns like accessibility, per-
formance, security, and maintainability, as well as making smart build-
versus-buy decisions.

Once those foundations are clear, design comes into play. For these early
stages, skills like architecture design and understanding how services are
designed and scaled are key. The system architecture your team chooses,
whether it’s microservices, a monolithic structure, or a hybrid model, will
have a significant impact on every phase of development. Knowing the
benefits and trade-offs of different architectures enables you to guide your
team in making informed decisions about scalability, performance, and
maintainability.

For example, working with microservices architecture may require a deeper
understanding of distributed systems, interservice communication, and
how to manage dependencies. Meanwhile, monolithic architecture focuses
on internal cohesion and the impact of changes on the entire system. As a
tech lead, you should be comfortable discussing these trade-offs with both
your team and product stakeholders.

Implementation
During the implementation phase, your focus shifts to development.
Depending on your product and the problem your team is solving, you
might need stronger backend development skills, such as working with
APIs, backend frameworks, database interactions, or database manage-
ment. For frontend-heavy projects, familiarity with modern frontend tech-
nologies, performance optimization, and how the UI interacts with the
backend will be needed. You might even need both if your project is
full-stack. Of course, you’ll also need to understand the programming
languages your team uses daily to contribute meaningfully.

Testing
Quality is your responsibility. While you won’t write every test, you need to
ensure proper strategies are in place (unit, integration, and end-to-end test-
ing) and encourage a quality-first mindset. Testing isn’t just about catching
bugs; it’s about avoiding regressions and keeping technical debt in check.
You’ll also need to understand how your system interacts with others.

22 | LEVELING UP AS A TECH LEAD

Techniques like contract testing and CFRs (cross-functional requirements)
can help avoid ugly surprises when systems integrate (more on this in the
section “Continuously Testing” on page 245 and the section “Defining and
Managing Cross-Functional Requirements” on page 232).

Deployment
Your team’s deployment process says a lot about its efficiency and reliabil-
ity. You need to understand your deployment pipeline, the infrastructure
involved, and which parts your team owns. Whether working with cloud
services or on-premises solutions, you’ll need to troubleshoot slow deliv-
ery pipelines and ensure releases are smooth. Familiarity with concepts
like CI/CD (continuous integration/continuous deployment or continuous
delivery) is nonnegotiable these days for ensuring fast, automated releases
and quick resolution of production issues.

Even if your company has a separate team handling deployment, you still
need to understand the process at a high level. This knowledge helps you
anticipate how deployment considerations might affect your product and
ensures your team delivers a reliable solution.

Maintenance
Building the product is just the start; keeping it running is the real test. In
my experience, maintenance often takes up at least half of a team’s time,
and ironically, established products that require ongoing maintenance are
usually the biggest revenue drivers. Poor decisions made earlier in devel-
opment show up here, and fixing them can cost a fortune. Observability
skills, including monitoring, troubleshooting, and debugging, are critical
to ensure the system runs smoothly and your team isn’t flying blind. You
can’t improve a system if you don’t know what’s wrong with it.

Even if your team doesn’t directly handle all these stages (e.g., there are
separate quality assurance or deployment teams), understanding how they apply
to your product is crucial. Too many teams focus solely on the implementation
phase, which can cause serious problems. Every phase plays a role in the final
result, and as a tech lead, you’re accountable for that. It doesn’t matter how
good your code is if it takes three days to reach production. In some contexts,
that might be normal, but in fast-moving teams, that kind of delay can become
a serious bottleneck. As a tech lead, you’re accountable for the entire delivery
process, not just the code.

THE ROLE OF A TECH LEAD | 23

This might feel overwhelming, but you don’t need to master all these
skills up front. Much of the learning happens on the job, and different areas
will demand focus depending on your project’s type and stage. Projects also
vary; greenfield projects are about new architectures and innovation, brownfield
projects involve navigating legacy systems, and scaling projects focus on reliabil-
ity and performance.

No tech lead knows everything, and that’s fine. The key is to focus on
what matters now and learn as you go. Work with your team to create growth
opportunities. Run experiments, host hackathons, or set up learning days. Side
projects can help, but I prefer learning on the job. If your current role doesn’t
offer the chance to grow, you can propose a new project or even consider moving
to one that aligns with your goals.

LEADERSHIP SKILLS

Most tech leads think they need only strong technical skills in order to be effec-
tive as tech leads. I definitely believed so, and I was quickly proven wrong once
I stepped into the role because the challenges that I encountered daily required
soft skills.

Here are some examples:

Two developers fighting for hours over what JSON parsing library to use
My first instinct, like most tech leads, was to dive into the technical options
myself and pick the “best” solution. I definitely made this mistake early
on. But over time, I learned to ask questions before jumping into action.
By listening to both sides, I realized that, surprisingly, the conflict was not
about the parsing library, but actually, these two people had a recurring
underlying conflict between them, so they could not agree on pretty much
anything. So, instead of diving into the JSON libraries, I helped them
resolve their personal conflict.

The team wasn’t addressing tech debt
Despite having the knowledge, the time, and the product buy-in to tackle
it, nothing was progressing. The root issue wasn’t a lack of technical capa-
bility but the absence of someone willing to take ownership and drive the
process forward. As a tech lead, you could easily step in and take charge,
but that’s not sustainable long term. The more effective solution is to
enable and empower a senior team member to take on this responsibility
and lead the initiative.

24 | LEVELING UP AS A TECH LEAD

All these situations, along with countless others I’ve encountered or seen
other tech leads face daily, have led me to the same conclusion:

Most tech problems are people problems.

And solving these people problems requires strong soft skills.
I dive deep into all the soft skills you’ll need as a tech lead in the Soft Skills for

Tech Leads O’Reilly online course and Chapters 3 through 7, but for now, know
that there are seven soft skills every tech lead needs:

Listening
Focus on listening. Everything starts with listening more.

Building relationships
Building strong relationships will help you set the foundation for collabora-
tion, alignment, and commitment.

Giving feedback
Feedback is your best tool for growing your team members and yourself.

Delegating
Delegation is the secret to effective leadership and team empowerment.

Facilitating
Facilitation will help you bring all voices to the table and help your team
reach decisions collaboratively.

Resolving conflicts
Disagreements are not only inevitable but are actually a sign of a healthy
team: you just have to learn how to navigate them effectively.

Mentoring and coaching
By making use of mentoring and coaching tools, you can help your team
grow without telling them what to do.

Investing in your soft skills is always a wise decision. They never become
outdated and are universally applicable. After all, no matter how much tech
develops, you will always have to work with people, so you might as well get
better at it.

THE ROLE OF A TECH LEAD | 25

https://oreil.ly/LTRoK
https://oreil.ly/LTRoK

MINDSET CHANGES

As a tech lead, you need to shift from an individual contributor mindset to a
leadership mindset as your success is now directly tied to the success of your
team, not just your individual performance. This transition involves three key
mindset changes, as shown in Figure 1-5.

Figure 1-5. Three mindset changes required as a tech lead

The first shift, from individual to team focus, means understanding the
following ideas:

• Your technical expertise is irrelevant if your team is constantly struggling.•

• The number of tasks you complete doesn’t matter if your team isn’t deliv-•
ering at the same pace.

• Finishing your tasks quickly doesn’t help if your team is slow to deliver.•

• Your self-assessment of doing a great job as a tech lead is meaningless if•
your team disagrees.

• Personal results don’t count if your team isn’t achieving success.•

26 | LEVELING UP AS A TECH LEAD

• How well you work on your own does not matter if you can’t collaborate•
with your team.

• Talented team members alone aren’t enough if they can’t collaborate•
effectively.

As a tech lead, it’s about ensuring the whole team moves forward and
succeeds together.

Equally important is transitioning from coding-centric thinking to value-
driven decisions. Being a tech lead isn’t about the amount of code you write but
the value your team delivers. Instead of always pushing for the latest technology,
prioritize what works best for your team goals and gains team buy-in. Before
jumping into coding, ensure assumptions are clarified and strategies aligned.
And instead of dismissing meetings as useless, challenge their purpose to make
them more effective for everyone.

Then there’s the need to step into long-term planning. The decisions you
make today will affect your team tomorrow, so you need to understand how
to balance immediate tasks with the long-term health of the project. Decisions
made for short-term gains should not come at the expense of long-term main-
tainability or technical debt.

Empowering others becomes a core principle. Instead of defaulting to “I’ll
handle this,” shift to “How can I enable someone else to take ownership of this
task?” as the first approach is not scalable. (More on this in Chapter 6.)

Last, letting go of control is essential. As an individual contributor, you had a
clear focus: your tasks moved from To Do to Done, often with little interference.
But as a tech lead, you’re juggling multiple team members’ progress and tackling
issues that might not even be on the board. Trying to micromanage it all is
a one-way ticket to burnout (trust me, I’ve been there). Learning to trust your
team and step back is essential. For more insights, see the section “Avoiding the
“Therapist” Trap” on page 51.

Tip

To help with your mindset shift, write the following sentence down and keep it

somewhere visible as a daily reminder: “As a tech lead, you are as successful as your

team.”

THE ROLE OF A TECH LEAD | 27

INTEGRATING AI INTO YOUR TEAM

To write this section, I reached out to someone I deeply admire: Birgitta Böck-
eler, a former colleague of mine at Thoughtworks and a true thought leader
in this space. Birgitta is a distinguished engineer and currently serves as a
subject matter expert and developer advocate for AI-assisted software delivery
at Thoughtworks. With over 20 years of experience as a software developer,
architect, and technical leader, she brings not only deep technical expertise but
also a strong focus on how teams actually work and deliver software together.

Birgitta has been at the forefront of exploring how generative AI impacts
software delivery, advocating for responsible experimentation and practical adop-
tion strategies. Her writing and talks offer clarity, realism, and excitement in a
field that often gets clouded by hype. I’m incredibly grateful she jumped in to
help shape this section with her insights and recent work.

With her help, I’ve pulled together what I believe every tech lead should
understand about AI’s role in software development today. Let’s jump in.

Note

In this book, I often refer to “AI,” “GenAI,” and sometimes even “LLMs.” While these

terms are sometimes used interchangeably in everyday conversations, they aren’t

exactly the same. Artificial intelligence (AI) is a broad field that covers everything

from rule-based systems to self-driving cars. Generative AI refers to models that

create new content, including text, code, and images, based on patterns in data. And

within GenAI, large language models (LLMs) like ChatGPT, Gemini, or Claude are a

specific kind of tool focused on working with language and reasoning over text. Most

of the tools discussed here fall under this last category. So when I say “AI” in this

book, I usually mean “GenAI,” and more specifically “LLMs.”

Al is here. It’s been here for some time, but now, more than ever, it’s
everywhere. We might not all be fans of the hype, and it’s OK to have mixed
feelings about it. But one thing is clear: we can’t ignore it. Al is now part of our
toolbox. It’s useful, it’s evolving rapidly, and it’s not going away.

Embracing AI thoughtfully is becoming a leadership skill in itself. We need
to understand its potential, its limitations, and how it can support the work our
teams are doing. This includes considering ethical implications, impact on team
dynamics, and long-term maintainability.

Your team will look to you for guidance on how to use it, when to trust it,
and when to push back. The challenge is not just learning the tools yourself but
helping your team develop safe AI collaboration and good judgment.

28 | LEVELING UP AS A TECH LEAD

https://birgitta.info
https://birgitta.info

Use AI for your own work

Start with your own workflow. Experiment with AI on small, low-risk tasks:
generating release notes, cleaning up documentation, summarizing architecture
decision records (ADRs), or turning rough notes into onboarding guides. Some
teams go further and train models on their internal documentation so new
joiners can ask onboarding questions in natural language. Even without that
investment, you can use AI as a smarter search layer across your team’s existing
documents and templates. By trying these applications firsthand, you gain the
experience you need to guide others.

Help the team use AI effectively, creatively, and safely

Your leadership is less about being an AI expert and more about setting the
culture. Create an environment where your team feels safe experimenting and
trying out new tools but is also encouraged to be skeptical, questioning outputs
and raising concerns. LLMs don’t “know” things; they generate plausible text.
They can sound confident and still be wrong. Encourage your team to treat AI
outputs like they would advice from an over-confident junior developer: useful
but never unquestioned.

To help you help the team, you need to use AI coding assistants yourself to
fully understand their strengths and pitfalls. That will enable you to teach your
team when to use AI and when to avoid it. You can also ground conversations
in context: What problem are we solving? What’s at stake if the output is wrong?
Build safety nets with strong peer reviews, good test coverage, and knowledge
sharing.

Regularly discuss as a team what worked, what didn’t, and where AI added
value or noise. Social learning is key when it comes to AI.

Amplify your expert knowledge across the team with AI

AI can help you increase your reach as a tech lead. You can curate conventions
and rules that reinforce good coding practices and prevent common pitfalls. You
can also codify recurring tasks into reusable prompts, including threat modeling,
improving ADRs, and structuring requirements, so the AI assistants can amplify
consistent approaches.

Beyond prompts and rules, think intentionally about the toolset and MCP
(model context protocol) servers you put around the team’s AI agents: integra-
tions with other knowledge systems that provide useful context, or secure access
to environments for debugging and incident response help. Each of these ele-
ments can amplify good practices and increase the probability that AI gives

THE ROLE OF A TECH LEAD | 29

you better results and assistance, but they still don’t replace critical review and
ongoing validation.

Understand how AI changes learning

The deeper shift is how AI changes the way we and our teams learn. Sometimes
the best approach remains doing the work manually, because judgment is forged
by wrestling with problems, not bypassing them. Critical thinking, which means
questioning assumptions, weighing trade-offs, and understanding context, is
more important than ever. Use AI to encourage good habits, like consistent
testing or clearer documentation, but don’t let it erode the fundamentals. Guide
your team to reflect on where AI helps, where it hinders, and what it teaches
them along the way.

Manage stakeholders’ expectations

AI adoption often tempts organizations to chase numbers: faster delivery, more
output, reduced costs. Some executives even assume teams will become “50%
faster” just by adding AI to their workflows. These expectations are dangerous.
They create pressure to cut corners, skip tests, or compromise quality just to hit
inflated targets.

As a lead, your role is to push back against oversimplified metrics and
broaden the conversation. Monitor where AI genuinely reduces friction or accel-
erates learning, but balance that against things like code quality, maintainability,
debugging time, and team satisfaction.

Like any tool, the value of AI depends on how thoughtfully it’s used.
By setting realistic expectations and widening the definition of success, you

protect your team from unrealistic pressure and ensure AI adoption strengthens
your outcomes, not weakens them.

Tip

For a further deep dive into the topic, I totally recommend following Birgitta Böckeler

on LinkedIn. She’s constantly publishing insightful articles and sharing up-to-date,

practical information on how AI impacts software delivery.

Key Takeaway

The tech lead role can feel a bit vague, and that’s often what makes it so intimi-
dating at first. You’re expected to lead, but the path isn’t always clear. In this
chapter, I wanted to bring a bit more clarity and calm to that confusion.

30 | LEVELING UP AS A TECH LEAD

https://oreil.ly/yC8u2
https://oreil.ly/yC8u2

We looked at what the role typically involves and how it can vary across
different teams and companies. This ambiguity isn’t necessarily a bad thing. It
gives you the freedom to shape the role around your strengths, your leadership
style, and what your team actually needs.

There’s no one-size-fits-all version of being a tech lead, and that’s the beauty
of it. You can define what success looks like for you, as long as your team’s needs
stay at the center.

If the role still feels a little daunting, that’s OK. It’s a big step, but you don’t
have to have it all figured out on day one. Start small, stay curious, and keep
experimenting. That’s how you grow into it. That’s how you lead.

THE ROLE OF A TECH LEAD | 31

How to Become
a Tech Lead

Becoming a tech lead is an exciting but challenging transition. This chapter will
guide you through the journey of stepping into the role, building the skills you
need, and overcoming common obstacles along the way.

First, I’ll explore how to set a strong foundation for your growth by adopting
the right mindset and understanding the importance of intentional development.
Then, I’ll walk through creating and implementing a growth plan tailored to your
unique context and goals. Finally, I’ll emphasize the importance of reflecting on
your progress and making adjustments to stay aligned with your objectives.

Once your growth strategy is in place, I’ll address common challenges that
new tech leads face. Time management often becomes difficult to balance, so I’ll
explore how to effectively plan and manage your new responsibilities. I’ll also
cover strategies for avoiding the “therapist trap,” where you might feel pressured
to solve everyone’s problems, and how to steer clear of micromanaging your
team. Finally, I’ll dive into finding the right balance between hands-on coding
and providing technical oversight, a delicate but essential aspect of the tech lead
role.

By the end of this chapter, you’ll have a practical framework for growing
into the role of a tech lead and strategies for navigating the challenges that come
with it.

Setting the Foundation for Growth

Before you can grow with intention, you need a solid foundation. That starts with
how you think, what you understand about your role, and where you currently
stand.

33

| 2

It begins with mindset. Embracing a growth mindset means seeing chal-
lenges as opportunities to improve and understanding that mistakes are part of
the learning process, not something to fear or avoid.

But mindset alone isn’t enough. You also need clarity. What’s expected of
you? What does success look like in your team, your company, your context? By
talking with your manager, your stakeholders, and even your peers, you can start
to shape a more realistic and grounded picture of what to aim for.

And once that picture is clearer, you can take a good, honest look at where
you’re starting from. What are your strengths? Where are your gaps? This kind
of self-assessment isn’t always easy, but it’s essential if you want to grow with
purpose rather than just reacting to whatever comes next.

These early steps, including how you think, what you understand, and how
you reflect, will shape everything that follows. Let’s get into it.

BUILD A GROWTH MINDSET

Having a growth plan is effective only if you pair it with the right mindset. To
grow as a tech lead, you need to embrace a growth mindset, which is the belief
that your abilities can be developed through effort, learning, and perseverance.
It’s about seeing challenges as opportunities and mistakes as learning experien-
ces, rather than failures.

When I first stepped into the tech lead role, I believed I had to have all
the answers and get everything right. I felt like every mistake or moment of
uncertainty would undermine my capability in the eyes of others. I would hide
my mistakes, thinking it made me appear more competent. I’d prepare technical
solutions in advance, rushing to respond to every client question as if hesitation
would make me seem less qualified. My anxiety drove me to over-prepare for
every situation, leaving me constantly stressed and exhausted.

When others didn’t have answers, I felt it was my responsibility to step in
and “fix it all,” often taking on tasks that weren’t mine to handle. Instead of
asking for clarification, I’d spend hours figuring things out alone, convinced that
admitting I didn’t know something would damage my credibility.

Looking back, I realize how limiting this mindset was, because growth
requires a fundamental belief: you don’t need to have all the answers right away,
but you do need to believe in your ability to learn, adapt, and improve:

In order to grow, you need to believe you need to.

34 | LEVELING UP AS A TECH LEAD

The good news is, a growth mindset can be developed just like any other
skill. Two strategies helped me transform my approach to challenges and
uncertainty.

The first is embracing the phrase “I don’t know.” Admitting when you
don’t have all the answers can be a game-changer. It allows you to learn faster
by seeking information instead of pretending, reduces the stress of trying to
appear all-knowing, and supports a culture of collaboration by making it safe for
others to admit what they don’t know as well. At first, saying “I don’t know” felt
uncomfortable; I even got strange looks from others. But over time, it became
easier, and I began to see how it strengthened my interactions and trust within
the team.

I know this can feel intimidating, and in some environments, even more so.
It’s especially tough in client-facing situations or in cultures where vulnerability
might be viewed as a weakness. I still remember the first time I said “I don’t
know” in front of a client. It felt ten times harder than saying it to my team. But
over time, I saw the same positive effect: it created space for honesty and showed
that not knowing is normal. Eventually, more people began to follow. Someone
has to be the first to have the courage to say it out loud.

The second strategy is shifting from “I don’t know” to “I don’t know yet.”
Reflecting on past challenges often reveals a pattern: you didn’t always know the
answers, but you figured them out. Think back to moments when you started
and you lacked clarity or certainty. What steps did you take to move forward?
How did you overcome the fear of not succeeding? Over time, what initially felt
impossible became second nature. This mindset shift focuses on the journey of
learning and emphasizes that progress takes time and effort.

When it comes to growth, it’s also helpful to remember that confidence
doesn’t always reflect competence. The Dunning-Kruger effect describes how
people with limited experience tend to overestimate their abilities, while those
who are more skilled often underestimate themselves. If you’re doubting your
abilities, it might actually be a sign that you’re becoming more aware of what
mastery really involves, which is a key step in growing. See Figure 2-1 for a visual
of the Dunning-Kruger curve, which illustrates how confidence often dips as
awareness increases before rising again with true competence.

HOW TO BECOME A TECH LEAD | 35

Figure 2-1. The Dunning-Kruger effect

It’s easy to feel the pressure to know everything, but real growth happens
when you trust your ability to learn and adapt. Confidence doesn’t come from
always having the answers; it comes from recognizing what you know now and
believing you’ll figure out the rest. Growth starts with this belief. You won’t know
everything right away, but with time and effort, you will.

Tip

For a deeper exploration of the growth mindset, I highly recommend Mindset: The

New Psychology of Success by Carol Dweck (Random House).

CLARIFY EXPECTATIONS

The second requirement for growth is understanding what’s expected of you. The
tech lead role can vary widely between companies, so it’s important to clarify
expectations in your specific environment.

One of the most common surprises I hear in coaching is from tech leads
who thought they were expected to focus on technical delivery, only to later
realize their manager cared more about team development and cross-functional
collaboration.

36 | LEVELING UP AS A TECH LEAD

https://oreil.ly/ZgAcS
https://oreil.ly/ZgAcS

For example, one coaching client stepped into a tech lead role assuming she
needed to drive architectural decisions and write the hardest parts of the code.
But after a few months, she received feedback that she wasn’t visible enough
to the team and wasn’t spending enough time on mentoring or stakeholder
communication.

This situation could have been avoided by clarifying expectations early on.
The section “Understanding the Expectations of Your Role” on page 12 offers
practical strategies to help you do just that, so you can align your efforts with
what your organization actually values from the start.

With these expectations in mind, the next step is to figure out where you
stand in relation to them.

ASSESS YOUR STARTING POINT

Once you’ve clarified the expectations for your role, you can use them to get a
clearer picture of where you stand right now. They provide a concrete reference
point to define your baseline. A simple way to do this is by using a 1-to-10 scaling
system (where 1 means “just starting out” and 10 means “strong in this area”),
shown in Table 2-1.

Table 2-1. Assessing your starting point

Step Description Reflection Prompt

Rate
yourself

Review the expectations identified in the
previous section, “Clarify Expectations” on
page 36.

Rate yourself from 1 to 10 for each area. Use
examples.

Pay attention not just to what’s missing but
also to what you’re already strong at.

Why this rating?

Why not a 10?

What’s missing to get to a
10?

Seek
feedback

Ask colleagues and your manager to rate
you on the same scale.

Request specific examples to support their
rating and suggestions for improvement.

What am I already doing
well in this area?

What’s one thing I could
do to improve this area?

Compare
and align

Look at how your self-ratings compare to the
feedback.

Identify gaps and strengths to inform your
growth plan.

Where are the biggest
gaps?

What surprised you?

HOW TO BECOME A TECH LEAD | 37

The main reason why I like this framework is that it forces people to actually
evaluate where they are. It’s not about the number but about the reflection it trig-
gers. In my experience, people tend to undervalue themselves when self-rating.
Many of my coaching clients say things like “I could never rate myself a 10; that
just feels like bragging,” even when they can’t identify a single improvement
point in that area. You have to consider that if nothing’s missing, maybe you’re
already a 10.

It’s a shame to automatically downgrade yourself like that. If you don’t stand
up for yourself, who will? Let others point out the gaps. Your job is to own your
strengths with clarity and confidence.

Developing a Personal Growth Plan

People often get trapped in the cycle of “doing” without a clear destination, which
can drain motivation. I’ve been there, focusing on tasks without knowing exactly
where they’re leading. A growth plan changes that by being intentional about
where you want to go. It gives you control over your career path, helping you
recognize opportunities as they come and make decisions more easily because
you know your “why.” It’s about moving with purpose rather than drifting on
someone else’s agenda.

The five steps for building a growth plan are as follows.

STEP 1: DEFINE A CLEAR GOAL

A lot of people struggle to define meaningful career goals, especially when tran-
sitioning from individual contributor to leadership roles. It’s not always easy to
articulate what you want beyond a title like “tech lead.” That’s why it helps to go
deeper and get specific.

Ask yourself the following questions:

• What would success look like in this role?•

• How will I know I’ve reached my goal?•

• What will be different in my day-to-day work?•

But don’t stop there. One of the most important questions I ask people
when they’re seeking a promotion is this: Why do you want it? Is it about recog-
nition, influence, salary, visibility, or something else? Most people’s answers are
different, and knowing yours can help ensure the goal is truly aligned with your
deeper motivation. Sometimes, the promotion you’re chasing isn’t the only (or
best) way to get what you’re after.

38 | LEVELING UP AS A TECH LEAD

So instead of just saying, “I want to become a tech lead,” try defining what
that means to you:

• Leading a team of five engineers on a customer-facing product•

• Taking over the tech lead role in my current team when my tech lead•
leaves

• Having the official tech lead title•

The more specific you are, the easier it is to use this goal.

Tip

If you’re unsure, look at job descriptions or company expectations, or talk to current

tech leads. Ask them: “What made you feel like you were finally in the role?”

STEP 2: DEFINE THE STEPS TO GET THERE

Once you’ve defined your goal, the next challenge is turning it into action. This is
where many people get stuck: they know what they want but aren’t sure how to
start moving toward it.

Break the goal into milestones: think of them as checkpoints on the path to
your destination. These are not just tasks but progress markers that show you’re
moving in the right direction.

Ask yourself the following questions:

• What needs to be true for me to reach this goal?•

• What skills or experiences am I currently missing?•

• What small steps can I take in the next week or month?•

If the path feels fuzzy, back into it by identifying one or two immediate
opportunities already available to you. You don’t need a full roadmap, just
enough clarity to start walking. You can figure out steps along the way also.

Tip

Review past feedback or performance reviews. Often, they contain useful clues

about what you could be doing more of or be doing differently.

HOW TO BECOME A TECH LEAD | 39

STEP 3: BUILD A TIMELINE

Now that you have a goal and a set of steps, it’s time to add some structure.
A timeline gives your plan momentum. It turns vague intentions into commit-
ments and helps you hold yourself accountable.

This doesn’t mean everything has to be perfectly scheduled. The idea is to set
rough timeframes for each step or milestone so you can track progress and avoid
stalling out.

Ask yourself the following:

• What can I realistically work on this quarter?•

• Are there natural checkpoints I can use, like a performance review, team•
change, or project cycle?

• Which steps depend on others, and how long might those take?•

Use a calendar, spreadsheet, or project board (like Trello or Notion) to map it
out visually. Seeing it laid out can make the plan feel more real and manageable.

Tip

If you’re unsure about timelines, start with short-term goals and adjust as you learn

more. Even a rough guess is better than none; it gives you a direction and makes it

easier to reflect and improve later.

STEP 4: BUILD A SUPPORT NETWORK

One of the most overlooked, but powerful, parts of a growth plan is asking, “Who
can help me?”

Growth doesn’t happen in isolation. The people around you—your manager,
your current tech lead, mentors, peers, or even a coach—can play a huge role in
how fast and smoothly you progress.

Different people can support you in different ways: your manager can give
visibility into future opportunities, suggest growth areas, and connect your goals
to team needs; your current tech lead might let you shadow them or gradually
take over rituals like planning or standups; mentors or peers can share how they
approached similar transitions and offer perspective from outside your team; a
coach can help you reflect, challenge your assumptions, and stay focused.

40 | LEVELING UP AS A TECH LEAD

Let them in on your goals. When people know what you’re aiming for, they
can offer better feedback, suggest relevant opportunities, or support you when
you need a push. Be proactive: ask for a regular check-in, share updates on your
progress, and ask for help identifying blind spots.

This isn’t about asking people to “do it for you” but about building a circle of
support that helps you grow faster and more sustainably.

STEP 5: IDENTIFY OPPORTUNITIES AND RESOURCES

A solid plan also takes advantage of what’s already around you. The question
here is “What opportunities and resources can I tap into to help me grow?”

Start with your current role. There are likely more learning opportunities
than you realize; you just need to spot them or ask for them. Look for growth
moments like leading a team retrospective, even if informally; taking the lead
on a small project or feature; facilitating technical discussions; mentoring a
more junior team member; or owning a process improvement (like refining your
team’s release workflow).

Ask your manager or tech lead, “Is there an area where I could take more
ownership or help the team?” You’d be surprised how often the answer is yes.

Next, look outside your day-to-day tasks: shadowing others (e.g., sitting in on
planning meetings, architecture reviews), contributing to cross-team initiatives
or guilds, presenting at internal knowledge-sharing sessions, or writing technical
documentation or proposals.

And don’t forget about formal resources, like your learning and development
(L&D) budget. Use them for leadership courses, workshops, coaching, books,
podcasts, communities, internal or external leadership programs, or training
opportunities.

To make this more tangible, let’s walk through how these five steps come
together in practice. The example in Table 2-2 outlines a growth plan for some-
one aiming to take over the tech lead role in their current team when their tech
lead leaves.

HOW TO BECOME A TECH LEAD | 41

Table 2-2. An example growth plan

Step Example

Define a clear goal • Become the tech lead of my current team

Define the steps to get
there

• Inform current tech lead and manager about my intention

• Shadow current tech lead during strategy planning

• Lead the migration initiative in the team

Build a timeline

Build a support network • Schedule one-on-ones with manager

• Ask Ana (a tech lead from another team) to be my mentor

• Join the monthly company “tech lead conversations”

Identify opportunities
and resources

• Use L&D budget for leadership course (be specific)

• Read Leveling Up as a Tech Lead

• Take the Soft Skills for Tech Leads O’Reilly online course

• Read The Manager’s Path by Camille Fournier

• Join the LeadDev community

The plan may not always go as expected, but it will get you to your goal faster
than just going with the flow. Keep adjusting as you progress.

Implementing the Growth Plan

This is the part where your growth plan comes to life.
You’ve defined your big goals; now it’s time to put them aside for a moment

and start zooming in. Focus on the small, concrete steps you outlined in your
growth plan. Start acting on them one by one while constantly reflecting on
what’s working and what isn’t.

REFLECT

Reflection is a tool that vastly accelerates your growth. For each step you take,
assess whether you’re aligned with your growth plan. Ask yourself, “Am I mak-
ing progress?” and “What adjustments are necessary?” Use your milestones as
checkpoints to assess whether your actions still support your bigger direction.

42 | LEVELING UP AS A TECH LEAD

https://oreil.ly/LTRoK
https://learning.oreilly.com/library/view/the-managers-path/9781491973882/
https://leaddev.com

A simple way to evaluate your progress is to repeat the same 1-to-10 scaling
system described in the section “Assess Your Starting Point” on page 37. Revisit
your ratings, ask for updated feedback from others, and have recurring conversa-
tions with your team, manager, or peers about your development. These insights
can validate your progress or surface areas that need more attention.

Getting honest, useful feedback is harder than it seems. People might hesi-
tate to be direct, especially when you’re in a position of authority. That’s why it’s
important to create psychological safety, ask thoughtful questions, and normalize
feedback as a regular part of working together. Chapter 5 includes the section
“How to Get Useful Feedback from Your Team”, which dives into specific strate-
gies you can use to gather meaningful input from both team members and
stakeholders.

TRACK YOUR PROGRESS

Whatever comes up at each reflection point, track it. It sounds so simple, but this
critical step is often dismissed as “obvious” and skipped entirely. The result? You
lose sight of how far you’ve come and the progress you’ve made.

You can track your progress in whatever format works best for you. Some
people prefer a handwritten journal or notebook, while others use a spreadsheet,
a Notion page, or a digital app like Trello or Todoist. The key is to make your pro-
gress visible. A simple table with your goals, key steps, timeline, and a column
for status/notes or reflections (like in Table 2-3) can go a long way.

Table 2-3. Progress tracker

Goal Step Timeline Status/Notes

Improve
collaboration in the
team

Pair program with
three different team
members

By August 1st June 3rd: paired with one
team member

Have two other
team members pair
together on a task

By August 1st June 3rd: the plan is for
them to pair next week

Have two team
knowledge-sharing
sessions

By August 1st June 15th: I delivered the
first session; encouraged
another team member to
lead next

You can be as specific as you like or keep it extremely lightweight. In fact,
the simpler your system, the more likely you are to stick with it. It could be as
easy as keeping a running list in a notes app where you jot down small wins as

HOW TO BECOME A TECH LEAD | 43

they happen. For example: “June 3rd: Convinced Alex to pair with me on the new
onboarding flow, and it went really smoothly.” You can later match these small
wins to the goals you’ve defined for yourself, which is especially useful during
performance review cycles, where clear, goal-aligned examples go a long way.

Many people avoid tracking progress for reasons that might seem valid at
first.

Some feel that being structured about their growth is selfish or self-centered,
something others might frown upon. I constantly have to remind people that
there’s nothing wrong with wanting to grow and become a better person or
professional.

Others hesitate, asking, “What counts as progress?” The answer is straight-
forward: anything, big or small, that moves you forward is worth recording.

Then there’s the classic excuse: “I’ll remember it.” The reality is, you proba-
bly won’t, just like many tech leads I talk to daily. And why overburden your
brain when writing things down is far easier and more effective? Writing things
down activates a different part of your brain, making your progress feel tangible
and keeping you connected to the steps you’ve taken. These small habits, simple
as they may seem, can fundamentally shift how you perceive and maintain your
growth.

You don’t need to track daily, but finding a regular rhythm that works for
you, whether it’s weekly, biweekly, or monthly, can make a big difference. The
key is consistency.

Tracking offers two significant benefits. First, it boosts your self-confidence.
On tough days, looking back at the challenges you’ve overcome reminds you of
how capable you are. Second, it provides motivation. Progress can feel painfully
slow when you’re focused only on the long road ahead, but reflecting on how far
you’ve come can restart your drive to keep going.

Tip

Don’t skip reflection. It helps you stay motivated and on track.

ADJUST

Growth isn’t static; it’s a continuous process of learning and adapting. Use the
feedback and insights you’ve gathered to refine your next steps.

Start by being intentional about what you focus on next. If you want
to work on your communication skills, lean into people interaction and find

44 | LEVELING UP AS A TECH LEAD

opportunities to practice. If there’s a technical area you want to deepen your
knowledge in, prioritize pairing with experienced team members and working on
tasks that stretch you. This is how you take control over your growth instead of
just going with the flow.

Be strategic about your environment. If you can choose your projects, pick
ones that help diversify your experience. But even within your current role, there
are plenty of opportunities to grow; you just have to be intentional about spotting
them.

By implementing, reflecting, tracking progress, and adjusting, you’ll turn
your growth plan into a dynamic tool that evolves with your goals and context,
keeping you on track to becoming an effective tech lead.

Overcoming Common Initial Challenges

When I talk to tech leads, I see the same struggles coming up time and
time again. Some feel overwhelmed trying to manage their time effectively and
balance their focus among technical responsibilities, team dynamics, and stake-
holder needs. Others fall into the trap of trying to solve everyone’s problems
or micromanaging their team. These challenges are not just common; they’re
expected. But they don’t have to derail you.

In the sections that follow, I’ll walk you through these recurring challenges
one by one and share strategies for navigating them effectively, starting with time
management.

TIME MANAGEMENT

In the section “Day-to-day Responsibilities” on page 10, I outlined the core daily
tasks for a tech lead: meetings, coding, and thinking time. However, no matter
how well you plan, disruptions are inevitable, whether it’s production incidents,
strategy changes, or team conflicts. You need to be prepared to switch lanes and
adapt.

While flexibility is key, it’s still important to have a time management system
in place. Time management is a major challenge for most tech leads, and this
section will help you build a process to gain control over your time and handle
disruptions effectively.

HOW TO BECOME A TECH LEAD | 45

Step 1: Visualize your workload

Visualizing your workload can help you spot priorities, manage your time more
effectively, and reduce overwhelm. There are many ways to do this, and different
formats work better for different people.

You might prefer using a color-coded task list to quickly flag urgent and
non-urgent work. Mind maps can help you see how tasks relate to each other
and to broader goals. Kanban boards (physical or digital) are great for visualizing
progress and balancing workload. Some people use weekly planning templates or
calendar blocking to map time against task types.

There’s no one best method; it’s about what helps you stay focused and
intentional.

As an example, I’m using the Eisenhower Matrix here to show you how one
approach can help you sort tasks by urgency and importance. In Figure 2-2, you’ll
find examples of what types of tasks fit into each quadrant.

Figure 2-2. The Eisenhower Matrix—task types example

Let’s take a practical example: a typical first attempt by a tech lead to populate
the Eisenhower Matrix, as shown in Figure 2-3.

46 | LEVELING UP AS A TECH LEAD

Figure 2-3. The Eisenhower Matrix—filled in

Step 2: Analyze your task distribution and adjust your workload

When you look at your task list, there are a few things to keep in mind. First, take
a moment to step back and ask yourself: do you have tasks in all four quadrants?
One of the most common struggles for tech leads during this exercise is that
they fill in only the top two quadrants, as you can see in Figure 2-3. When asked
why, the answer is almost always the same: “Everything is important; that’s why
it’s on my list.” This is a classic example of the urgency effect, a cognitive bias
where we tend to prioritize tasks that appear urgent, often at the expense of more
important but less time-sensitive work. Just because something feels immediate
doesn’t mean it deserves your time or energy.

Let’s take a closer look at the board and see what might be moved to the
lower quadrants.

Think about the tasks that truly require your unique expertise as a tech
lead. Are they things that only you can handle? Some tasks clearly fall into this

HOW TO BECOME A TECH LEAD | 47

category, things like showing up for one-on-ones with your team members or
joining high-level stakeholder conversations where you’re the one who holds the
full context. But then there are others. Preparing a demo for a client meeting
next week or setting up a demo environment might initially feel like your respon-
sibility, but these are tasks that someone else on your team could take over. By
delegating them, you free yourself to focus on what only you can do, and you give
others on your team a chance to shine and grow.

Now consider another type of task: the ones you’re doing just because it
would be nice to have them done. For example, adding an extra level of detail
to your system architecture documentation. Sure, you could argue that this is
important. But why? Is another team depending on it? Will the product stop
working if it’s not done? Or is it just that you want everything to be perfectly
up-to-date? If the answer to the first two questions is no, and the third one
resonates a bit too much, then this is exactly the type of task you can let go of.
Move it to the Delegate or Delete quadrant. Let someone else handle it, or let it
go altogether.

What happens if I don’t do this? This is the key question to ask when
looking at tasks like “Color-coding emails,” “Tinkering with low-priority code
refactoring that has no current impact,” or “Replacing your current JSON library
with a shiny new one.” The honest answer is: probably nothing. These are
“nice-to-haves” that often sit on your to-do list but don’t add real value. They
don’t significantly impact your work or your team, and holding onto them just
takes up mental space. Move them to the Delete quadrant. If one of these tasks
turns out to be really important, it will come back up when it’s relevant. Until
then, let it go and focus on what matters most.

Not having all the quadrants filled in might also be a sign that you’re getting
stuck in one type of activity, losing track of others, or overlooking blind spots.
These blind spots can manifest as areas where you’re wasting effort, missing
opportunities, or spreading yourself too thin.

If you’re spending most of your time in Q1 (Important & Urgent), it’s a
clear indicator that you’re in constant firefighting mode. Things keep popping
up unexpectedly, leaving you feeling off guard and reactive. This often means
you’re not investing enough time in Q2 (Important & Not Urgent), planning and
focusing on long-term goals. If you’re unsure what to include in Q2, ask your
team and your stakeholders: “What should I be focusing on that I’m not?” Their
perspective can help uncover opportunities you’ve overlooked.

48 | LEVELING UP AS A TECH LEAD

On the other hand, spending too much time in Q3 (Urgent & Not Important)
suggests you’re being distracted by tasks that don’t need your direct involvement.
These tasks often feel pressing but offer little value. Instead, consider delegating
them to your team.

Finally, if you find yourself stuck in Q4 (Not Urgent & Not Important),
it’s time to reassess. Low-impact tasks might be your way of avoiding more
significant challenges. Ask yourself: are you procrastinating on something more
meaningful? If so, don’t hesitate to reach out for support, whether from your
team or peers, and redirect your focus to what’s most important.

By confronting these tendencies, you can move past distractions and focus
your energy where it really counts.

Based on this analysis, the board in Figure 2-4 is now much more balanced.

Figure 2-4. The Eisenhower Matrix—all quadrants filled in

While it’s not necessary to have tasks in all quadrants, the exercise of filling
them all forces you to evaluate the true value of each task and prioritize more
effectively. The reality is that you’ll likely never finish everything on your to-do

HOW TO BECOME A TECH LEAD | 49

list, so making peace with that and learning to delete or let go of less important
tasks can help you feel more productive. By clearing away the unnecessary, you’ll
free yourself from the weight of an overwhelming to-do list and gain the focus
needed to concentrate on what matters.

Step 3: Plan your week

Once your matrix is filled in, the next step is to extract your key tasks for the
upcoming week and map them to specific time slots in your calendar. This is
where the magic happens, turning your priorities into a realistic, actionable plan.

Start by asking yourself: does everything fit within your schedule? If not,
it’s time to reevaluate. Is there something that can be removed or delegated?
Be honest about what truly needs your attention and what doesn’t. Don’t forget
to include breaks and some realistic buffer time to account for the inevitable
unplanned disruptions that creep in.

Planning your week this way gives you a structured approach to your time.
It allows you to focus on what matters most and avoid falling into the trap of
prioritizing based on “who screams the loudest.” Instead of feeling overwhelmed,
you’ll feel in control, with a clear plan to tackle the week ahead.

Step 4: Review and adjust

Reviewing and adjusting your process might feel like just another task on your
already overwhelming to-do list, but it’s one worth prioritizing. Taking this step
helps you uncover patterns, avoid repeating mistakes, and refine a system that
becomes more effective over time.

At the end of the week, set aside a few moments to reflect. Consider what
urgent issues derailed your plans and whether they were unavoidable. Look at
what got deprioritized and ask yourself why. Was it because it wasn’t important,
or did something else take precedence? Most importantly, think about what you
can improve for next week. How much of what you planned did you actually
accomplish? If it’s around 50%, that’s still a solid start. It takes time to get good
at planning. Each week gives you a chance to learn and refine your process: Were
your estimates off? Did you forget to build in breaks? Did you try to take on too
much? Use those insights to tweak your plan for the next week and make it more
realistic.

Time management tips

There are many different time management strategies out there that can help you
manage your time as a tech lead, but here are three that I find most effective:

50 | LEVELING UP AS A TECH LEAD

time blocking, task batching, and giving myself time to consider whether I can
take on a particular task.

The first one is time blocking, a simple yet powerful time management
method where you allocate specific blocks of time on your calendar for particular
tasks or activities. It’s about being intentional with your time, ensuring you
create space for what matters most, instead of letting your day get hijacked
by unplanned distractions. For instance, if you’re pairing with team members
daily, you can block dedicated hours for pair programming to keep a consistent
routine. The same goes for planning: setting aside focus blocks ensures you have
uninterrupted time to step back and think strategically. As a tech lead, your team
looks to you for direction and long-term planning, not just hands-on coding, so
it’s crucial to block out time for this.

Another effective technique is task batching, which works hand-in-hand with
time blocking. Grouping similar tasks, like meetings or feedback sessions, into
one block reduces context switching and helps you stay focused.

And here’s one of my golden rules that helps me protect my schedule: never
say yes on the spot. Instead, respond with “Let me think about it,” check your
calendar, and make sure it fits.

Time management is about making space for what matters most. By setting
weekly intentions, visualizing your workload, prioritizing deliberately, and regu-
larly reviewing and adjusting your plan, you create a system that puts you back in
control.

AVOIDING THE “THERAPIST” TRAP

One of the most common traps tech leads fall into is trying to solve everyone’s
problems. Many get into leadership roles because they genuinely want to help
others, but this can quickly turn into taking on too much responsibility. What
starts with “How can I help?” often turns into “Don’t worry, I’ll do it for you.”

Note

It’s not your job as a tech lead to solve everyone’s problems!

The pitfalls of over-involvement are hard to ignore. Burnout is inevitable
if you’re constantly stepping in to handle everything (been there, done that).
You’ll exhaust yourself trying to manage tasks the team should own. Frustration
builds quickly too, together with resentment toward the team for not stepping
up, toward stakeholders for endless demands, and toward yourself for not setting
boundaries.

HOW TO BECOME A TECH LEAD | 51

Beyond the individual cost, there’s also a hidden team impact: when you
always step in, your team misses the chance to develop autonomy. People learn
by doing (and struggling) through challenges. If you keep solving problems for
them, they won’t get the practice or confidence to do it themselves.

And then there’s the blame. If you’re always the fixer, you become the first
to blame when things go wrong. Instead of encouraging shared accountability,
you’ve positioned yourself as the only point of failure.

Early in my career, I fell into this trap when a team member, new to the
city, shared his frustrations during a one-on-one. He was struggling to sort out
his paperwork, and it was affecting his focus at work. Without even being asked,
I jumped in, eager to help. “Don’t worry, I’ll handle it,” I said, even though I
wasn’t an expert in the process myself. I took full responsibility: researching the
steps, preparing his documents, asking others for advice, and even sitting with
him to book his appointments. I even skipped standups to accompany him to
appointments.

It didn’t go as planned. We hit roadblocks, and he became increasingly
frustrated with me because I hadn’t solved it as promised. Meanwhile, I was
overwhelmed, my work was suffering, and I felt unappreciated for my efforts. A
colleague finally asked me, “Why are you trying so hard to fix his problem? It’s
not yours to solve.” That moment was a wake-up call. I stepped back, pointed
him to someone better suited to help, and let him take over the process. But the
damage was done; our professional relationship had soured, and both of us were
left feeling frustrated.

In hindsight, there were countless moments when I could have handled it
differently. Here’s how I wish I had approached the situation and how I now
tackle similar challenges:

Set proper boundaries
Before diving into any problem, I take a moment to analyze. In this case,
I could’ve simply said, “I’m sorry to hear that” and taken time to reflect.
Was it my problem to solve? No; in fact, he hadn’t even explicitly asked for
my help. Even if someone does, I now ask myself, “What happens if I say
no?” Often, the answer is nothing catastrophic, and the person can handle
it with some guidance.

Keep yourself in check
Reflection is key. Talking it through with a mentor or colleague can offer
valuable perspective. Had I done this earlier, I would’ve realized I was

52 | LEVELING UP AS A TECH LEAD

overextending and could’ve stepped back. I now routinely ask myself, “Are
there certain people or tasks draining more of my energy?” or “Am I
stepping in when I should be encouraging ownership?”

Shift your support
Helping doesn’t always mean solving. Sometimes it’s enough to simply
listen: “I’m sorry you’re dealing with this.” In other cases, the best move
is to point them to someone else. When I finally realized the paperwork
wasn’t my problem, I identified someone better equipped to help him and
sent him their way.

The main lesson you can take from this story is to pause before jumping in
and ask Is this problem mine to solve?

That one question can help you set better boundaries, reduce unnecessary
stress, and give the kind of support that’s actually needed.

These lessons apply directly to day-to-day team dynamics. For example, if a
team member says, “I can’t deal with this task; can you take it over?” my instinct
used to be to step in and help. Now, I pause and ask what’s making it difficult
and how they might approach it differently. Often, with a bit of coaching, they’re
able to handle it themselves and grow from the experience.

It’s the same when someone brings me an urgent matter. Before jumping
in, I try to understand how urgent it really is by asking, “When do you need
an answer?” This gives them a chance to reflect on what they really need and
helps you prioritize more intentionally. Often, the request isn’t as urgent as it
first appears, and they’re happy to wait. Sometimes, they might even figure it out
themselves before you get to it. But if it is urgent, you can decide whether it truly
needs to take priority today. This approach also reduces the chance of people
feeling dismissed, as you’re making them part of the decision.

For interpersonal conflict between two team members, don’t jump in to
mediate right away. Instead, ask each person to give direct feedback to the other
and try to find a way to work together. Stepping in too quickly can prevent them
from building the skills they need to navigate conflict on their own.

A helpful lens I use to avoid this trap is to categorize problems into three
types:

Problems that are clearly your responsibility
Things like team-wide blockers, technical alignment, or cross-functional
miscommunication.

HOW TO BECOME A TECH LEAD | 53

Problems that are clearly their responsibility
For example, completing a task, owning a feature, or resolving a peer
conflict (with your support, not necessarily your intervention).

Gray-area problems
Those that could be yours or theirs, depending on the context. In these
cases, consider who is best positioned to take ownership based on work-
load, goals, or development opportunities.

This framing helps you slow down before jumping in and makes it easier to
coach your team toward ownership instead of taking the reins by default.

You’re part of a team, not a solo problem solver. Set clear boundaries, let oth-
ers own their responsibilities, and focus on guiding rather than fixing everything
yourself. This empowers your team, prevents burnout, and keeps you from being
overwhelmed.

AVOIDING MICROMANAGING

When I first became a tech lead, I believed micromanagement was the only way
to ensure things were done perfectly. I had a to-do list for every person, verified
everything they did, and struggled to delegate. I felt constantly angry, frustrated,
and ultimately, burned out.

I learned the hard way that micromanagement isn’t sustainable. It limits
both the leader and the team, leading to frustration, burnout, and a lack of trust.
Micromanaging might feel like control, but it’s actually driven by fear: fear that
things will go wrong and a lack of trust in both yourself and others.

The turning point came when I learned to let go. I started by reflecting on
my actions, getting feedback, and practicing delegation every day. By doing so, I
shifted from trying to control everything to focusing on people and their growth.

If you recognize yourself in this, it’s time to start letting go. Here’s how:

Start with small tasks
Delegate small, noncritical tasks first, and trust your team to handle them.
Gradually increase responsibility as trust grows. More on this in Chapter 6.

Give clear expectations, not step-by-step instructions
Focus on the “what,” “why,” and “when” of tasks rather than the “how.”
Let your team figure out the most effective way to accomplish tasks. Allow
yourself to be surprised by their approach.

54 | LEVELING UP AS A TECH LEAD

Cocreate a tracking system
Instead of constantly checking in, ask your team to develop a visible
tracking process for their progress. Schedule regular check-ins where they
report back. This keeps you informed without hovering.

Practice saying “I don’t know”
Start in a one-on-one with someone you trust, then try it in a team meeting.
Notice how it feels and how others respond. It helps build comfort with
uncertainty and sets the tone that it’s OK not to have all the answers.

Admit a mistake
Pick a comfortable setting, such as a one-on-one, to share a mistake you’ve
made. It’s a small but powerful step toward letting go of control.

Reflect on your control tendencies
Take time to think about how your need for control impacts your well-
being and the people around you. Working with a coach or mentor can
offer valuable outside perspective.

Ask for help
This requires an extra dose of vulnerability. Let your team in on your
journey by admitting, “I’ve realized I tend to control too much, and I want
to work on it. Where do you think I should start?”

When you focus on guiding rather than controlling, your role as a leader
becomes about empowering others. This shift benefits your team and your own
well-being. You’ll have more mental space, less frustration, and greater trust in
your team’s capabilities.

Micromanagement often comes up as a reason people want to leave their
jobs. No one likes to be watched all the time, living with the constant fear of
making a mistake and having no autonomy in making their own decisions. As
the saying goes, “People leave managers, not jobs.”

If you want your team to thrive and stay engaged, invest in building trust.
Let them own their tasks, and allow for mistakes, because that’s how people learn
and grow (e.g., some of the best learnings come from postmortems). You might
be surprised at how capable and motivated your team becomes when they feel
genuinely trusted and empowered.

Moving away from micromanagement doesn’t mean losing control of out-
comes; it’s about gaining trust and respect. You’ll see results not by doing every-
thing yourself but by leveraging the full potential of your team. It’s a shift from “I

HOW TO BECOME A TECH LEAD | 55

must do everything to make sure it’s perfect” to “I trust my team to succeed, and
together we’ll grow.

BALANCING BUILDING AND LEADING

Another challenge for tech leads is deciding how much time to spend coding
versus overseeing technical decisions.

When I first became a tech lead, I found myself naturally drawn to high-level
strategy and discussions, leaving less time for hands-on coding. I enjoyed meet-
ings, brainstorming solutions, and setting direction for the team, but I soon
realized I was losing touch with the actual technical work.

At the same time, I’ve also met tech leads who remain deeply immersed in
coding, losing sight of the bigger picture because transitioning to a leadership
role feels unfamiliar and uncomfortable. Both approaches come with their own
set of challenges.

Determining where you fall on the spectrum between technical and organi-
zational focus starts with honest self-reflection. Imagine a day where you could
choose to do only one thing. Would you rather spend it immersed in code,
building and debugging, or would you lean toward conversations, planning, and
driving strategic direction for your team? Your answers to these questions can
reveal where your strengths and interests naturally lie, helping you align your
focus as a tech lead.

Recognizing your natural tendencies is important, but to be a successful tech
lead, you need to have the ability to switch gears between hands-on coding and
strategic oversight based on what your team and project need most.

If you’re too focused on coding, it might show up in a few ways. Maybe
you’re the first to jump on every pull request or technical challenge, leaving little
room for others to step in. You might know the codebase inside out, while the
rest of the team feels left out of key decisions. If you’re skipping meetings or
high-level planning, chances are the team is missing the clear direction they need
to move forward.

On the flip side, being too focused on oversight can leave you feeling dis-
connected from the code. You might find yourself zoning out in standups or
struggling to understand the technical details the team is discussing. This can
frustrate your team when they are discussing technical problems and you’re
either unavailable or too out of touch to step in.

The key to being an effective tech lead is adaptability. You’ll need to adjust
your focus based on the project phase and your team’s needs. For example:

56 | LEVELING UP AS A TECH LEAD

• When deadlines are tight, you might need to dive into the code and work•
alongside your team.

• When there’s a new feature to plan, you might spend more time away•
from coding, working with stakeholders and aligning the team on the
strategy.

Here are some practical tips for finding balance:

Block time for both
Schedule coding and pair programming blocks into your calendar while
keeping time open for meetings, reviews, and strategy sessions. This
ensures you’re hands-on without losing sight of the bigger picture.

Delegate but stay informed
You don’t need to be the one writing every line of code, but stay involved
enough to guide technical discussions and ensure the code quality is up to
standards.

Engage in code reviews
Even if you can’t contribute code regularly, reviewing pull requests (PRs)
is a great way to stay connected to the technical aspects without being fully
hands-on. I also know tech leads who do PR reviews every morning with
the team, all together, not as a line-by-line review but more as a high-level
walkthrough, scrolling through the code to share insights and context. If
you work with trunk-based development and have no PRs, block core pair
programming hours on your calendar.

Ask for feedback
Check with your team and your stakeholders to see if they feel you’re
striking the right balance. They’ll let you know if they need more of your
technical input or if they feel you’re too involved.

The key to overcoming this challenge is to remain flexible. Some phases of a
project will demand more hands-on coding, while others require you to step back
and focus on guiding your team. The goal isn’t to be perfect in both areas but to
adapt to what the situation calls for and ensure you’re meeting both the technical
and leadership needs of your team.

HOW TO BECOME A TECH LEAD | 57

Key Takeaway

Stepping into the tech lead role can feel overwhelming, but it becomes much
more manageable when you approach it intentionally. This chapter was about
giving you a structure to grow in a way that fits you. From clarifying what’s
expected to figuring out where you’re starting from, it’s all about creating a path
you can actually follow.

You don’t need to get it all right immediately. What matters is that you keep
learning, adjusting, and showing up with purpose.

58 | LEVELING UP AS A TECH LEAD

Building Relationships

Everyone in tech understands the value of networking when it comes to advanc-
ing their career. It’s how you hear about job openings before they’re public, skip
the application line with referrals, or even land promotions by building trust
with managers. Networking gets you insider knowledge about companies, helps
you decide if they’re the right fit, and gives you a direct line to opportunities
that might otherwise take years to stumble upon. The right relationships can
fast-track your career and save you from a lot of wasted time and effort.

As a tech lead, the stakes are even higher. Building strong relationships isn’t
just about you anymore; it directly impacts your team and the teams you collabo-
rate with. The benefits multiply significantly, from creating smoother workflows
to opening doors to new opportunities for your team. Yet, I’ve noticed many tech
leads roll their eyes when I bring this up. They see building relationships as time
wasted, a distraction from coding, and often fail to connect the dots between
stronger relationships and fewer headaches for themselves and their team.

This chapter is here to change the perception that building relationships is
a waste of time. I’ll show you the value of investing in the right relationships as
a tech lead and how these connections can unlock opportunities, prevent unnec-
essary problems, and make life easier for everyone involved. I’ll dive into the
relationships you need to focus on, strategies for building and maintaining them,
and ways to overcome common struggles like breaking the ice with someone
new, keeping relationships strong over time, and connecting with nontechnical
people in other departments.

The Value of Building Strong Relationships

One of the teams I led stood out as one of the most successful I’ve worked
with, not just in terms of results but in how we worked together. We delivered
reliably, collaborated efficiently across teams, handled conflict in healthy ways,

59

| 3

and brought in significant business value. People were happy and proud to be
part of it. I’m convinced that one of the biggest reasons for this team’s success
was the relationships we built, with each other, with stakeholders, and with
clients. These relationships didn’t just happen on their own. As a tech lead, I
made them a deliberate focus. I didn’t wait and hope connections would form
naturally; I put consistent effort into building and nurturing them every step of
the way.

Within the team, we created a space where tough conversations could hap-
pen without hesitation. When something came up, we addressed it head-on,
tackling issues quickly instead of letting them grow into bigger problems. We
challenged each other constructively, not to prove someone wrong but to help
everyone grow. Feedback became a daily improvement tool for us. Decision mak-
ing wasn’t just up to me; we debated ideas openly, came to agreements together,
and took collective ownership. It wasn’t always easy, but it set us apart as a
cohesive and high-performing team. If you’re curious about how we created this
environment, the section “How to Create Psychological Safety on Your Team” on
page 188 dives deeper into the specific practices we used.

Building strong relationships with stakeholders, especially on the client side,
gave my team a huge advantage. I invested in these relationships consistently,
showing up for them in ways that mattered: whether it was being transparent
about potential issues, helping them prepare for tough conversations, or stepping
up to support initiatives outside my immediate responsibilities, like writing sto-
ries or contributing to their ideas.

A great example is advocating for addressing tech debt. Many tech leads
struggle to convince stakeholders to prioritize it because it’s often perceived as
wasted time on the business side. But thanks to the trust I built with our product
manager, he didn’t need convincing. He trusted our judgment because of the
foundation we had built, and when I asked for time to clean up a feature toggle to
avoid confusing code that might slow down future reviews or increase the risk of
bugs, or address technical debt more broadly, he didn’t hesitate to say yes, even if
he didn’t fully understand the technical details. That trust came from consistent
effort: recurring one-on-ones, full transparency around progress and potential
risks, and staying responsive even when things got tough.

Here is another example of how building a strong network and staying
visible as a team can pay off: when an exciting opportunity came up, like leading
a high-profile product launch, we were the first team considered and offered

60 | LEVELING UP AS A TECH LEAD

the chance to develop the project because we had consistently stayed visible and
well-connected.

When working with other teams, building relationships allowed us to share
knowledge and collaborate more effectively. Knowing what they were working
on helped us avoid duplicating effort and saved us a lot of time. At the same
time, we made sure our work was visible by offering solutions we’d already
implemented to others, which built our reputation across the company.

Every time I share these stories and the benefits of strong relationships with
tech leads, one question comes up again and again: “If I do all of these, when do
I do my job?”

Building relationships isn’t something separate from your job.

It is your job.

The good news is, you don’t have to do it all on your own. One of the
best ways to build a connected, resilient team is to involve others. Delegate.
Empower your team to represent and support one another. For example, you
might have a staff engineer lead guild meetings or ask a team member to attend
a cross-functional sync.

In my case, I encouraged my team to build their own bridges by visiting
clients, collaborating with peers in other teams, and being proactive in commu-
nication. We set up open Slack channels, made ourselves available, and made
clarity a priority. Even if it felt repetitive, we over-communicated to ensure every-
one stayed aligned.

Strong relationships don’t just depend on you; they’re a shared effort. And
yes, this work takes time and energy. But the payoff is real: fewer misunderstand-
ings, smoother collaborations, a team that’s more motivated and empowered to
deliver their best work (Figure 3-1).

Figure 3-1. Why building relationships is key

As a tech lead, you’re responsible for developing an environment where
people feel safe to speak up, collaborate openly, and trust each other. You may
not always be able to predict exactly how or when a strong relationship will help,

BUILDING RELATIONSHIPS | 61

but it will. The effects ripple through your team’s work in ways that matter. It’s
an investment you and your team make together, and one that always pays off.

How to Build Strong Relationships

At the core of any meaningful connection is trust, and trust is built through four
foundational practices:

Effective communication
Making sure your message lands as intended and that you’re also hearing
others clearly

Consistent communication
Staying in touch regularly

Transparent communication
Sharing openly, including uncertainties, trade-offs, and the “why” behind
decisions

Follow-through
Doing what you say you’ll do and showing you can be counted on

Each of these practices reinforces the others. When you communicate
clearly, frequently, and honestly, and back it up with action, trust builds natu-
rally. In this section, I’ll break these down one by one.

But before we dive into these practices, I want to call out one thing that
I believe is a game-changer when it comes to building trust quickly: meeting
people face-to-face.

There’s something about human connection that no tool or strategy can
fully replicate. Face-to-face interaction speeds up trust in a way that’s hard to
explain but easy to feel. That doesn’t mean I’m advocating for full-time in-person
work; I’ve been working remotely for years. But if you have the chance to meet
someone in person, take it.

It could be a team lunch on a day when everyone’s in the office, a coffee with
a stakeholder, an offsite that brings people together, or even a celebration for a
big release. These moments of shared presence can set a foundation that makes
every future interaction smoother, more human, and more effective, even once
you’re back to Zoom calls and Slack threads.

This being said, I do know that these in-person moments aren’t always possi-
ble, and that’s OK. What matters most is how you show up in every interaction.

62 | LEVELING UP AS A TECH LEAD

Whether remote or in person, the following practices will help you build strong,
lasting relationships grounded in trust.

COMMUNICATE EFFECTIVELY

Effective communication is the foundation beneath everything else. You can be
consistent and transparent, but if your message doesn’t land, or you misunder-
stand others, trust starts to erode.

And in order to really understand, you need to really listen. Here are some
strategies to develop your active listening skill:

Focus fully on the speaker
Give them your full attention. Silence notifications, minimize distractions,
and resist the urge to plan your response while they’re speaking. This
simple shift shows respect and reinforces that you’re present.

Get comfortable with silence
Pause before responding; counting to some fixed number can help (even
briefly holding your comment) and give space for reflection or additional
thoughts from the speaker.

Reflect to confirm your understanding.
Use phrases like “Did I get that right?” or “Let me try to rephrase what I
heard…” to ensure clarity and avoid misunderstandings.

Use open-ended questions
Encourage deeper responses with prompts like “Please tell me more about
that…” or “What’s your perspective on…?”

Reflect after conversations
Post-discussion, ask yourself: How well did I listen? Did my mind wander?
Did I interrupt? This helps build self-awareness over time.

Seek feedback on your listening
Ask team members directly, “What’s one thing I could do to make you feel
more heard?” This input is invaluable for growth.

So aim to listen not just for information but for understanding. Then, when
it’s your turn to share, follow these guidelines:

Be clear
Use simple, direct language.

BUILDING RELATIONSHIPS | 63

Be structured
Bullet-point key takeaways. Add summaries when things get long.

Be considerate
Tailor your message to the audience: what do they need to know?

Be helpful
Link to docs, add examples, or suggest next steps.

Be reflective
Take a second before you speak or write. Don’t just dump your thoughts as
they come.

AI assistants can be surprisingly effective at helping you with this, especially
because they provide a low-pressure environment for practice, feedback, and
iteration. Here’s how they can support you:

Practice difficult conversations
Simulate one-on-one conversations or challenging scenarios, like giving
feedback, handling disagreement, or delivering bad news. Prompt: “Act as
a team member who’s unhappy with a project decision. Help me practice
how to respond in a calm and clear way.”

Improve written communication
Paste your Slack message, status update, or email and ask the AI to check
for tone, clarity, and simplicity. You can even request a rewrite tailored
to your audience (e.g., nontechnical stakeholders, busy execs). Prompt:
“Rewrite this status update to make it more concise and less technical.”

Ask for structure and models
AI can help you organize complex ideas into clear, easy-to-understand for-
mats, like Problem–Solution–Impact or Before–After–Benefit. Try prompt-
ing “I need to explain a complex idea to my manager. Can you help me
structure it in a way that’s easy to understand?”

Get feedback on tone and intent
AI can help you assess whether your message might come across as harsh,
vague, or passive. This is especially useful when you’re unsure how it
might land. Prompt: “Here’s what I wrote; does it sound defensive?”

64 | LEVELING UP AS A TECH LEAD

Learn by doing
Ask AI to analyze communication examples and suggest improvements
so you can learn patterns over time. Prompt: “What makes this message
confusing? How would you improve it?”

Communicating well is a skill, and like any skill, it can be learned and
refined over time. The better you get at this, the easier it becomes to build trust,
influence outcomes, and keep your team aligned, especially in high-pressure
moments.

Tip

If you want to go deeper into communication strategies that help build strong rela-

tionships, I definitely recommend Nonviolent Communication, a system developed

by Marshall B. Rosenberg. You can learn more through his book with the same title,

published by PuddleDancer Press, and there are other resources available through

the Center for Nonviolent Communication.

COMMUNICATE CONSTANTLY

Constant communication is about staying connected and ensuring a steady flow
of information between you, your team, and stakeholders. It’s not just about
being available; it’s about building a culture where sharing, listening, and collab-
oration become a regular part of your work.

Here’s how to make this work in your role:

Hold regular check-ins
One of the most reliable tools for maintaining open lines of communica-
tion is recurring one-on-ones. These aren’t limited to just your team mem-
bers. I try to schedule regular check-ins with anyone I collaborate with,
whether it’s my manager, a stakeholder, or a peer. I’ll take the opportunity
with anyone who’s open to a regular conversation, especially early on,
because it’s a great way to build rapport and trust.

These one-on-ones serve multiple purposes. They help build trust,
catch issues early, and make sure alignment doesn’t drift. They also create
space for deeper, more honest conversations than what you’ll get in a
standup or async chat. Think of them as part of your communication
hygiene; if you keep them up regularly, everything else tends to flow more
smoothly.

You might be thinking, “But this will take up all my working time.”
And yes, it does take time. But this is a big part of your work. Investing

BUILDING RELATIONSHIPS | 65

https://www.cnvc.org

early in relationships saves you hours later. When these relationships are
already in place, everything from resolving conflicts to asking for support
becomes easier. Of course, you don’t need to spend your entire week in
one-on-ones. The frequency and format should flex based on the context.
Your team may need more consistent support, while stakeholders may
change or have less availability.

The key is to make communication a habit, not just a reaction to
problems. Build those bridges early and keep them open.

Communicate progress continuously
Keep everyone, both your team and your stakeholders, in the loop through-
out the journey, not just when you’ve reached a milestone or solved a major
problem. Share updates on progress, blockers, mistakes, and changes in
direction, about both the good and the uncomfortable.

Have a clear, shared way to track progress that’s visible and easy to
access. Whether it’s a roadmap, dashboard, tracking board, or shared doc,
it should reflect what’s happening and help everyone stay aligned. Even
more important than the tool is the habit: make time to review progress
together, through weekly check-ins, async updates, or retrospectives.

Avoid being a knowledge silo
If you’re the only one who knows something, it’s a problem. You don’t
want to become a blocker, or worse, the single point of failure. When
people rely only on you for a particular topic or piece of information, it
creates bottlenecks and slows down the team. It also signals that you may
not trust others to take ownership or contribute.

Instead, make it a habit to share information proactively with both
your team and your stakeholders. Don’t keep things to yourself. Whether
it’s context from a leadership meeting, technical decisions, lessons learned,
or simply something you’re noticing, bring it into the open. The more you
share, the more others can participate, make informed decisions, and act
independently.

By passing along insights, even small ones, you’re showing trust and
earning it in return.

Staying connected through constant communication is how trust starts to
grow. Showing up regularly, keeping people in the loop, and sharing information
openly builds a solid foundation for your relationships.

66 | LEVELING UP AS A TECH LEAD

BE TRANSPARENT IN YOUR COMMUNICATION

Transparency can be complicated for tech leads. Deciding what to share, when,
and how much depends heavily on the situation and your team’s context.

Many tech leads, myself included, fall into the habit of keeping things to
themselves. The reasoning often stems from trying to protect the team, not
knowing how to frame the information, or simply wanting to maintain control
of the narrative. This can extend to stakeholders, where fears of repercussions
or “they don’t need to know yet” lead to delays in sharing issues, hoping they’ll
resolve before anyone notices. But the problem is that information flows. When
people discover something from someone else, the situation often feels worse
than if it had come directly from you. Transparency builds trust; trying to hide
things undermines it.

Breaking out of the habit of withholding information isn’t easy, but you can
work on it gradually, one step at a time. Here are practical strategies to help you
integrate transparency into your daily routine:

Be honest about both progress and problems
Transparent communication means that if something prevents progress,
you let your team and stakeholders know as early as possible so they
can plan accordingly. If something’s worrying you, whether it’s a risk, a
misalignment, or something that just feels off, raise it. Don’t wait until it
becomes a bigger issue. Addressing things early, together, gives others the
chance to contribute and often leads to better decisions.

For example, let’s say your team underestimated the complexity of
integrating with another system, and what initially looked like a small task
is now causing delays. Or maybe a risk you flagged earlier has materialized
into a real blocker. The moment you realize this will impact timelines,
communicate it, even if you don’t have all the answers yet. A simple mes-
sage to stakeholders like “We hit an unexpected issue with the integration
that might affect the release date. We’re working on a mitigation plan and
will update you tomorrow” is far better than delivering bad news late or
having people find out from other sources that things aren’t going accord-
ing to plan. Early updates give people the chance to adjust.

Provide balanced feedback
Another way to build trust is by giving both positive and improvement
feedback. It takes courage to be open about areas for growth, but this
balanced approach shows genuine investment in others’ development.

BUILDING RELATIONSHIPS | 67

Offering feedback this way helps people know you’re honest with them
and truly interested in their growth, not just in keeping things positive. It’s
the combination of encouragement and constructive insight that reinforces
trust and strengthens your relationship.

Lead with vulnerability
A lot of tech leads go out of their way to hide their mistakes, fearing it
might make them seem weak or cause them to lose their team’s respect.
The truth is, admitting when you don’t have all the answers or when you’ve
made a mistake often has the opposite effect: it makes you relatable and
authentic. People already know no one is perfect, and acknowledging this
builds trust.

For example, if a technical decision you advocated for led to delays or
issues, admit it to your team and stakeholders: “This approach didn’t work
as I hoped, and it’s caused these delays. Here’s what we’ve learned, and
this is how we’re addressing it.” This kind of openness builds stronger
connections, creating a culture where your team feels safe to own their
mistakes too.

If you find yourself holding back, these strategies can push you out of your
comfort zone and help you confront the fear of sharing. Over time, you’ll develop
new ways to handle interactions and manage challenges directly, instead of stay-
ing in the “safe zone” and risking bigger issues. Reflect on your reasons for with-
holding information. If it’s simply “I’m unsure how my team will react,” share it
anyway. The real challenge is learning to navigate their reactions effectively.

On the flip side, there’s oversharing. Let’s say your engineering manager
shares news of a potential company restructuring, and you’re one of the first
to know. You don’t yet have concrete details, and a big product launch is two
weeks away. If you share this prematurely, you risk creating unnecessary anxiety
and distraction, especially since you can’t provide clarity or answer questions yet.
Sharing too much too soon can harm focus and productivity.

There’s also a category of information that should never be shared more
widely, whether out of respect, to maintain trust, or for legal reasons. This
includes personal circumstances, details about layoffs, performance issues, con-
fidential feedback shared in one-on-ones, or financial information that not every-
one has access to. In extreme cases, mishandling this kind of information can
even result in legal consequences.

68 | LEVELING UP AS A TECH LEAD

So how do you find the balance? Transparency is a judgment call that
depends on context. The “right” amount of sharing varies based on timing,
audience, and the nature of the information. With time you will learn to read the
room and adapt your communication accordingly.

Start by asking yourself a few key questions:

Is it OK to share?
Check with your EM if this is something that can be shared with the team.
If not, the decision is clear. If it’s up to you, ask for their perspective to help
guide your choice.

What additional context do I need?
Gather more details about the timeline and potential impacts from your
EM or other tech leads. More information helps you decide what’s worth
sharing.

What’s the team’s maturity level?
Teams with more junior members may react more emotionally to uncer-
tainty, while senior teams might handle ambiguity better. Tailor your
approach based on their capacity to process and stay focused.

Neither extreme, keeping information or oversharing, is the answer. Finding
the middle ground is about intentional experimentation. Start by recognizing
your default tendency. If you lean toward withholding, challenge yourself to
share earlier than usual and track what happens. Did the reaction align with your
fears, or was it better than expected? Gather feedback and adjust based on the
results.

For me, my instinct has always been to keep things to myself. It felt safer
and gave me a sense of control. But over time, I realized that sharing, even when
it made me uncomfortable, almost always led to better outcomes. When I was
up front about issues or potential delays, my team and stakeholders felt included
and trusted me more.

Transparency helps your team align better, work with less confusion, and
feel valued. It creates credibility with stakeholders and strengthens relationships
across the board.

BUILDING RELATIONSHIPS | 69

FOLLOW THROUGH ON COMMITMENTS

The simplest way to build trust is to say you’ll do something…and then do it.
Actions speak louder than words. You can communicate clearly, frequently,

and transparently, but if your actions don’t align with your words, trust breaks
down fast. Follow-through is where trust becomes real.

People need to see that they can count on you. That means doing what you
say you’ll do, whether it’s shipping a feature, checking in on a topic, or raising a
difficult issue with leadership.

That might look like agreeing to review a team member’s design doc by
Friday and actually carving out time by Thursday to leave thoughtful feedback. Or
telling your PM that you’ll talk to the infrastructure team and then closing the
loop a few days later without needing to be chased for updates.

Even if the task isn’t fully done yet, don’t wait to communicate. If a team
member asks a question in Slack and you said you’d follow up, do it. Even
something as simple as “Still looking into this; I haven’t forgotten” can go a long
way in reinforcing trust.

Things won’t always go to plan. If something slips, say so early. If you
underestimated a task, let people know. A quick message like “I’m still working
on this; running behind but I’ll share a draft tomorrow,” shows accountability
and keeps others from worrying or guessing. And if you drop the ball on a
follow-up, acknowledge it. Let people know where things stand and what’s next.
Silence only creates confusion.

Follow-through also matters when things are ambiguous or uncomfortable.
A team member once asked me for a raise. Being in a startup, we didn’t have
a formal process, and I knew budget constraints meant it was unlikely to be
approved. Still, I promised to raise the topic with the CEO, and I did. The
outcome wasn’t a yes, but we agreed to revisit the request in six months, which
gave the team member clarity and a timeline. Too often, I see people left in limbo
on requests like these because it’s not an easy conversation. But avoiding hard
conversations doesn’t make them go away. People should at least know where
they stand.

Reliability is built through repetition. It’s about showing up consistently,
keeping your word, and owning your actions, especially when it’s hard. Over
time, people start to notice: when you say you’ll do something, it gets done. And
that kind of reputation becomes one of the most powerful leadership tools you
can earn.

70 | LEVELING UP AS A TECH LEAD

Who to Build Relationships With

As a tech lead, your work doesn’t happen in a vacuum. You’re not just collaborat-
ing with your immediate team but also navigating relationships with your man-
ager, cross-functional peers, and a range of stakeholders across the organization.
Each of these relationships plays a different role in your success and requires
a different approach. In this section, I’ll show you how to apply the principles
of building strong relationships from the previous section to strengthen these
connections.

TEAM MEMBERS

These are the people who shape your daily experience. The strength of your bond
with your team members directly impacts not only how well you work together
but also the quality of your outcomes. Building these relationships requires
deliberate effort and consistency beyond occasional conversations.

Here are actionable strategies to build strong relationships within your team:

Set up one-on-ones
One-on-ones are especially important with your team.

One of my first moves when joining a new team is to set up recurring
one-on-ones with each team member. The frequency might adjust, or we
might skip one occasionally, but the important part is that they’re in the
calendar. Just having that space booked gives your team confidence that
you’re there, that you’re invested, and that you’ll continue to show up.

These meetings are so much more than status updates. In fact,
updates should be just a small part of them. One-on-ones are your best
chance to notice when someone’s struggling, whether with workload, moti-
vation, or something personal. They create a space where people feel safe to
be honest. If someone is underperforming or going through a tough patch,
this is the time to dig deeper, offer support, and align on a way forward.

If you want to dive deeper into how to approach these conversations
with your team, check out Chapter 4. It covers everything from setting
them up to dealing with common challenges, like when someone shuts
down or you’re unsure how to help.

Make feedback routine
Treat feedback as a natural and regular part of daily interactions rather
than a formal event. Consistently sharing both positive and constructive
feedback builds trust and shows your genuine commitment to your team’s

BUILDING RELATIONSHIPS | 71

development. Addressing areas for improvement may require courage,
but combining encouragement with actionable insights makes team mem-
bers feel supported and motivated to improve. Encouraging your team to
exchange feedback among themselves amplifies this effect, strengthening
connections and collaboration across the group.

If you want to go deeper into how to ask for, give, and create a healthy
feedback culture in your team, check out Chapter 5. It covers everything
from the five principles of good feedback to the practicalities of making
it work day-to-day, including the most common challenges tech leads face
and how to overcome them.

Say “I don’t know” more often
A simple and effective way to connect with your team and build trust is
to show that you don’t have all the answers, and that’s OK. Saying some-
thing as simple as “I don’t know” can be a game-changer. It removes the
pressure to pretend, accelerates your learning because you’re more likely
to seek answers, and creates a safer space for others to admit when they’re
unsure too. Using phrases like “I don’t know, but I’ll find out” or “Let’s
figure it out together” not only shows humility but also strengthens your
credibility.

Give your team more autonomy
Fear of losing control is common for tech leads, often leading them to
micromanage: tracking everyone’s progress, constantly checking in, or
reacting negatively when things don’t go as planned. This behavior creates
discomfort and causes team members to avoid you, harming your relation-
ship with them.

Strike a balance between being available and overbearing. Be approach-
able for questions and problems, but also give your team the space to work
independently, make mistakes, and learn without fear of your reaction. The
right amount of independence and guidance isn’t one-size-fits-all. More
junior team members might need more structure and might reach out
more often, while senior engineers often thrive with greater flexibility. Tai-
lor your level of involvement based on the individual or team’s experience
and confidence.

A powerful way to build autonomy is through delegation. Identify a
task (you can get ideas in Chapter 6), select the right person, and set clear

72 | LEVELING UP AS A TECH LEAD

expectations. Offer support but then step aside. This shows your team you
trust their skills: “I trust you to take care of this.” When team members feel
trusted, they’re more likely to trust you, strengthening your relationship.
Plus, prioritizing their growth shows you value their development, which
they’ll deeply appreciate, building even stronger connections.

Focus on solutions, not blame
When things go wrong, don’t make it about pointing fingers; focus on fix-
ing the problem. A team that knows they won’t be blamed for mistakes will
feel safer to share challenges and work together to solve them. Mistakes are
inevitable, but how you handle them can either strengthen or break your
team.

Take a production incident as an example. If your response is “Whose
fault is this?” you’re setting a tone of fear and mistrust. People will start
hiding their mistakes, avoiding accountability, and holding back potential
issues because they’re afraid of how you’ll react. But if you shift the focus
to “How can we solve this?” or “What ideas do you have to fix this?” you
send a different message: mistakes happen, and that’s OK, as long as we
learn from them and tackle them together.

Handling things this way creates opportunities for your team to bond.
There’s no better team-building exercise than solving a tough problem
together. By consistently approaching issues with a solutions mindset,
you’ll build a culture of shared responsibility, where the whole team feels
accountable for both successes and failures. Over time, your team will
follow your lead and stop looking for someone to blame, focusing instead
on how to move forward together.

Note

How you lead when things go wrong says a lot about you as a tech lead.

Those moments show your true character, and they’re where trust is built, or

lost. Choose wisely.

These strategies, when applied consistently, will strengthen the connections
within your team, creating an environment built on trust, collaboration, and con-
tinuous growth. With these relationships in place, your team will feel supported,
empowered, and equipped to deliver better results.

BUILDING RELATIONSHIPS | 73

MANAGERS

Your first team stakeholders are your managers, and they can either help you or
be a real roadblock; it usually depends on your relationship with them, not just
on having good arguments. When you’ve already established a connection, your
suggestions and decisions tend to land better:

Make one-on-ones a priority
If your manager or stakeholders don’t initiate one-on-ones, take the lead
and set them up yourself. These meetings don’t need to be as frequent
as the ones with your team; every two weeks or even monthly can work,
depending on the stakeholder. The important part is consistency.

Show up prepared and organized to make their job easier. Bring notes,
ask thoughtful questions, and show genuine interest in their work. Often,
tech leads hesitate to request these meetings, assuming stakeholders have
more important things to do, but the truth is they also benefit from these
conversations. One-on-ones are an opportunity to address potential issues
early, align on priorities, and gain valuable insight into broader organiza-
tional goals. If they’re too busy, they can decline. All you have to do is ask.

Highlight your team’s work
For all the effort your team puts into their work, you should match that by
finding ways to make it visible to stakeholders.

A great starting point is investing in showcases. These are presenta-
tions where your team shares what they’ve been working on, like new fea-
tures, progress, or key learnings, with others outside the team, especially
stakeholders. They’re a chance to keep everyone in the loop and show the
impact of your collective work. Treat them like value-delivering tasks, not
just routine meetings. Add them to your team board, set time aside to
define what you want to highlight, prepare the presentation thoroughly,
and rehearse your delivery. When done right, showcases can bring tremen-
dous visibility to your team’s work and trust from stakeholders. For exam-
ple, my team’s well-prepared showcases made us the first choice when a
high-profile product opportunity appeared.

The key to building trust during these showcases is transparency.
Don’t just celebrate wins but also share the challenges your team faced
and the lessons learned. This openness reassures stakeholders that they
can trust you to deliver while being honest about what didn’t work. Ending

74 | LEVELING UP AS A TECH LEAD

with a feedback session is a cherry on top, encouraging conversation and
engaging stakeholders who might not otherwise get involved.

This process doesn’t rest solely on you. Rotate team members to lead
showcases; it gives them visibility, strengthens their skills, and boosts their
pride in the work.

Outside of showcases, one-on-ones with stakeholders can also be an
opportunity to share team successes, as well as to build personal connec-
tions. Even something as simple as sharing progress updates in public
Slack channels can make a difference; you never know who might notice.

Ask for mentorship
One of the easiest ways to build new relationships, especially with people
you don’t interact with daily, is to ask for mentorship. It doesn’t have
to be formal or long term. A simple request like “I’ve noticed how well
you handle stakeholder conversations. I’d love to learn more about your
approach. Would you be open to a quick chat sometime?” can open the
door to a deeper connection.

People generally appreciate being asked for advice or perspective, espe-
cially when it’s specific and genuine. It shows that you respect their experi-
ence and want to learn from them, and that builds trust fast.

Sometimes, what starts as a one-off chat grows into a longer-term
mentorship relationship. You may find yourself checking in regularly,
exchanging updates, or turning to them during tough moments, without
ever needing to label it as formal mentorship. Just like any strong relation-
ship, it develops naturally over time.

Managers are a great starting point, even if they’re not in your direct
reporting line. They often bring a broader organizational view and can
help you see how your role fits into the bigger picture. But don’t overlook
experienced ICs either; they can share incredibly useful tips on how to lead
without official authority or how to handle tricky team dynamics.

The key is the conversation. Reaching out like this creates new allies
across the organization and builds relationships that may benefit you (and
them) in unexpected ways later on.

Show up at events and use casual moments to build connections
All-hands meetings, leadership events, or casual gatherings like coffee
breaks and holiday parties are perfect chances to connect with stakeholders
and managers. Even if you find these events boring, they’re a great way to

BUILDING RELATIONSHIPS | 75

build relationships. A quick comment like “I really enjoyed your talk on
[topic]” can leave a positive impression and make follow-ups easier.

If a manager offers an informal coffee chat or an “Ask me anything”
session, jump on it. Showing up, even when others shy away, sets you
apart and opens doors for more meaningful conversations.

By investing in these relationships, you’ll find that managers are more likely
to support your initiatives, making things smoother for both you and your team.

OTHER STAKEHOLDERS

Your team doesn’t work in isolation; every move you make will impact other
teams and roles: product managers, designers, cross-functional departments like
sales, finance, legal, customer service, and, of course, your users or clients (if
applicable). These stakeholders also influence your work and can directly affect
how effectively your team achieves its goals.

Here are a few ways to make these connections work for you and your team:

Open cross-team communication channels
Let’s take a common example: your team depends on another team to
deliver part of a project. Their progress directly impacts your timeline, and
vice versa.

The easiest way to ensure smooth communication is by setting up a
dedicated Slack channel or space for both teams. This becomes a central
hub for updates, questions, and discussions.

Recurring check-ins are another great way to keep everyone aligned.
These don’t need to be long or formal, just a quick sync to share progress
and address potential blockers.

Of course, you don’t have to manage this relationship alone. You can
pair up with someone from your team who has an interest in the topic or
assign them to take ownership of the communication.

This not only keeps updates flowing smoothly but also gives your team
a chance to build relationships with the other team, a win for everyone
involved.

Ask for help, and offer it
Asking for help is one of the easiest and most underused strategies to
build relationships. Instead of wasting days stuck on a problem, tap into
the collective knowledge of your organization. Post questions in general or
team-specific Slack channels like “Has anyone worked on this before?” or

76 | LEVELING UP AS A TECH LEAD

“Can someone help with this?” You’d be surprised how often people are
willing to assist.

Similarly, take the initiative to help others. Answer unanswered ques-
tions in Slack or reach out to teams facing challenges you’ve already solved.

Build cross-team collaboration spaces
Host monthly tech lead chats: set up recurring sessions where tech leads
from different teams come together to share updates, troubleshoot chal-
lenges, and brainstorm ideas. To make the most of these sessions, con-
sider assigning a rotating facilitator and preparing a lightweight agenda in
advance. This helps keep the conversation focused while still leaving room
for organic discussion and peer learning.

Create company guilds: establish groups around topics like architec-
ture, frontend development, or cloud migration. Open these guilds to
anyone interested, whether engineers, architects, or other stakeholders, to
encourage knowledge sharing, alignment, and innovation across teams.

Virtual coffee chats (often facilitated by Slack apps like Donut, Alfy, or
similar) are an underrated way to connect with colleagues across your orga-
nization. While many companies offer these, few people take full advantage
of the opportunity. Yet, I’ve never met a developer who participated and
regretted it. These informal chats can spark unexpected connections, open
doors to collaboration, and help you build a network that might come in
handy when you least expect it. You never know when the person you chat
with could be the key to solving a future challenge or opportunity.

Support other teams’ initiatives: encourage your team to participate in
hackathons, brainstorming sessions, or workshops led by other teams. You
can also show up to their demos, give feedback on deliverables, comment
on RFCs, or contribute ideas in shared documents and discussions.

Invite diverse perspectives to brainstorming
For product kick-offs or major planning sessions, bring in voices from
other departments like customer service, sales, or marketing. Instead of
only the PM talking to them separately, I’ve found it more effective to
bring everyone together for their take on potential product challenges and
solutions up front. Their perspectives often surface challenges and oppor-
tunities the core team might miss. Just ask! They can always say no, but the
payoff can be significant when they say yes.

BUILDING RELATIONSHIPS | 77

These strategies can help you start building connections with your team and
different types of stakeholders.

Common Challenges and How to Overcome Them

Building relationships comes with its fair share of challenges, especially as a tech
lead. The three most common ones I see tech leads face are breaking the ice with
new connections, maintaining strong relationships over time, and effectively
bridging the gap with nontechnical stakeholders.

For some, these conversations feel easy and natural. They enjoy small talk
and are quick to build rapport. But for many others, starting and sustaining
these kinds of interactions can feel awkward, mentally draining, or just unclear.
Whatever the reason, know that you’re not alone and that this is something you
can absolutely get better at through practice.

In this section, I’ll dive into the three most common relationship-building
challenges mentioned previously and share actionable strategies to help you
navigate and overcome them.

IT FEELS AWKWARD TO START CONVERSATIONS

Breaking the ice can feel daunting, but without that initial moment of connec-
tion, relationships can’t begin. Many tech leads overthink the first step: “What
should I say? How do I start?” Instead of waiting for opportunities to come to
you, take the initiative.

A presentation is one of the easiest ways to start a conversation. Speakers
expect interaction, so after their talk, show appreciation and highlight a specific
point you liked: “I really enjoyed your take on…” Asking a thoughtful question
about their content can make the interaction more meaningful, and they’ll
remember your genuine interest.

If you’re working on a shared project, use that as common ground. Reaching
out with “I heard you’re tackling a similar challenge; how did you approach it?”
opens doors naturally.

Similarly, asking for help is an underrated strategy. Most people love sharing
their expertise. Be specific: instead of a vague “hello,” start with “I heard you’re
the go-to for this issue. Can you help?” This clarity increases the chances of a
response.

Don’t underestimate the power of active listening. When someone responds,
be fully present: pay attention to their words, tone, and body language. Reflecting
back what you heard or asking clarifying questions (“So, do you mean…?”) shows

78 | LEVELING UP AS A TECH LEAD

that you’re not just waiting to speak but are truly engaged. Instead of jumping
to your next point, you can use what the other person just said to carry the
conversation forward. People are far more likely to remember someone who
made them feel heard than someone who had the perfect opening line.

Also, don’t miss opportunities to help others. Answer Slack questions no one
has addressed, tag someone who might know, or offer your insight. People notice
this effort.

Finally, create spaces where others can approach you (one of my favorites).
Host showcases, lead meetings, or run Q&A sessions. It’s an easy way to start
building connections without having to reach out yourself, as you’re creating a
space where they can approach you.

The more intentional effort you put into breaking the ice, the easier it
becomes, and more and more ideas will come up.

HOW DO I KEEP RELATIONSHIPS STRONG OVER TIME?

Building relationships is only the first step; maintaining them requires consis-
tent effort. Over time, people’s priorities shift, and so does the context of your
interactions. To keep relationships strong and meaningful, you need to stay
intentional and adaptable.

Here are actionable strategies for nurturing these connections over time:

Keep track of people
Make it a habit to jot down memorable details from conversations right
after, such as personal interests or key points they’ve shared. Whether it’s a
note about their favorite hobby, a challenge they mentioned, or a skill they
want to improve, referencing these details in future conversations shows
that you care and strengthens the connection.

Follow up
When someone helps you, take the time to circle back and share the
results. This shows appreciation and keeps the connection alive. Even small
updates matter. For example, you could say, “Thanks again for the tip on
[topic]. I tried it, and here’s what happened: [result].”

If someone asks you a question you couldn’t answer right away or
you left a conversation open-ended, always follow up. Even if it’s just to
say, “I’m still working on this” or “I couldn’t find an answer,” it shows
reliability and keeps the dialogue flowing.

BUILDING RELATIONSHIPS | 79

Create recurring touchpoints
Consistency is everything when it comes to maintaining relationships.
Avoid skipping one-on-ones with your team or stakeholders, even if it feels
like there’s nothing urgent to discuss. These moments aren’t just about
updates; they’re about building rapport and staying connected.

Make it easy for others by coming prepared: bring updates, questions,
or potential issues, and leave space for them to share their own thoughts.

Prioritize and choose battles wisely
Not every relationship requires the same level of attention. For instance, if
you’re collaborating with another team to deliver a critical feature, it makes
sense to focus on building a strong connection with that team and the
stakeholders impacted by the feature. Meanwhile, relationships that aren’t
immediately relevant can temporarily take a backseat. Regularly reassess
your priorities as projects and goals shift to ensure your energy is directed
where it matters most.

Similarly, not every disagreement is worth pursuing. Focus on com-
mon ground rather than being right. For example, agreeing with your
product manager to move retrospectives from Friday to Monday, even if
it’s always been Friday, is less impactful than advocating for prioritizing a
crucial technical-debt task that could directly affect your product’s quality.

Relationships are like living things: they thrive with care and effort but can
endure beyond immediate interactions. Once trust and reliability are established,
they become self-sustaining. For example, if you’ve built a strong connection
with a stakeholder during a project and reconnect months later, that trust still
holds, and you can pick up where you left off. This was clear to me when I
transitioned to being self-employed (a solopreneur): past clients, coworkers, and
managers reached out with opportunities years later.

Investing in lasting relationships also contributes to building a foundation
for your long-term career: there is a high chance you will run into the same
people in the future.

WE JUST DON’T SPEAK THE SAME LANGUAGE

Usually, this means struggling to get on the same page, like you’re both talking
but not fully understanding each other’s perspective. Often, it’s because they’re
deep in business lingo while you’re explaining things technically.

80 | LEVELING UP AS A TECH LEAD

Here’s how to bridge that gap:

Step into their world
Start by mentioning how important it is for you to figure this out together
and why. This will set the ground for conversation, showing them that you
are not going for a fight. Learn what they care about. Everyone’s viewpoint
comes from their role’s priorities, so start by understanding what drives
their decisions. Instead of trying to prove to the other person you are right,
start by deep diving into their reasoning and arguments. One strategy that
I use in these cases is to assume the other person has a valid point, even if
I don’t fully see it yet. I try to understand their reasoning deeply, believing
there’s something valuable I might be missing.

Ask clarifying questions
Don’t assume their intentions or goals. Ask “What’s the main priority
here?” or “What’s the outcome you’re aiming for?” Reflect back their
answers: “So if I understand correctly, you mean…?” This one simple
question can make a huge difference. It may sound small, but repeating
back my understanding has helped me avoid countless misunderstandings.
Often, the reply is “No, that’s not what I meant,” revealing that we weren’t
actually aligned at all. Most problems in tech teams come from everyone
assuming they’re already on the same page when they’re not.

Find shared goals
Once you understand their goals, look for common ground. For example, if
they’re focused on deadlines and you’re focused on code quality, point out
how both efforts contribute to a successful product launch. Shared goals
help align your efforts.

Use their language
Explain your points in terms that resonate with their priorities. Instead of
saying, “We need to refactor,” frame it as “This will reduce risks and save
time later.” Adapting your language shows effort to meet them halfway,
making your ideas more relatable.

Building a shared language doesn’t happen overnight, especially when you’re
coming from different domains. But with curiosity, patience, and a genuine
effort to understand the other person’s perspective, it becomes much easier
to bridge the gap. Remember: it’s not about winning an argument; it’s about

BUILDING RELATIONSHIPS | 81

building alignment and trust. And that starts with showing that you’re willing to
meet people where they are.

BUILDING RELATIONSHIPS AS AN INTROVERT

Not everyone finds it easy to strike up conversations or navigate social dynamics,
especially if you’re more introverted. The expectation that tech leads should be
constantly engaging can feel overwhelming when your natural preference is for
quiet focus or one-on-one interactions.

But being introverted doesn’t mean you can’t build strong relationships;
it just means your approach may look different. You might skip the big team
lunches and instead build rapport during recurring one-on-ones. You might not
jump into every Slack thread, but when you do, you add thoughtful insight. You
may not talk the most in meetings, but when you speak, people listen.

People often assume I’m an extrovert. I’m not. I don’t get energized by
frequent small talk or bouncing between group conversations; I need time away
from people to recharge. But I show up and do it anyway, because building
strong relationships is part of the job, and I’ve found ways to do it that still
work for me. And I’m not alone. Some of the strongest tech leads I know are
introverts. They earn trust through consistency, deep listening, and thoughtful
questions that help others feel seen.

If you’re introverted, here are a few strategies that can help:

Leverage one-on-ones
These offer a quieter, more focused setting for building trust. You don’t
have to perform or think on your feet the same way you might in a group
setting. Use these conversations to ask meaningful questions, check in on
goals or concerns, and share feedback in a way that feels more natural than
speaking up in a crowd.

Prepare, prepare, and then prepare some more
Many introverts feel more confident when they’ve had time to gather their
thoughts. Before meetings or conversations, jot down key points you want
to raise, questions you want to ask, or updates to share. This preparation
helps you show up more clearly and assertively, even if the setting isn’t
your comfort zone.

Use async communication to your advantage
You don’t always need to speak up in real time. Writing a thoughtful
message in Slack, leaving comments in a document, or summarizing

82 | LEVELING UP AS A TECH LEAD

your thinking in an email can build your visibility and influence. Written
communication lets you contribute on your terms without the pressure of
having to respond instantly.

Set boundaries and recharge
As an introvert, your energy is finite, especially in high-interaction roles.
Block out time for deep work, avoid back-to-back meetings when possible,
and take short breaks to reset. When you protect your energy, you’ll show
up more present and intentional in the interactions that truly matter.

You don’t need to change your personality to succeed as a tech lead. You can
definitely be a great tech lead as an introvert. You just need to find a rhythm that
works for you and start with the relationships that matter most.

Key Takeaway

Building relationships is about creating the conditions where collaboration, trust,
and leadership can thrive. You don’t have to become someone you’re not, and
you don’t have to get it perfect. What matters is that you show up with intention,
curiosity, and consistency.

Not every conversation will land, and not every relationship will click, but
over time, your willingness to invest will shape how people experience working
with you.

So pick a place to start. Reach out. Ask questions. Listen well. And remem-
ber that building relationships is a shared effort. It’s a two-way street. Use these
strategies to connect, but also recognize that the other person has to meet you
halfway. All you can do is give it your best effort.

BUILDING RELATIONSHIPS | 83

Running One-on-Ones
with Your Team

One of the very first things I do when stepping into a tech lead role with a new
team is set up recurring one-on-ones with each team member. While the collabo-
rative dynamic of the team as a whole is essential, these individual one-on-ones
are where you can build personal connections, understand unique perspectives,
and address concerns that might not surface in group settings. Before diving into
the tech stack, analyzing the codebase, or meeting stakeholders, I prioritize these
meetings, because the team’s collective success starts with understanding and
supporting each individual.

That said, there’s an important distinction worth calling out early. In some
companies, one-on-ones are formally owned by engineering managers, and that
can lead to some confusion about whether tech leads should still run their own.
My view is simple: yes, you absolutely should. Even if there’s some overlap in
topics, that doesn’t mean the conversations are redundant. It just means you’ll
need strong alignment with your EM and clarity with your team about your role
in supporting them.

Take growth, for example. An EM might manage the formal side, including
things like promotions, compensation processes, and official career frameworks,
but that doesn’t mean people’s growth isn’t also your responsibility. Quite the
opposite. Their development impacts the team’s outcomes, and by extension,
your success as a lead. As someone who works closely with them day to day,
you’re often in a better position than the EM to support their progress in
practical, immediate ways. That’s why these conversations matter, regardless of
reporting lines.

These early conversations set the tone for your working relationships and
help you establish trust and rapport from day one.

85

| 4

In this chapter, I’ll walk you through how to get the most out of one-on-ones:
how to structure them, what to talk about, how to build trust, and how to avoid
common pitfalls. Whether you’re new to the role or looking to uplevel how you
approach these conversations, the ideas in this chapter are designed to help you
make every one-on-one count, for both you and your team.

The Value of One-on-Ones

One-on-ones are the most powerful tool you have as a tech lead. They will make
your life easier, strengthen your relationships, and support the growth of your
team members.

First, they help you stay ahead of potential issues. One-on-ones create space
to deliver feedback, identify underlying problems, and even find tasks to delegate.
They give you a better understanding of what’s really going on in your team and
help you tackle challenges before they escalate.

Second, they strengthen relationships. These conversations allow you to con-
nect with your team members individually, creating a space for trust and open
dialogue. The questions they ask and the feedback they share offer invaluable
insights into their interests, concerns, and goals.

Finally, they drive growth. One-on-ones are where you provide the guidance
and support your team members need to take on new challenges and develop
their skills. They’re a direct investment in the team’s success, and yours.

MAKE YOUR LIFE EASIER

One-on-ones aren’t just for your team members; they’re for you, too.
Ever had feedback you wanted to give but kept putting off? A one-on-one is

the perfect space to deliver it. It’s your chance to stop waiting and address things
before they grow into bigger problems (although timely feedback should never
be replaced; more on this in the section “How to Give Useful Feedback to Your
Team” on page 116).

They’re also a window into what’s happening behind the scenes. You’ll
pick up on things that don’t surface in team meetings: frustrations, potential con-
flicts, or underlying issues. For example, during a one-on-one, a team member
might express frustration over unclear expectations from another department,
something they wouldn’t feel comfortable raising in a group setting. This gives
you the chance to address the issue privately, clarify responsibilities, and prevent
a broader misunderstanding from escalating. Asking the right questions helps
you uncover and resolve these issues early.

86 | LEVELING UP AS A TECH LEAD

And let’s not forget delegation. Want to get some things off your plate? Use
one-on-ones to share what you’re working on and see what sparks interest. Ask,
“Would you be interested in taking over this initiative?” You’ll be surprised how
often someone is eager to step up.

One-on-ones also give you a unique view into your team. Pay attention to
the questions your team members ask; they’re often just as revealing as their
answers. For example:

• “How am I doing in this area?” signals they’re keen to grow and want your•
guidance.

• “What’s happening with [initiative]?” might mean they’re looking for ways•
to contribute more or feel left out of the loop.

These moments open doors to conversations that help you understand your
team better, identify their motivations, and anticipate potential challenges.

One-on-ones are like your leadership cheat code. When you invest time in
understanding your team and building strong relationships, you’ll find it easier
to align on goals, address conflicts, and keep everyone moving forward together.

STRENGTHEN INDIVIDUAL RELATIONSHIPS

In Chapter 3, I talked about how important it is to build strong connections
with your team and the impact those relationships have on your team’s results.
One-on-ones are one of the best tools you have to build those relationships.

These conversations go beyond surface-level work interactions. They create
a dedicated space for trust and open dialogue. Showing up consistently for one-
on-ones sends a clear message: “I value your time, your input, and you as a
person.” It’s not just about work updates; it’s about showing you care, whether
it’s chatting about their weekend plans or diving into their career goals.

One-on-ones also give you the chance to connect with your team members
individually, in a way group settings never can. Talking about personal interests,
challenges, or aspirations helps to humanize the relationship and build a stron-
ger bond over time.

And that’s why canceling one-on-ones is one of the fastest ways to break
trust. If you make a habit of pushing them aside, it sends the message that other
things are more important than your team members. Of course, emergencies
happen, but canceling without a solid reason, or doing it repeatedly, is a clear
recipe to erode the connection you’ve worked to build.

RUNNING ONE-ON-ONES WITH YOUR TEAM | 87

Commit to these meetings and prioritize them. They are your chance to
strengthen relationships, understand your team on a deeper level, and build the
foundation for collaboration and trust.

SUPPORT PEOPLE’S GROWTH

The tech lead role varies widely across organizations; sometimes it includes
formal line management and other times it’s a senior IC position without direct
people management responsibilities. Regardless of where your role falls on that
spectrum, one thing remains true: supporting the growth of your team members
is part of the job. Their development directly influences the team’s outcomes,
and, by extension, your success as a lead.

One-on-ones are a golden opportunity to support that growth.
Start by emphasizing the value of a growth plan (see the section “Developing

a Personal Growth Plan” on page 38). If your team members don’t have one,
help them define it. Talk about the skills they want to develop, areas they want to
improve, and how their growth aligns with the team’s goals.

Once you have a clear sense of what growth looks like for each individual,
mentoring and coaching become two of the most effective ways to help them get
there. Before diving deeper, it’s worth addressing a common question: what’s the
difference between mentoring and coaching, and which one should I be doing as
a tech lead? See Table 4-1 for a breakdown.

Table 4-1. 1 Difference between a mentor and a coach

Mentor Coach

Shares experiences, opens doors, offers
guidance and advice.

Helps others discover solutions, supports
journeys, challenges their thinking.

Better suited for junior developers: “When
I faced a similar issue, I found that
breaking it down like this helped. Would
you like me to walk you through it?”

Better suited for senior developers who
have experience but need help choosing
the right approach: “What options have
you considered? What do you think might
work best and why?”

At their core, mentors and coaches are tools to support growth, but they
differ in approach. Mentoring often involves giving advice. People come to you
for your expertise and experience; they expect your input. That’s perfectly valid.
Just remember: your experience might not map directly to theirs, so after you
share, help them reflect on how it applies to their situation and what they might
take from it.

88 | LEVELING UP AS A TECH LEAD

Coaching, on the other hand, treats advice as a last resort. Instead of offering
answers, it leans on asking deeper questions to help the other person uncover
their own solutions. In fact, when I find myself in a coaching conversation, I
often say, “Let’s explore this together, and if by the end you still feel stuck, I’ll
share my take.” Most of the time, they find their own answer; they just need
someone to help them navigate toward it.

Tip

For a practical introduction to coaching, The Coaching Habit by Michael Bungay

Stanier (Page Two) offers a simple framework of powerful questions that any leader

can start using right away; no formal coaching background is required.

That said, don’t get too hung up on definitions. As a tech lead, you don’t
need to obsess over whether you’re being a coach or a mentor in a given
moment. What matters is utilizing the techniques each of them brings to the
table to support your team’s growth.

Both methods are focused on helping others grow, and one of the first things
they offer is accountability.

To provide accountability, start by helping your team members articulate
clear, realistic goals. Then, make a habit of following up on them regularly in
your one-on-ones. A simple check-in like “Last time you said you wanted to get
more confident in system design interviews. How’s that going?” shows you’re
paying attention and that their growth matters.

You can also build light structures to keep them on track: note goals and
progress in your shared one-on-one doc, set gentle reminders, or suggest small
milestones. Even offering to review something they’re working on or scheduling
a future follow-up creates a sense of rhythm.

Both mentoring and coaching rely heavily on active listening: being fully
present, asking thoughtful questions, and understanding what your team mem-
ber truly needs. (See the section “Create a Safe Space” on page 97 for specific
strategies on building active listening habits.)

Once you’ve created this space for reflection and exploration, one-on-ones
become a great setting to uncover opportunities for delegation, which is a key
way to support growth in practice. Pay attention to where someone is eager
to stretch, or simply ask, “What kind of projects would you like to take more
ownership of?” Then look for opportunities that align with their interests and
goals. For instance: “I’ve been working on this initiative, but I think it could be a
great opportunity for you. Would you be interested in leading it?”

RUNNING ONE-ON-ONES WITH YOUR TEAM | 89

One-on-ones also create a natural, lower-pressure environment for sharing
feedback, both positive and improving points. You might say, “I really appreci-
ated how you handled that conversation with the client, especially how you clari-
fied expectations early on. It set a great tone.” Or, when addressing something
more difficult: “You mentioned wanting to get better at leading technical discus-
sions. I noticed you stayed a bit quiet during yesterday’s architecture review.
How are you feeling about jumping in during those conversations?”

Making growth a priority in your one-on-ones is an investment in your
team. Whether through mentoring, coaching, finding delegation opportunities,
or providing feedback, your team members will feel supported and empowered to
take on new challenges, which will speed up their growth.

Set Up Your One-on-Ones for Success

Before jumping into the strategies for setting up impactful one-on-ones, it’s
important to take a step back and clarify your role and make sure your team
understands it too. In some teams, the tech lead also acts as the line manager.
In others, there’s a separate engineering manager or team lead who formally
handles things like performance reviews and career progression. The split varies
widely across organizations, and that’s OK, as long as expectations are clear.

Even if you don’t own formal responsibilities like compensation or promo-
tions, you still play a huge role in your team members’ growth. In fact, I’d argue
that supporting that growth is part of your job. Your involvement might look
different depending on the setup. For example, your conversations might not
directly feed into performance reviews. Nevertheless, the mindset still applies:
you are a key part of how your team develops. Chapter 7 goes deeper into how to
contribute to reviews even if you’re not the direct manager.

That’s why the kinds of conversations described in this chapter are valua-
ble in both contexts. Whether you’re mentoring a junior developer, coaching
someone through a tough technical challenge, or helping clarify next steps in
someone’s growth, you have influence. These one-on-ones are where much of
that impact happens.

Now, let’s look at how to set those one-on-ones up for success.
Making the most of your one-on-ones doesn’t require overly complicated

strategies. In fact, the biggest impact often comes from sticking to a few straight-
forward principles. But as simple as these may seem, many tech leads struggle to
apply them consistently.

90 | LEVELING UP AS A TECH LEAD

The foundation of successful one-on-ones starts with consistency. Whether
weekly, biweekly, or monthly, they need a regular cadence. Sporadic check-ins
won’t cut it. Clear expectations are equally important; both you and your team
members should understand what to expect from these conversations. Focused
discussions help keep the meetings valuable by addressing the right topics. Trust
and collaboration are built when the space feels safe for team members to share
openly. Last, follow-through is critical: track action items and revisit previous
discussions to ensure progress and accountability.

In the next sections, I’ll break down each of these principles and share prac-
tical ways to implement them, so you can make your one-on-ones as impactful as
possible.

STICK TO A REGULAR CADENCE

The single most important factor for successful one-on-ones is consistency. Yet,
it’s one of the areas where tech leads often fall short.

Regular, predictable one-on-ones create a foundation of trust. Whether you
meet weekly, biweekly, or monthly, the cadence needs to be reliable.

I recommend meeting with each team member every two weeks for 30
minutes. For a team of up to eight people, this means scheduling four one-on-
ones one week and four the next, which works out to just two hours per week, a
manageable commitment.

Of course, the size of your team will influence what’s realistic. My ideal team
size for one tech lead is a maximum of eight people. This number makes it
possible to keep up the biweekly schedule while staying deeply connected to the
team.

For larger teams, maintaining this cadence can be more challenging. In
those cases, it becomes even more important to be intentional about how you
adapt your one-on-one schedule to make sure everyone still feels supported and
seen. Here are some strategies that tech leads use in these situations:

Reduce frequency
Shift to a three-week rotation instead of two. Spread out the one-on-ones to
avoid burnout while still maintaining regular touchpoints.

You can also ask people directly what cadence and duration works
best for them. The problem might solve itself through conversation; some
people you think need more contact may actually prefer less, and vice
versa.

RUNNING ONE-ON-ONES WITH YOUR TEAM | 91

That said, reducing frequency can impact the strength of the relation-
ship, so it should be a carefully considered trade-off. Just make sure to
set the right expectations and align with your team before making any
changes: explain the reasoning behind it and ensure everyone is on the
same page.

Shorten the duration
Many tech leads default to 60-minute meetings, but half an hour is often
enough when you stay focused. A shorter, consistent one-on-one is far
more effective than an hour-long meeting that frequently gets postponed or
canceled.

I generally advise against going below 30 minutes. Anything less tends
to feel rushed and doesn’t give enough space for meaningful conversation
or deeper check-ins.

Adapt frequency by need
Prioritize newer team members or those who need more support. For
example, schedule more frequent one-on-ones for new joiners and reduce
them for senior members who are already well-established (as long as they
agree with this).

Make temporary adjustments
When faced with tight deadlines, you might need to reduce or skip one-
on-ones temporarily to focus on hands-on work. Use this option carefully
and with caution! Always set clear expectations and communicate up front
about the changes.

While it’s normal for the frequency of your one-on-ones to evolve over time,
consistency must remain the rule. Skipping a one-on-one should always be a last
resort, and you should ensure it’s a rare occurrence.

The consistent presence of these meetings on your calendar sends a power-
ful message: you value your team members, you’re committed to showing up for
them, and you care about the relationship you’re building. That reliability is what
establishes trust: the foundation for everything else you’ll achieve together.

AGREE ON AGENDA AND EXPECTATIONS

For one-on-ones to work, everyone needs to know what to expect. It’s up to you
to set those clear expectations: what you expect from them and what they can
expect from you. These meetings should feel intentional, predictable, and, most
importantly, theirs.

92 | LEVELING UP AS A TECH LEAD

Start by aligning on the purpose: these meetings are about supporting them,
addressing their challenges, and helping them grow. When team members own
the agenda, one-on-ones become more meaningful. Encourage them to take the
lead, bringing their priorities, questions, or topics to discuss. If you have some-
thing to add, let them know ahead of time. When they drive the conversation,
they’re more likely to come prepared and open up.

To ensure shared ownership:

Let them drive the agenda
It’s about their priorities, not yours. If they’re unsure, guide them on what
to bring to the table, but leave the floor open for their input.

Focus on their concerns
Discuss what’s top of their mind. If they ask for help, ensure they feel safe
doing so.

Be prepared as a backup
Have a few topics in mind in case they don’t come with something specific
that week.

Your first one-on-one is your chance to set the tone for future one-on-ones.
Use it to explain the following:

What they can expect from you
Consistency, showing up prepared, and using this time to focus entirely on
them.

What you expect from them
Taking ownership of the agenda, being honest about challenges, and using
this space for meaningful discussions.

Topics of conversation
Check the section “Know What Topics to Cover” on page 94 for ideas.

Confidentiality
Unless there’s a serious concern that needs to be escalated for safety or
ethical reasons, what’s shared in your one-on-ones stays between the two
of you. If there’s ever something that needs to be communicated more
broadly, like to a manager or HR, you’ll be transparent about it and let
them know beforehand. The goal is to create a space where they can speak
openly without fear of unintended consequences.

RUNNING ONE-ON-ONES WITH YOUR TEAM | 93

Here are some questions you can use:

• What do you expect from these one-on-ones?•

• What do you expect from me as a tech lead?•

• What would make these meetings valuable for you?•

• How can I best support your work and growth?•

• How do you like to prepare for these meetings?•

This alignment builds trust and ensures one-on-ones are productive. A clear
structure goes a long way in building trust and consistency:

Frequency
Set a regular cadence that fits the individual’s needs. Some may benefit
from more frequent check-ins, while others may prefer less frequent ones.
Whatever frequency you agree on, make sure there is clear alignment.

Calendar invites
Make it official by sending recurring invites.

Creative naming
Reduce pressure with casual names like “Weekly Sync” or “How Can I
Help?”

Description
Include a short note outlining the purpose of the one-on-one and any
agenda points. To keep it simple, just link to your shared one-on-one notes
document instead of updating the calendar invite each time.

Setting clear expectations from the beginning will reduce the pressure on
you and the attendees that usually comes with this meeting.

KNOW WHAT TOPICS TO COVER

One-on-ones can cover a wide range of topics, and if you’re doing it right, you’ll
rarely run out of meaningful things to talk about. From small talk to feedback to
team dynamics, each conversation is a chance to connect, clarify, and collaborate.

For example, building relationships often starts with something as simple
as small talk. Kicking off with “How was your weekend?” or checking in on
something personal like “How’s the home-buying process going?” can open the
door to more meaningful conversations. You can also ask openers like “What
have you been up to this week?” or follow up on something from your notes.

94 | LEVELING UP AS A TECH LEAD

One strategy I’ve found effective for getting people to open up is starting
with a genuine, honest answer to “How are you?” yourself. For example: “I’m
really excited about a piece of work that’s coming up” or “To be honest, I’m
having a rough day today.” Leading with openness gives permission for the other
person to do the same. If all you’re offering is “I’m doing OK,” you’re missing an
opportunity to deepen that connection.

Growth is another essential area. Sometimes, team members naturally bring
this up: “I’ve been working on improving my communication skills” or “I need
help getting better at X.” But when they don’t, it’s on you to make it part of the
conversation. Ask questions like “What are your goals for the next few months?”
or “What areas do you want to grow in, and how can I support that?” You can
also go deeper with questions such as “What are your goals for this year?,” “Do
you have a plan to reach them?,” or “What do you need from the team or the
organization to support your progress?” This helps you understand where they
are now, where they want to go, and how you can help them get there. You can
also follow up on goals. Ask questions like “How is that communication course
going?” or “Have you had the chance to try out that new skill in a project yet?”
Showing you remember and care about their growth builds trust and keeps them
accountable in a supportive way.

Bring visibility to their work. People often don’t know how much their work
is valued until someone tells them. Use one-on-ones to acknowledge contribu-
tions that might otherwise go unnoticed. You might say, “I think you handled
that conversation on Tuesday with the client really well.” It reinforces their
impact and encourages continued initiative. You can also help them find other
opportunities to make their work more visible, as this is an area many engineers
struggle with. Ask questions that open the door: “That was a great training on
Kafka Streams you gave to the team. How would you feel about presenting it
to other teams as well?” or “Have you thought about writing a short internal
blog post about the debugging process you figured out last week?” Small nudges
like these can build confidence and help them develop their voice beyond the
immediate team.

Feedback often fits naturally into one-on-ones. If there’s something you’ve
been meaning to share but haven’t had the chance, this is the perfect time,
though don’t make the mistake of relying solely on these meetings for feedback.
And it goes both ways. Use this time to ask for feedback from them: “How do
you think I handled that situation?” or “What could I have done better in this
morning’s presentation?”

RUNNING ONE-ON-ONES WITH YOUR TEAM | 95

Team dynamics can also come into focus during these discussions. Ask
open-ended questions like “What do you think we need more of in the team?” or
“What’s something you think we could do better?” These questions often reveal
underlying issues or areas for improvement you might not have seen otherwise,
and they open the door to something even deeper.

Use one-on-ones as a regular safety check. Beyond surfacing ideas and team
improvements, these conversations are a powerful tool for gauging how safe and
supported your team members feel. You can start by asking, “How are you feel-
ing about the team these days?” or “Is anything making your day-to-day harder
than it needs to be?” These kinds of questions help you monitor psychological
safety and create a space where people know it’s OK to raise concerns, big or
small, before they become blockers.

Be mindful of changes in tone, energy, or participation. If someone who’s
usually engaged seems withdrawn or vague, gently check in. Questions like “You
seem quieter than usual; how are things going?” can open the door for honest
conversations that might otherwise be missed.

To build reflection into your one-on-ones, consider incorporating a few light-
weight, recurring questions. These can help people pause and take stock of their
week while giving you insights into their mindset and workload. Try asking:

• What’s something you learned this week?•

• What’s one thing that went well?•

• What’s been challenging you recently?•

Make space for wins. One-on-ones are a great opportunity to celebrate pro-
gress, even the small stuff. Asking questions like “What’s something you’re
proud of from the last sprint?” or “Has anyone on the team helped you out
recently in a way that stood out?” helps surface moments of success and appreci-
ation. These quick reflections can be energizing and often trigger further conver-
sations about motivation and what’s working well in the team.

Pay attention to throwaway comments or subtle hesitations. “I’ve been deal-
ing with some weird bugs” might just be a vent, or it might signal a larger
problem worth digging into. One-on-ones are a great space to gently explore
these threads.

Then there are the inevitable questions and worries that people bring. They
might ask, “I heard there’s going to be some restructuring. How will that affect
us?” These moments are your chance to calm nerves, provide clarity, or at least
show empathy when you don’t have all the answers yet.

96 | LEVELING UP AS A TECH LEAD

The most valuable one-on-ones tend to revisit a mix of themes: connection,
growth, feedback, team health, and reflection. You don’t need to cover everything
every time, but having this mental map helps keep conversations balanced over
time.

Ultimately, one-on-ones are there to support them in whatever way they
need. They should feel like they own the meeting and you’re there as a partner in
their growth.

CREATE A SAFE SPACE

Creating a safe space in your one-on-ones is essential. Without it, meaningful
conversations can’t happen, and the real value of these meetings is lost.

One way to build this kind of space is to drop the formality. When I was
working in an office, I’d sometimes invite people for a coffee outside during
our one-on-one time, my treat. We’d take a short walk to a nearby café, chat
casually on the way, and then settle on a bench in the park for a more thoughtful
conversation. People loved it. That shift in environment and tone, stepping away
from desks and screens, helped lower walls and made it easier to connect on
a more human level. So if you have the chance to meet people face-to-face,
take it! Even in a hybrid setup, I would plan a day at the office with my team
and schedule my one-on-ones in person whenever possible. These moments of
presence and connection often go a long way in building trust.

The next step is how you show up in these conversations. One simple strat-
egy I use to set the tone is starting with a genuine answer to “How are you?”
Instead of a surface-level response, I’ll share something real: “I’m feeling excited
about this new project” or “I’ve had a tough morning because…” This honesty
invites them to open up, showing that it’s OK to be authentic in this space. If you
want people to open up, you have to open up first. Vulnerability is contagious.

I once mentioned in a one-on-one with a team member that I was feeling
overwhelmed adjusting to a new process we were trialing. She immediately
opened up about how she’d also been struggling but didn’t want to seem nega-
tive. That moment turned our dynamic: it moved the conversation from polite
check-ins to a more open and honest relationship. It reminded both of us that we
weren’t alone in navigating challenges.

By being honest about your thoughts and feelings, you make it easier for the
other person to do the same.

Listening is the most powerful tool you have for building trust and creating a
safe space. It’s not just about hearing words; it’s about understanding the person
in front of you. Truly listening helps you develop empathy by seeing things from

RUNNING ONE-ON-ONES WITH YOUR TEAM | 97

their perspective. When you do this, you connect on a deeper level and gain
insight into what drives and challenges them.

Here’s how to make your listening count:

Focus on the speaker
One of the simplest yet most powerful shifts you can make is reminding
yourself: this is not about me. I even keep a sticky note on my monitor
that says exactly that. To really focus, you need to eliminate distractions:
turn off notifications, put your phone away, and be fully present. Especially
while working remotely, I found this harder to manage. So now, before
one-on-ones or important conversations, I turn on “Do Not Disturb,”
switch to full-screen mode, and keep a notebook nearby to offload distract-
ing thoughts.

Embrace silence
If you want to listen more, you have to talk less. Early in my career, I felt
the need to fill every silence or always have the last word. But I realized
I was unintentionally crowding out others’ contributions. Not every one-on-
one will flow effortlessly, especially early on or with more introverted team
members, and that’s OK. Silence can feel awkward, but it’s a crucial part
of the conversation. It gives people space to gather their thoughts and build
the courage to bring up something difficult.

To change my habits, I started defaulting to mute during remote meet-
ings to give others room. One time, I forgot I was muted and started
talking, only to realize the team had continued the discussion without me.
They were doing just fine. That moment reminded me: my job isn’t to steer
every conversation but to create space for others to contribute.

Over time, I also learned to embrace silence instead of rushing to
fill it. One trick that helped: count to 39 in your head. Most of the time,
someone speaks up long before you finish counting, but even if they don’t,
that pause often leads to richer contributions than if you’d jumped in too
quickly. You can say “Take your time” or simply sit with the quiet for a
moment. Creating comfort with pauses helps make one-on-ones feel safer
and more thoughtful.

Reflect and seek feedback
Reflecting back what you’ve heard is one of the most powerful ways to
show you’re truly listening. After someone shares something important,
take a moment to summarize and check if you’ve understood correctly: “So

98 | LEVELING UP AS A TECH LEAD

what I’m hearing is that you feel your ideas aren’t fully considered during
technical discussions because the group often leans toward a different
approach. Does that sound right?” This kind of reflection not only helps
clarify their message; it also shows that you’re making an effort to truly
understand them.

But listening doesn’t stop when the conversation ends. Becoming a
better listener takes deliberate practice. After key conversations, especially
one-on-ones or feedback sessions, I set aside 15 minutes to reflect. How
well did I listen, on a scale from 1 to 10? Where did I drift off and why?
Did I interrupt? I also make a point of asking for feedback directly, with
questions like “What’s one thing I could do to make you feel more heard?”
or “How do you think I handle conversations when we disagree?” Over
time, the answers to these questions have helped me refine not just how I
listen, but how I lead.

Ask clarifying questions
Use open-ended questions to dig deeper and gain more context. For exam-
ple, “Can you tell me more about why you feel that way?” or “What do you
think would help in that situation?” These questions encourage them to
share more while keeping the focus on their experience.

These strategies help you create space for open, honest dialogue, but they
work only if you can stay present in emotionally charged moments too.

If a team member comes into a one-on-one clearly frustrated, venting about
a difficult situation with the team or a recent meeting, your job isn’t to fix it
right away. In those moments, the most supportive thing you can do is simply
stay with them. Don’t interrupt, don’t offer solutions, and don’t jump to defend
yourself if you feel the frustration is aimed your way. Just stay present and let
them finish. I know how hard this can be; I’ve been there. It can feel like they’ll
never stop, like you need to respond. But I promise: they always stop. And if
you’ve truly been listening, they’ll know.

At the end of these moments, I often just take a breath and say, “I hear
you. I’m sorry this has been so hard. What would you like me to do about it?”
Sometimes, their response is “Nothing; I just needed to get it off my chest.”
That’s the point: the sharing is for them, not for you. And asking this simple
question helps you clarify their needs instead of guessing. Worst case? They tell
you exactly what they want you to do, and you can decide how to act on it. But
more often than not, the act of listening is the support they needed all along.

RUNNING ONE-ON-ONES WITH YOUR TEAM | 99

The openness people show in one-on-ones is a good measure of team safety.
Hesitation, tension, or frustration might signal deeper issues. These insights
can help you address problems early and build a safer, more collaborative team
environment.

TRACK CONVERSATIONS

One-on-ones aren’t isolated chats; they’re part of a long, ongoing conversation.
Growth doesn’t happen overnight, and some challenges can’t be solved in a
single meeting. Consistency and follow-up are key to making these meetings
impactful, and the only way to do it right is to track what’s being discussed.

I used to keep an online note for each team member, dedicating a few
minutes after every one-on-one to jot down key points: what we discussed, action
items, and topics to revisit. During these meetings, I kept a notebook handy
for capturing high-level ideas, allowing me to stay present. I tracked personal
details like “getting a dog” or “new hobby,” professional milestones or projects
they were tackling, and follow-ups on development goals or challenges for future
conversations.

Tip

Having a shared file for one-on-ones was a game-changer. It allowed team members

to add their agenda in advance and track action items together, ensuring accounta-

bility on both sides.

Even with a shared document, I kept my personal notes for extra context.
These were for things like remembering personal details, feedback I wanted to
circle back on, or insights I’d want to bring up later. This combination of shared
tracking and private notes helped me show up prepared and keep the continuity
of our conversations.

Tracking also strengthens your follow-up game. When someone raises a
concern, use your notes to keep track of actions you need to take and circle
back. Give them an update, even if the outcome isn’t ideal or you couldn’t take
action. Just closing the loop builds trust and reinforces the message: I heard you,
and I followed through. It shows your team they can rely on you and that their
concerns won’t disappear into the void.

Tracking conversations shows your team that their time is valuable and
that you’re invested in their growth. It’s also an opportunity to ask simple but
powerful questions: “How can I make your life easier?” These small actions build

100 | LEVELING UP AS A TECH LEAD

trust and make sure your one-on-ones aren’t just chats but actually help move
things forward.

AVOID COMMON ONE-ON-ONE PITFALLS

One-on-ones are powerful but only if you treat them with the care they deserve.
Unfortunately, some of the biggest mistakes aren’t about what you don’t do but
about what you do without realizing the impact.

For example, showing up distracted, checking your phone, replying to Slack
messages, or looking at another screen signals that this meeting isn’t your prior-
ity. Over time, that erodes trust. The same goes for turning these sessions into
complaint outlets. Sharing your challenges is fine, but when one-on-ones become
a space for you to vent about other team members, stakeholders, or leadership,
it puts your report in an uncomfortable position and undermines psychological
safety.

Another common pitfall: dismissing concerns as “just complaining.” What
you hear as a rant might actually be a sign of deeper friction or misalignment. As
a tech lead, your job is to listen with curiosity and look for patterns or problems
behind the words, even if they’re not expressed perfectly.

Also be mindful of dominating the conversation with your own updates or
personal stories. A common trap is thinking you’re being relatable by sharing too
much about your own situation, especially when a team member is vulnerable.
For example, they share something they’re struggling with, and your instinct is to
jump in with a similar story of your own. While well-intended, this can make the
conversation about you, rather than helping them feel seen and supported.

If you find yourself doing most of the talking, pause and reflect: Is it because
you’re trying to fill silence? Are you uncomfortable with their discomfort? Are
you unsure what to say, so you’re defaulting to what’s easy for you? These are all
normal instincts, but they shift the focus away from the person who needs you to
listen most.

One helpful self-check: after every one-on-one, ask yourself, “Did I walk away
understanding more about them than they learned about me?” If not, it might be
time to rebalance how you’re using that time.

Finally, never underestimate the damage of inaction. If someone brings up
an issue and you nod through it but do nothing, or forget it entirely, it sends
a clear message: this space doesn’t lead anywhere. When that happens enough
times, people stop bringing things up.

Being aware of the common pitfalls helps you avoid the slow erosion of
safety and connection.

RUNNING ONE-ON-ONES WITH YOUR TEAM | 101

Overcoming Common Challenges

One-on-ones can be incredibly impactful when done well, but they often come
with challenges that can derail their value. As a tech lead, you may encounter
recurring issues like struggling to find meaningful topics to discuss, sessions
being canceled too often, or feeling like you have to solve everyone’s problems. In
this section, I’ll explore these common roadblocks and provide actionable strate-
gies to overcome them, so your one-on-ones can become productive, consistent,
and meaningful conversations that benefit both you and your team.

NOTHING TO TALK ABOUT

Troubleshooting disengagement starts with identifying the root cause. Is it a
team-wide issue, or is it just one individual?

If it’s the whole team, the problem might be you. This often happens when
there’s a gap in how you’ve set up or are running your one-on-ones.

We can use Table 4-2 to troubleshoot.

Table 4-2. Common challenges that arise on one-on-ones and suggested solutions

Challenge Suggestion

Team members seem
disengaged in one-on-
ones.

Start by having an explicit conversation in the one-on-one.
Ask for their feedback on how valuable they find these
meetings and what you might do to improve them.

Also, ensure your one-on-ones are consistent. Sporadic
meetings or skipped sessions signal they’re not a priority,
which can lead to disengagement.

Meetings feel
unproductive and
scattered.

Encourage them to come up with an agenda beforehand.
Align on the purpose and value of these sessions to ensure
both parties are prepared and engaged.

Team members rarely
bring up meaningful
topics.

Discuss potential topics in advance. Make it clear what’s fair
game for discussion, so they feel comfortable bringing up
points that matter.

The team is holding
back or not sharing
openly.

Build trust by creating a safe space for conversations. If this
persists, revisit strategies in the section “How to Build Strong
Relationships” on page 62 to address trust issues.

Conversations feel
stagnant and repetitive.

Follow up on action items and progress from previous
meetings. Show continuity and commitment by revisiting
prior discussions and tracking outcomes.

Addressing these challenges will help pinpoint where to start addressing the
issue.

102 | LEVELING UP AS A TECH LEAD

If it’s an individual, dig deeper. Disengagement from one team member
might hint at personal challenges or demotivation. I once had a team member
bring no topics for weeks. When I finally asked about it, I found out she was
frustrated about missing out on a project she really wanted to be involved with.
We discussed other opportunities that excited her, and the problem vanished.

Even though it’s their responsibility to bring topics, your team members
might struggle, especially early on. Here’s how you can help:

Track everything
Keep notes on what they’re doing well, areas for improvement, personal
updates, and team dynamics. These observations can trigger meaningful
conversations.

Prepare prompts
If your team member struggles to bring up topics, have a few open-ended
questions ready to trigger conversation. You can find a more complete list
of ideas and question types in the section “Know What Topics to Cover” on
page 94.

If a team member consistently shows up without topics, acknowledge it
directly: “I’ve noticed you’ve been quiet in recent one-on-ones. Is there some-
thing on your mind, or is it just me?” This can lead to unexpected insights and
opens the door to reminding them about the value of these meetings.

In my experience, when someone says they have “nothing to talk about,”
it’s rarely the whole truth. It’s usually a signal that something deeper needs atten-
tion. Addressing the root cause is how you turn disengagement into meaningful
conversations.

GROUND RULES ARE NOT RESPECTED

At the start of your one-on-ones, you and your team members agree on the rules
and commit to making these meetings valuable.

When things start to slip, it all comes down to reiterating those expectations
and recalibrating together. Here are a few common issues that can arise, along
with some ways to address them:

Lack of meaningful topics
If team members rely on you to guide discussions, address it head-on: “For
the past few weeks, we haven’t had much to discuss in our one-on-ones.
Why do you think that is?” Remind them of the purpose: “This space is for

RUNNING ONE-ON-ONES WITH YOUR TEAM | 103

you to bring up concerns and questions or focus on your growth. How can
I support you in using it better?”

You can also share your own experience to build trust and normalize
their hesitation. For example: “I remember a period when I was having
one-on-ones with my own manager and I didn’t bring up much beyond
surface-level updates. I didn’t realize it was OK to talk about the things
I was unsure about, like whether I was growing fast enough or whether
I should speak up more in meetings. Once I brought it up, it completely
changed how useful those conversations became for me.”

Frequent cancellations
Frequent cancellations suggest these meetings aren’t being prioritized.
Approach the issue with curiosity rather than frustration: “I’ve noticed
you’ve canceled a few of our one-on-ones recently. Why is that?” or “How
can we adjust to make these meetings more valuable and ensure they fit
into your schedule?” Reiterating the importance of consistency and the
value these sessions provide can help reset their commitment.

Sometimes cancellations are due to pressures outside their control,
caused by things like organizational changes, shifting priorities, or overloa-
ded calendars. If it becomes a pattern, consider digging deeper: Is there a
bigger issue at play? Are they being pulled in too many directions by stake-
holders or leaders? If so, see how you can help, whether that’s advocating
on their behalf, adjusting expectations, or surfacing the problem more
broadly. Repeated cancellations may be a symptom of something larger,
and addressing it directly shows leadership and care.

Hesitation to voice concerns
If team members aren’t using their one-on-ones to voice concerns or chal-
lenges, it might signal a lack of trust or hesitation. Create a safe space by
reminding them: “This is your time to discuss anything on your mind,
whether it’s something you’re excited about or something that’s worrying
you. If there’s anything holding you back from bringing these up, let’s
figure out how we can address it together.” Reiterate that confidentiality
is part of how one-on-ones work. You can say something like “Unless
something poses a serious risk or requires escalation, what we discuss here
stays between us.” Making this expectation explicit can go a long way in
helping team members feel safe enough to open up.

104 | LEVELING UP AS A TECH LEAD

The system works only if both of you stick to the process. These rules aren’t
just about their responsibilities; they apply to you, too. Let them know they
can hold you accountable as well: “If I’m late, cancel too often, or don’t follow
through on what I promised, I want you to call me out on it. The system works
only if we both stick to it.” Even better, be proactive. If you slip, missing a meet-
ing or coming unprepared, own it before they have to. Modeling accountability
builds trust faster than asking for it.

By holding each other accountable to the ground rules you’ve agreed on, you
ensure that these one-on-ones stay valuable, intentional, and productive over the
long term.

FEELING PRESSURE TO SOLVE PROBLEMS

As a tech lead, it’s easy to feel like you need to solve every problem that comes
your way. The team looks to you for guidance, but you are not responsible for
solving everything. Your role is to point people in the right direction, not to fix
everything yourself.

An effective tech lead listens, empathizes, and supports but does not try to
fix every issue. You are not supposed to! Trying to carry the weight of everyone’s
challenges will not only burn you out but will also prevent your team from
growing.

Instead of jumping in with solutions, think of yourself as a guide, and use
the following approaches:

Coach
Use powerful questions to help them find their own solutions. One way to
start is by simply asking, “What do you need from me right now?” They
may just want a sounding board, not a solution. Asking this up front helps
you calibrate your support and shows that you’re there to meet them where
they are.

If they say they’d like your help figuring it out, then follow up with
prompts like “What do you think might work here?” or “How would you
approach this if you had no constraints?” These kinds of questions encour-
age ownership and growth while still making them feel supported.

Delegate
Recognize when someone else is better positioned to help. If it’s a technical
issue, loop in a subject matter expert. If they’re looking for career guidance,
suggest connecting with a mentor. Delegating wisely extends your impact
without stretching yourself too thin.

RUNNING ONE-ON-ONES WITH YOUR TEAM | 105

Refer
If the issue is personal or sensitive and falls outside your expertise, gently
point them to the right resources. Be familiar with what’s available, like
employee assistance programs, mental health services, or HR contacts, so
you can guide them effectively when the situation calls for professional
support.

It’s helpful to show empathy, as long as you also hold clear boundaries. Not
every problem brought to you will, or should, be yours to solve. If a team mem-
ber expects you to fix something for them, you can respond with “I understand
this is challenging, but let’s explore how you can tackle it. How can I support
you in finding a solution?” This approach shifts the responsibility back to them,
empowering them to grow and take ownership of their challenges.

When you stop trying to solve all problems, you create space for your team
to step up, learn, and take responsibility. It also protects your energy and ensures
you stay focused on your core responsibilities.

Remember, being a tech lead isn’t about being a superhero. It’s about being
a guide, a listener, and a supporter, helping your team find their own paths while
keeping healthy boundaries.

Key Takeaway

One-on-ones are one of your most powerful tools as a tech lead, for managing
day-to-day work and for shaping the culture and strength of your team over time.
When done well, these conversations become the foundation for trust, growth,
and alignment. They help you surface issues early, give people space to be heard,
and support their development in ways that are thoughtful and personal.

What you bring to the table matters: your presence, your consistency, your
ability to truly listen, and your willingness to follow through. You don’t need to
have all the answers. What matters more is creating a space where people feel
safe sharing both their wins and their worries. When team members know they
can count on that space, real connection and progress follow.

If there’s one mindset shift to take away, it’s this: strong relationships drive
strong teams. One-on-ones give you a chance to invest in those relationships
consistently and meaningfully.

So protect that time. Show up fully. And make it count.

106 | LEVELING UP AS A TECH LEAD

Unlocking the Power
of Feedback

A Note on Terminology

In this chapter, I’ll refer to two types of feedback—positive and constructive:

Positive (or reinforcing) feedback

This feedback highlights what someone is doing well, reinforces good habits,

and builds confidence.

Constructive feedback

This feedback focuses on surfacing blind spots, helping someone overcome

challenges, or encouraging new behaviors.

Technically, both are constructive: they contribute to someone’s growth. But

in this chapter, when I say constructive feedback, I’ll mostly be referring to

improvement-focused feedback: the kind that helps someone see what to do differ-

ently or better.

As a tech lead, one of your primary responsibilities is helping your team mem-
bers grow. There’s a whole toolkit available to you with items like mentoring,
sharing knowledge, and delegation, but none are as impactful as feedback. Yet,
despite its power, feedback is often underutilized or mishandled.

I see it all the time: tech leads who shy away from giving feedback because
they’re afraid of damaging relationships or pushing cultural boundaries, or
they’re unsure how to approach it. They worry that giving constructive feedback
will make them seem harsh or unkind or jeopardize trust they’ve worked hard to
build. So they stay quiet, hoping the issue will resolve itself; often, though, it just
tends to fester.

107

| 5

On the other hand, there are those who deliver feedback carelessly, leaving
team members discouraged or questioning their abilities. The issue isn’t that
feedback doesn’t work; it’s that feedback, when done poorly, can backfire. It can
harm relationships, damage careers, and demotivate someone entirely. But when
done right, feedback can be transformative.

Even the smallest comments can have a profound impact. A simple “Great
presentation today!” can boost someone’s confidence, reassuring them they’re
on the right track. Constructive feedback, delivered thoughtfully and with clear
examples, can save someone years of heading in the wrong direction. It can help
someone see what they might be missing and encourage real progress. I’ve seen
it happen time and time again, and I’ve experienced it myself.

I’ll never forget a moment that changed the way I thought about leadership.
My tech lead sat me down for a thoughtful conversation about how I was
showing up at work, especially in my interactions with other team members.
He walked me through a few examples, pointed out some patterns, and gently
helped me see the impact I was having.

The main message he shared, though not in these exact words, was clear: I
was lacking emotional intelligence, and if I wanted to lead tech teams effectively,
I needed to start developing it.

Even though he delivered it with care and context, it still hurt. But it was
also a turning point. It made me look inward and start focusing on how my
behavior impacted others, rather than just fixating on metrics, results, and code.
That piece of feedback was a game-changer, not just for my development as a
leader but for my entire career, to the point that now I’m a huge advocate for soft
skills in tech, and I am helping others develop theirs.

Or the time I told a senior developer on my team that his habit of constantly
interrupting others was hurting their confidence and making them less likely to
contribute. He had no idea the impact his behavior was having, but once I poin-
ted it out, he was grateful and started addressing it. Over time, his relationships
with colleagues improved, people’s perception of him shifted, and even the qual-
ity of his work benefited. As his relationships deepened and trust grew, the other
team members felt more comfortable engaging with him, giving him honest
feedback, and collaborating more openly. This not only improved his awareness
of how others perceived him but also gave him more opportunities to learn and
refine his approach, ultimately elevating the quality of his contributions.

Feedback isn’t just about what you deliver yourself; it’s also about encourag-
ing others to use it. Imagine two team members in a continuous conflict, and

108 | LEVELING UP AS A TECH LEAD

one of them comes to you frustrated and saying “Every time I speak in meetings,
he cuts me off.” My first response would be to encourage them to give feedback
directly to the other person, explaining how having the courage to address things
openly can not only help resolve the current conflict but also strengthen their
relationship and reduce future misunderstandings. I would also offer to coach
them through preparing the feedback and delivering it in a way that feels authen-
tic and comfortable for them. Often, the other person isn’t even aware of the
impact they’re having, and hearing it can lead to a meaningful change.

By teaching your team the power of feedback and encouraging them to
use it regularly, you amplify its effects and create a feedback culture. In this
kind of culture, people push themselves, and each other, to grow. Positive feed-
back acknowledges contributions and boosts morale, while improvement-focused
feedback highlights gaps and offers a path forward. Making use of both types
of feedback consistently helps build stronger relationships, improve team perfor-
mance, and keep the team motivated. And best of all, this magic happens even
when you’re not around.

Giving feedback isn’t always easy, especially when it’s improvement-focused
and touches on areas the other person needs to work on. It takes thought, care,
and practice. Even with careful preparation, it can feel risky because you never
know how the other person will respond. No wonder so many tech leads avoid it,
putting it off until it’s absolutely necessary! But delaying improvement feedback
just because it’s uncomfortable means missing an opportunity to help someone
grow. It also increases the risk of the situation escalating if the behavior isn’t
addressed early. I cover this in more detail in the section “Understanding the
Five Principles of Good Feedback” on page 117.

This chapter is here to make giving and receiving feedback less intimidating
and give you practical ways to use it effectively.

How to Get Useful Feedback from Your Team

Getting useful feedback from your team isn’t easy. It takes effort because it
involves people being open, risking vulnerability, and possibly stepping into
conflict. These are uncomfortable dynamics for most people, and in tech environ-
ments, where the focus often leans heavily on logic and execution, they can feel
especially unfamiliar. Add the authority piece that comes with being a tech lead,
and it’s 10 times harder.

When it comes to positive feedback, people often assume you don’t need it.
“Of course you’re doing a good job,” they think. “That’s why you’re leading the

UNLOCKING THE POWER OF FEEDBACK | 109

team.” They don’t realize how valuable a simple acknowledgment can be for your
motivation.

Improvement feedback is even trickier. People are often hesitant to share it
with their tech lead because they’re not sure how you’ll react, or they worry there
could be negative consequences for them. Or sometimes, they just don’t know
how to give feedback in a helpful way.

If you want feedback that helps you grow, whether it’s encouragement or
constructive critique, you need to make it happen. Build trust with your team,
show them how valuable their input is, and guide them on how to give feedback
that’s actionable.

In this section, I’ll share simple, practical strategies you can apply immedi-
ately to get the kind of feedback that makes a difference.

HOW TO ASK FOR FEEDBACK

The way you ask for feedback has a huge impact on what you get back. If
you want feedback that’s helpful and actionable, you need to put effort into the
process and prepare for it. The key is to be clear, specific, and intentional about
what you’re asking for.

Start by being straightforward about the areas where you need input. Asking
vague questions like “Do you have any feedback for me?” often leads to vague
answers. Instead, focus on something concrete: “I’ve been working on improving
my feedback skills. What do you think I could do to improve further?” or “I’m
struggling with delegating effectively. How do you think I’m doing?” When
you’re honest about what you’re working on, it signals to your team that you’re
open to feedback, and removes the awkward guesswork about what they think
you need to improve.

If you’re unsure about what specific area to focus on, you can ask for help
identifying blind spots: “What’s one thing I should start doing as a tech lead?” or
“What’s one thing I could do to better support the team?” These open-ended but
targeted questions give people room to offer insights without feeling pressured.

To make feedback even more specific, use the 1-to-10 scaling system. For
example, ask, “On a scale of 1 to 10, how good do you think I am at giving
feedback?” If they rate you a 10, ask why: “What am I doing that makes you think
I’m a 10?” If they give a lower number, ask what’s missing: “What do you think
I need to work on to reach a 10?” The number itself doesn’t matter; it’s all about
the conversation it triggers. People find it easier to share their thoughts when
they can anchor them to a scale, and it helps you pinpoint actionable steps for
growth.

110 | LEVELING UP AS A TECH LEAD

Who you ask for feedback is just as important as how you ask. Don’t limit
yourself to one group; seek input from everyone around you. You want to make
sure you are getting input from both people who challenge you and those who
cheer you on. Your team members can offer valuable insights about your day-to-
day interactions, stakeholders can provide a broader perspective on how your
leadership is perceived, and mentors can give you strategic advice.

When to ask also matters. Don’t surprise people with feedback requests.
Give them time to think. For example, mention in your one-on-ones on a given
week that you’d like to have a feedback session next week, and share the topics
you’d like their input on. Sending an email in advance can also help: explain why
their feedback matters to you, outline the areas you want to discuss, and remind
them to prepare. Avoid pulling people into an impromptu meeting with a vague
“I just wanted to get some feedback.”

Another good moment to ask for feedback is during offboarding. When
someone is leaving the team, whether for a new role, a different company, or
even just an internal move, they’re often more reflective and more willing to
share open, honest observations. Use that window to ask what worked well, what
frustrated them, and how you showed up as a leader. A thoughtful offboarding
conversation can surface insights you may not hear otherwise and help you
improve the environment for the rest of your team.

Finally, treat feedback as a priority by scheduling it properly. Block time on
their calendar, and include a note explaining the purpose of the meeting and the
specific areas you’d like to discuss. This shows that you value their input and sets
the tone for a productive conversation. A simple touch like this can make all the
difference in getting the feedback you need to grow.

Asking for feedback intentionally creates the conditions for honesty, thought-
fulness, and trust.

HOW TO RECEIVE FEEDBACK

The feedback, both positive and constructive, starts flowing in. Now what? How
you receive feedback matters just as much as how you give it. In fact, it sets the
tone for how others approach feedback in your team. If you want people to be
open to feedback and grateful for it, you need to model that behavior yourself.

Start with gratitude. Whatever feedback you’re hearing, whether you like
it or not, remember that someone has put effort into sharing it with you. A
simple “Thank you for taking the time to share this with me” goes a long way.
Acknowledging feedback doesn’t mean you have to agree with it; it simply shows
respect for the effort and the intention behind it.

UNLOCKING THE POWER OF FEEDBACK | 111

Next, validate the feedback. This means making sure you understand it fully.
Ask clarifying questions like “Let me see if I got this right. Are you saying
that…?” or “What do you mean by that?” If the feedback is vague or unclear, ask
for specific examples: “Can you give me an example of when this happened?”
Context is everything when it comes to feedback, and understanding the specifics
will help you decide how to act on it.

One time, I saw a tech lead dive headfirst into a complex conflict because
she assumed what someone’s feedback meant and jumped straight to action
instead of taking the time to dig deeper. A team member had approached her
with feedback: “I think you should code more as a tech lead.” She took it to heart,
immediately apologized, and started explaining herself. She then spent time
reworking her schedule to increase her coding hours. But despite the adjustment
and all the effort she put into it, the same feedback came up again from the same
person in their next session.

This time, instead of rushing to fix it, she dug deeper: “Why do you feel that
way?” The response was revealing: “Because my previous tech lead used to code
way more.” She pressed further, asking, “How do you think me coding more
would help you or the team?” The answer caught her off guard: “I don’t know,
but you asked for an area of improvement, and this is what I came up with.”
Finally, she asked, “How much more coding do you think I should be doing?”
The team member replied, “At my last company, my tech lead knew every piece
of the code and even coded overtime.”

That’s when it hit her. The problem wasn’t that she wasn’t coding enough;
it was a misalignment of expectations about her role as a tech lead. By rushing
to action, she had been trying to solve the wrong problem. So, she changed her
approach. She took the opportunity to explain what the tech lead role entailed
at this company, how it differed from what he’d experienced before, and why
coding wasn’t her primary responsibility. She also shared the many other tasks
on her plate that didn’t allow her to code as much as the rest of the team. The
team member thanked her for taking the time to clarify, and the feedback never
came up again.

This story highlights the importance of validating feedback before reacting
to it.

Think about how you approach architectural decisions or feature requests.
You’d never jump in and start building something based on a vague prompt;
you’d probably ask questions, clarify goals, and make sure you understood the

112 | LEVELING UP AS A TECH LEAD

problem first. The same principle applies here: asking clarifying questions helps
you understand the real concern and respond in a way that’s thoughtful and
aligned with the actual issue.

Let’s explore some common scenarios and how to handle them:

When positive feedback isn’t new
If someone tells you something you’re already known for, something
you’re a natural at, or one of your commonly recognized strengths, like
“You’re great at facilitating meetings” or “You’re great at breaking down
complex problems for the team,” don’t just brush it off. Instead, dig
deeper: “Why do you think it’s important for me to keep doing this?”
or “How does this action help you or the team?” Even familiar positive
feedback can provide valuable insight into the impact of your strengths and
reinforce behaviors worth continuing.

When you don’t like what you hear
It’s natural to feel defensive when you receive feedback that stings or con-
tradicts your self-perception. For example, someone might say, “You come
across as dismissive in meetings.” But you might not see yourself that way
at all; you might feel like you’re always encouraging input and exploring
multiple perspectives. Comments like this can catch you off guard, and
your instinct might be to explain yourself or push back.

But resist that urge. Instead, stay curious. Ask clarifying questions like,
“Can you tell me more about this?” or “Could you give me an example of
this behavior?” Even if you don’t agree with the feedback, understanding
the perspective behind it can be incredibly valuable. There may be a gap
between how you see yourself and how others experience you, and that’s
exactly where valuable learning can happen.

Another common example that can trigger defensiveness is when
someone gives you feedback about something you said or joked about that
made them uncomfortable.

Let’s say you made an inappropriate joke that didn’t sit well with some-
one on your team. They let you know it made them feel uncomfortable.
It’s tempting to respond with “That’s not what I meant!” or “It was just
a joke.” But doing that invalidates their experience and shuts down the
conversation.

UNLOCKING THE POWER OF FEEDBACK | 113

Instead, acknowledge what they’re telling you and own the impact. You
might say, “I hear you. I’m really sorry it came across that way. It wasn’t
my intention, but I understand it made you uncomfortable. I’ll be more
mindful next time.”

In moments like these, your intention doesn’t matter as much as the
impact. You don’t need to defend yourself; just take the feedback seriously,
thank them for raising it, and commit to doing better.

When you’re unsure how to react
They just throw some raw, unstructured, or completely unexpected feed-
back at you, like “I think you handled that situation really badly.” It might
come out of nowhere, catch you off guard, or be hard to make sense of in
the moment.

You can’t always control how or when feedback is delivered, but you
can control how you respond. In this case, it’s OK to say, “I need some
time to think about this. I’ll come back to you.” This shows that you take
the feedback seriously and gives you the space to process it without rushing
into a reaction.

During the feedback session, avoid interrupting the person sharing
their thoughts. If you have questions, jot them down and ask them once
they’re done.

Remember, receiving feedback doesn’t mean you have to agree with every-
thing. What matters most is staying open and curious and making an effort
to understand the other person’s perspective. You don’t have to act on every
piece of feedback, but by listening thoughtfully and engaging in a meaningful
conversation, you’ll build trust and encourage others to continue sharing their
insights with you.

WHAT TO DO WITH THE RECEIVED FEEDBACK

To make the most of it, all feedback should be tracked and documented. This
isn’t just helpful for performance reviews; it’s also a powerful way to track your
progress over time. It allows you to see how others perceive your growth and
areas of improvement.

One of the simplest methods I recommend is creating an online document
titled My Feedback. Use this to record every piece of feedback you receive, includ-
ing the context, who gave it to you, and the date. Keep it easily accessible so
you can revisit it regularly and reflect on your journey. Personally, I believe it’s
best if you take the notes yourself during feedback sessions, even in a remote

114 | LEVELING UP AS A TECH LEAD

environment (small comments that will help you remember what’s important;
you don’t need the whole transcript). While some prefer using AI assistants to
transcribe conversations, I find this can make the exchange feel less personal and
even inhibit open dialogue. Plus, knowing you’re being recorded might make
some team members hesitate to speak freely. Always ask your team what they’re
comfortable with before introducing tools like this.

Once you’ve collected feedback, the next step is to analyze it. Start by inspect-
ing the feedback to identify what’s useful. Ask yourself, “What’s new informa-
tion?,” “What feedback has been repeated?,” “What can I directly apply?,” and
“How valuable is this to me and my goals?”

Then, refine it into something actionable. Feedback like “You need to
improve your communication” is too broad to act on. Look for patterns or ask
clarifying questions to get to the root behavior. Maybe it’s “You tend to speak too
quickly in meetings” or “You don’t summarize decisions before moving on.” The
more specific you get, the easier it is to take meaningful action.

From there, make a plan. For areas you want to improve, define what success
looks like and outline next steps. That could mean adjusting a habit, practicing a
skill, or setting up new feedback loops. Don’t hesitate to ask for support if you’re
unsure how to implement the changes, from a peer, mentor, manager, or even
an AI assistant. For example, you can prompt “Help me create a weekly plan to
improve this feedback.”

This does not mean you have to act on every piece of feedback. The goal is
to identify the insights that resonate most and create a plan of action. Just make
sure to close the loop with the person who gave it, especially if they took the
time to share something thoughtfully. Acknowledge their input and share why
you’re choosing not to act right now, whether it’s due to prioritization, context,
or a different perspective. Leaving feedback unaddressed without explanation
can unintentionally signal that their input doesn’t matter, which can discourage
future feedback.

After applying the feedback, it’s essential to follow up. Monitor your progress
on the areas you’re working to improve and document what’s working or what
still needs adjustment. Schedule a follow-up conversation with the person who
gave you the feedback to check how you’re doing. An AI assistant tool can help
you draft a plan for how to follow up, prepare questions, or even simulate a
response to difficult feedback so you can practice. Prompt: “I received feedback
that I tend to interrupt people in meetings. Can you help me come up with
three questions to ask in a follow-up one-on-one and a short message to open

UNLOCKING THE POWER OF FEEDBACK | 115

the conversation?” This creates accountability and shows your commitment to
growth.

Whether you’re giving or receiving feedback, keep in mind that, as a tech
lead, your actions set the tone for your team. How you handle feedback demon-
strates to others how they should approach their own growth. By investing in
this skill, you not only improve yourself but also create a culture that values
continuous learning and development.

How to Give Useful Feedback to Your Team

Great feedback is all about balance: a mix of improvement-focused feedback
and positive feedback. It’s not just about pointing out where someone needs to
improve or praising them when they’ve done well; it’s about doing both consis-
tently and with purpose. And just as trust is vital when receiving feedback, it’s
equally important when giving it. Trust grows when team members know you’re
honest with them, celebrating their strengths while also being brave enough to
highlight areas for growth.

Let’s be clear: balanced feedback doesn’t have to follow the “feedback sand-
wich” approach. Personally, I find it inefficient. Wrapping constructive feedback
between two layers of praise can dilute the message and often comes across as
insincere. In practice, it tends to confuse more than it helps.

If you focus only on improvement-focused feedback, your team may begin to
resent you. They might start seeing you as someone who only delivers bad news.

On the other hand, if you give only positive feedback, it can erode trust
as well. People know they aren’t perfect, and when they’re not given areas to
improve, your praise begins to feel insincere, or they might question your ability
to observe the work they’re doing. Over time, they might think, “Sure, I know
I’m good at running retrospectives, but what should I work on?” Funny enough,
too much positive feedback can actually hurt your credibility as a leader.

There’s no magic formula for how much positive versus improvement-
focused feedback you should give; it’s not about numbers or metrics. Instead,
it’s about developing awareness of your tendencies and trying to find a balance
that works for you and your team. Do you tend to focus only on what needs to be
improved? Or are you also regularly acknowledging what’s going well?

116 | LEVELING UP AS A TECH LEAD

For example, I used to focus almost exclusively on improvement-focused
feedback. I was always on the lookout for areas of improvement and didn’t hesi-
tate to share them. Then, during a performance review, the structure required
me to provide positive feedback as well. The positive impact it had on my team
was undeniable. I realized how much people valued hearing what they were
doing well. From that moment, I started giving positive feedback more often and
with the same intentionality as corrective feedback: tracking it, providing clear
examples, and delivering it at the right time.

If you’re someone who avoids constructive feedback because you’re worried
about how it might be received, start small. Pick one person and practice having
those conversations. On the flip side, if you find yourself primarily delivering
constructive feedback, challenge yourself to throw in some encouragement or
praise, even if it feels obvious. It might be as simple as saying, “Great job
facilitating that retrospective. The way you handled the conflict was spot on.”

Once you experience the value of stepping outside your comfort zone,
whether it’s giving constructive feedback or positive feedback, you’ll see the
difference it makes in your team. For me, it became impossible to go back.

Balanced feedback also means ensuring that everyone on your team receives
it equally. Avoid falling into the trap of giving all your praise to certain team
members while neglecting others. Favoritism, even if unintentional, can create a
toxic dynamic and make people feel undervalued.

In this section, I’ll explore the core principles of good feedback and then dive
into both positive and constructive feedback, exploring their unique challenges
and incredible value when done right.

UNDERSTANDING THE FIVE PRINCIPLES OF GOOD FEEDBACK

Most people think that useful feedback is all about telling someone how to
change their behavior. In my experience, advice is just a small part of what
makes feedback truly effective. Figure 5-1 shows the five key elements that make
feedback useful: giving it at the right time, being as specific and clear as possible,
staying honest, and making it a continuous practice. In this section, I’ll break
down each of these criteria, with real examples and practical tips on how to apply
them effectively.

UNLOCKING THE POWER OF FEEDBACK | 117

Figure 5-1. Five principles of good feedback

1. Good feedback is timely

The value of feedback diminishes the longer you wait to give it. The more time
that passes, the less relevant and impactful it becomes. Yet, many tech leads hold
off, waiting for what they think is the “right moment,” which often ends up being
during performance reviews. But by then, feedback like “The way you handled
that client conversation six months ago was great” is far too stale to make a
meaningful impact.

Also, delaying constructive feedback can lead to long-term consequences.
Instead of addressing issues promptly, frustrations build up, and when the feed-
back finally comes out, it’s often wrapped in passive-aggressive comments like
“Should we just put Chris in charge of all meetings, since he talks the most
anyway?” or blunt, hurtful remarks like “Why do you keep making the same
mistake?” By this point, the problem feels bigger, harder to address, and more
damaging to the relationship.

Here’s a common scenario: imagine you’ve been silently hoping a team
member will improve their code quality. Instead of addressing it early on, you
drop hints in retrospectives or make vague comments like “We need to improve
our testing.” Months go by, and the same issues persist. Now you’re forced
into a difficult conversation: “Your tasks consistently come back from QA with
bugs, and this has been happening for months. We need to open a performance
improvement process.”

At this point, the team member is likely shocked. “Why didn’t you tell me
sooner?” they’ll ask, and they’d be right to. Early, clear feedback could have given
them the chance to adjust their habits, avoid escalation, and regain your trust.

118 | LEVELING UP AS A TECH LEAD

I’ve seen team members turn things around completely once they understood
the problem and felt supported in working on it. The earlier you speak up, the
more manageable and less painful the issue becomes, for both of you.

Don’t miss the chance to give feedback when it’s fresh and relevant, whether
it’s positive or constructive. Aim to deliver it soon after the moment occurs,
ideally the same day or within a few days. If strong emotions are involved, give
the situation space to settle, but don’t let it slip away entirely. Acting while the
context is still top of mind ensures your words have greater clarity and impact.

2. Good feedback is specific

The more specific your feedback, the more useful it becomes. Specific feedback
gives people a clear direction for improvement and provides tangible points to
address. It focuses on facts, which reduces the chance of defensive reactions and
shifts the conversation toward solutions rather than debates.

Let’s take a common situation: addressing code quality with a team member.
A vague comment like “Your code is full of bugs” might seem like feedback, but
it’s far from effective. Instead of leading to improvement, it’s likely to trigger
defensiveness. The other person might respond with “That’s not true; most of
my code passes QA,” and they’d have a valid point if you’re referring only to
their latest task. Without specifics, they’re left in the dark about what you actually
mean.

Now imagine instead saying, “The task you finished yesterday had missing
tests and bugs that were caught in QA.” This shifts the focus to facts that are
hard to challenge, making it clear which task you’re talking about. It opens
the door for the other person to explain what happened. Perhaps they were over-
whelmed, or it was a type of task they hadn’t handled before. Whatever the case,
being specific transforms the conversation into a productive discussion about
solutions rather than a defensive argument about their overall performance.

Specificity also makes feedback fairer. In performance reviews or promotion
discussions, vague generalizations can introduce implicit bias or lead to unfair
evaluations. By grounding your feedback in clear, recent, observable examples,
you create a more objective and equitable foundation for assessing performance.
It ensures that everyone is evaluated based on what they’ve actually done, not
assumptions, impressions, or stereotypes.

A general rule: be specific. Never assume people know what you’re referring
to; it’s better to repeat yourself than leave them guessing.

UNLOCKING THE POWER OF FEEDBACK | 119

3. Good feedback is clear

Good feedback is not just about what you say; it’s about how you say it. Even if
your message is specific, it can still fall flat if it’s buried under vague or hesitant
phrasing. Clear feedback means expressing your message directly, without hedg-
ing, downplaying, or confusing the core point.

Let’s consider an example. Instead of saying, “I think you might have said
the wrong thing this morning, and I think it might have happened last week
too…maybe it was a misunderstanding?,” opt for something direct: “This morn-
ing in standup, you said we have to integrate three services, but we need to
integrate only two. I was concerned because I had shared the correct information
with everyone yesterday, and it may have caused some confusion.” The second
version leaves no room for ambiguity; it pinpoints the issue, explains the impact,
and sets the stage for a constructive conversation.

Avoid vague qualifiers like “maybe,” “I think,” or “sort of.” They dilute your
message and make it easier to ignore.

4. Good feedback is honest

Insincere compliments can do more harm than good. If you have nothing con-
structive or genuine to say, don’t force yourself to come up with something.
People can tell when feedback isn’t sincere, and it makes people trust you less.

When giving feedback, focus on being kind, not just nice. Nice might mean
telling a developer “Great job on the feature!” when you know the code wasn’t
up to the team’s usual standards. Being kind means acknowledging their effort
but addressing the issue honestly: “I appreciate the effort you put into delivering
this feature quickly. However, the implementation could use some improvement,
especially in terms of readability and edge case handling. Let’s sit down and go
through it together.”

Kindness encourages growth and respect, while superficial praise only delays
improvement and undermines credibility.

5. Good feedback is continuous

Feedback doesn’t end when you give it. Tracking it is how you make it stick and
see its impact.

Create individual notes for each member, jotting down the feedback you’ve
given, the date, and any examples of progress or patterns that keep showing up.

Follow-up is where the magic happens. If the behavior improves, acknowl-
edge it. Positive reinforcement goes a long way. If it doesn’t, don’t just let it slide.

120 | LEVELING UP AS A TECH LEAD

Bring it up again with clear examples, and work together on the next steps. The
intention is making sure it actually leads to real, lasting change.

Mastering these five principles, timely, specific, clear, honest, and continu-
ous, is what turns feedback from a vague suggestion into a meaningful catalyst
for growth. Whether you’re praising a team member or helping them course-
correct, these principles ensure your message lands with clarity and purpose.

HOW TO GIVE POSITIVE FEEDBACK

Most tech leads don’t give enough positive feedback because they assume it’s
obvious. Saying things like “That was an awesome presentation, very clear and to
the point,” “I really liked how you handled that conversation,” or even a simple,
“I really appreciate you jumping in to help Ana with that bug yesterday” just
doesn’t come naturally. Tech leads often think, “They already know they’re good
at that” or “Someone else must have told them,” completely underestimating
the value of these words. But what if that “someone else” is thinking the same
thing? Unlike improvement-focused feedback, which highlights areas for growth,
positive feedback reinforces what’s working well and motivates people to keep
doing it.

A lot of people associate feedback only with criticism or corrective feedback,
assuming positive feedback isn’t necessary. Meanwhile, the techies I work with
often tell me how much they crave their tech lead’s acknowledgment, but they
rarely get it. Positive feedback seems to show up only when something huge
happens like finishing a project early, during a retro, when going above and
beyond or staying late to fix an incident. And even then, it’s often just a quick
“Great job.”

People need encouragement to stay motivated. They need proof they’re head-
ing in the right direction. Positive feedback is your chance to provide that, and
it’s just as important as constructive feedback. Genuine appreciation strengthens
relationships: people feel more connected to those who recognize their efforts.

And positivity is contagious: when someone feels seen and valued, it lifts
their mood and often spreads to others. A team that regularly celebrates wins,
big or small, tends to be more engaged, collaborative, and resilient. It can be
as simple as adding a kudos column to your retrospective board where team
members can recognize each other’s contributions. The emotional impact of
positive feedback directly affects how people show up at work.

The key is to treat it with the same level of effort and intentionality. Apply the
same five principles I introduced earlier in the chapter to positive feedback, and
you’ll see the difference it makes:

UNLOCKING THE POWER OF FEEDBACK | 121

Timely
Positive feedback is most valuable when it’s given as soon as possible.
Don’t wait six months to mention something great they did during a
performance review. A simple “Awesome presentation today” or “I really
appreciated how you handled that situation yesterday” during a one-on-one
can have a massive impact.

It doesn’t even have to be a formal conversation. Imagine someone
nails a presentation. Send them a Slack message: “Loved how you presen-
ted the strategy using those visual diagrams. Great job showcasing the
impact of our work!” A short, timely comment like this can make a big
difference.

Specific
Vague praise like “You communicate well” is nice, but it doesn’t help
someone understand their strengths. Instead, pinpoint exactly what you
appreciated: “The way you handled that tough conversation with the client
the other day was impressive. Staying calm and finding a solution they
agreed to really stood out.” Specific feedback not only helps them see their
strengths but also shows that you’re paying attention.

Clear
Clarity adds weight to your feedback. Instead of saying, “I feel like you’re
ready to lead this initiative,” connect it to specific examples: “The way
you handled this task, dealing with dependencies, aligning the team on
strategy, and delivering on time, shows you’re the perfect fit to take over
this initiative.” Clear feedback leaves no room for doubt and boosts their
confidence in taking on new challenges.

Honest
More positive feedback doesn’t mean you should force it or say things you
don’t believe. If you don’t genuinely have something good to say, don’t say
anything at all. People can see right through insincere compliments, and it
will damage your credibility.

That said, if you put effort into noticing what people are doing, I
am sure you’ll find plenty of opportunities to praise them authentically.
Everyone has things to be praised about also.

Praising effort, not just results, is also a powerful strategy, especially
for team members who may not be the highest performers yet but are
putting in real work to grow. Recognizing behaviors like perseverance,

122 | LEVELING UP AS A TECH LEAD

initiative, or thoughtful collaboration can reinforce those habits and keep
people motivated. For example: “I really appreciate the time you’ve been
investing in understanding the new system. It’s clear you’re putting in the
effort to improve.”

Continuous
Giving positive feedback isn’t a one-and-done thing. Just like constructive
feedback, you need to track it and reinforce it over time. If someone consis-
tently demonstrates a skill you’ve praised, let them know you’re noticing
their growth: “You’ve been so consistent with your communication skills
lately. It’s making a big difference in how the team collaborates.”

Even when applying these principles, many people struggle to come up with
the right words for positive feedback. Here are a few examples to help you get
started:

• I really appreciate how you structured that proposal; it was so clear and•
actionable.

• Thanks for stepping in during the incident yesterday. You kept things•
calm and organized.

• Pairing with the new joiners over the past two weeks has really helped•
them get up to speed quickly.

• Your documentation for the new process saved me so much time; thank•
you for putting that together.

• You’ve been doing a fantastic job leading standups; everyone’s much more•
aligned lately.

• You consistently notice edge cases that others miss; it’s a huge asset to our•
team’s quality.

Keep in mind that how you deliver positive feedback matters too. While
public praise can be a great motivator, in some cases it may unintentionally
create discomfort or perceptions of favoritism. Some people simply prefer to
receive recognition in private. Take a moment to consider the individual and the
context: what’s motivating for one person might feel awkward or alienating to
another. When in doubt, tailor your message to what will land best with that
person.

Positive feedback is one of the simplest, most effective tools you have as
a tech lead to build motivation, confidence, and trust on your team. It doesn’t

UNLOCKING THE POWER OF FEEDBACK | 123

require a big gesture, just your attention and intention. Make it a habit. The more
you practice noticing and acknowledging what’s working, the more your team
will feel seen, supported, and empowered to keep improving.

HOW TO GIVE CONSTRUCTIVE FEEDBACK

There’s a natural hesitation that comes with giving constructive feedback. Just
like team members might avoid giving feedback to their tech lead for fear of
repercussions, tech leads often fear how their team members will react. You
might worry about hurting someone’s feelings or damaging the relationship.
And that’s not something to dismiss. How you deliver the feedback matters just
as much as what you say. If handled poorly, even well-intentioned feedback can
cause defensiveness or resentment.

But avoiding the conversation isn’t the solution, especially when the behavior
is repeated. It only makes the problem bigger.

I once had a team member who consistently dismissed suggestions unless
they came from her. Every time someone proposed a new idea, her first reaction
was to poke holes in it, trying to find the flaw, the risk, the reason it wouldn’t
work. The rest of the team noticed, but our tech lead at the time said nothing.
Over time, people stopped speaking up in discussions. They didn’t want to risk
being shut down, myself included.

Culture is not what we say. It’s what we normalize. And in that silence, we
normalized a culture where ideas weren’t safe. By not saying anything, the tech
lead unintentionally reinforced the behavior, and the damage spread.

A lot of tech leads use “I am too busy” as a reason to postpone tough
feedback. But waiting doesn’t save time; it creates more work. In this case, what
could’ve been one honest conversation early on turned into several. The longer
you delay, the more relationships are affected, and the harder it becomes to
untangle the mess.

Some feedback cannot even wait until after. Sometimes, especially when
incorrect information affects the direction of the conversation, you need to step
in right away.

Let’s say someone shares an outdated diagram during a client meeting, and
the discussion continues based on incorrect assumptions. In those cases, it’s
better to gently interrupt: “Actually, it looks like this diagram is outdated. We’ve
made a few changes since it was created. Let me pull up the latest version” or
“We might need to revisit this once we’ve updated it.”

It’s a tricky balance, because while you don’t want to embarrass anyone
in the moment, you also have a responsibility to protect the integrity of the

124 | LEVELING UP AS A TECH LEAD

discussion. In situations like these, it’s OK to step in to correct the information,
especially when the conversation depends on it. What matters just as much is
what you do after: follow up with the person privately. Check in on how they
felt about you jumping in, and discuss how you can handle similar situations
together in the future.

Addressing issues quickly keeps them from snowballing into bigger prob-
lems. It also shows your team that you’re paying attention and that you care
enough to address issues directly.

I’ll go over some strategies that can make delivering constructive feedback
easier.

Start with the five principles of good feedback we covered earlier: timely,
specific, clear, honest, and continuous. If you keep these in mind, you’re already
ahead of most.

Adapt your style to the individual. Understanding the person you’re giving
feedback to is just as important as the content of the feedback itself. Each team
member is different, and every new joiner brings a unique dynamic. Some may
prefer directness; others may need more context or time to process. Pay attention
to their communication style, personality, and experience level, and adjust your
approach accordingly. You can even ask them how they prefer to receive feedback
or which style they prefer.

Another strategy I’ve found invaluable comes from Nonviolent Communica-
tion, discussed in the section “Communicate Effectively” on page 63: focus on
your own feelings. It’s surprisingly effective, and underused. Usually, as adults,
we are not encouraged to talk about how we feel, especially at work. I come from
a culture where discussing emotions isn’t really the norm. But once I saw how
it shifted the tone of difficult conversations, both for me and the other person, I
couldn’t stop using it.

Saying something like “I felt dismissed when you jumped in over me in this
morning’s meeting while I was explaining how the system works” makes it hard
to argue. If they respond with “I didn’t mean to” or “It was just a misunderstand-
ing,” bring the focus back gently: “I understand it wasn’t intentional, but that’s
how it landed for me,” so they’re aware of the actual impact of their actions.

Using a format to structure your message can have a big impact. It helps
you stay focused, reduces emotional ambiguity, and makes your feedback easier
to hear. AI assistants can support you here by offering different mental models
or frameworks, like COIN or SBI. You can ask them to explain each model,

UNLOCKING THE POWER OF FEEDBACK | 125

compare their pros and cons, or help you choose the one that best fits your
situation.

Let’s say you’re working through a tough moment or trying to clarify your
thoughts before a conversation. You might prompt an AI assistant with “Here’s
what I want to say. Can you help me express it using the SBI framework?”

SBI is one of the most practical and widely used approaches for giving clear,
actionable feedback.

The SBI model was originally developed by the Center for Creative Leader-
ship, and it stands for Situation–Behavior–Impact. This method helps keep feed-
back grounded in facts, making it easier for the recipient to hear and reducing
the likelihood of defensiveness.

Here is how the SBI model works:

Start with the situation
Describe the specific context where the behavior occurred. Be precise about
when and where it happened and who was involved. This clarity ensures
the recipient understands exactly what you’re referring to.

Move to the behavior
Explain what the person did, focusing only on observable actions. What
exactly happened? Avoid making assumptions about intentions or motiva-
tions; stick to what you saw or heard.

Finish with the impact
Share how the behavior affected you, the team, or the work. How did this
impact you personally (what you thought and/or felt)? How did it affect
the team, project, or organization (e.g., confusion, delays, morale)? Be clear
and specific about why this matters.

Let’s take as an example one of the hardest scenarios for tech leads: address-
ing a senior developer’s negative behavior. Imagine a senior team member
constantly interrupts others in meetings or dismisses their ideas. Over time,
the team disengages, feeling undervalued and unmotivated. This situation is
challenging because the senior developer might not realize the impact of their
actions. You might also hesitate to address it, either out of fear of damaging the
relationship or because their expertise makes it feel like you’re questioning their
authority.

Using the SBI model, you can structure your feedback like this: “During
yesterday’s planning meeting, I observed that you interrupted several team

126 | LEVELING UP AS A TECH LEAD

members when they were sharing their thoughts. This made me uncomfortable
because it affected the flow of the discussion. I also noticed that after each inter-
ruption, some team members seemed less engaged and hesitant to contribute
further.”

This kind of feedback is clear, fact-based, and leaves space for the person
receiving the feedback to reflect and respond constructively.

This message can be broken down using the SBI model, mapped onto the
situation, behavior, and impact, as follows:

Situation
During yesterday’s planning meeting...

Behavior
I observed that you interrupted several team members while they were
sharing their thoughts.

Impact
This made me uncomfortable because it affected the flow of the discussion.
I also noticed that after each interruption, some team members seemed
less engaged and hesitant to contribute further.

Once you’ve delivered the feedback, give the person time to process it. Not
everyone can immediately dive into next steps. Pay attention to their reaction and
decide whether to continue the conversation now or follow up later.

When you’re ready to move forward, shift the focus to understanding the
reasoning behind the behavior. Was it intentional? A misunderstanding? Or is
there an external factor affecting their performance? Use a coaching approach
to help them identify solutions. Ask open-ended questions like “How do you
think we can address this?” or “What steps do you think would help?” People are
more likely to commit to a plan if the ideas come from them. Only step in with
suggestions if they ask for your advice, and even then, let them choose the option
that feels most achievable to them.

By delivering feedback promptly, focusing on one topic at a time, and struc-
turing it with tools like the SBI model, you create a constructive environment for
growth. It makes the feedback more digestible for the receiver and reduces the
chances of defensiveness.

When it comes to constructive feedback, delivering it once isn’t enough.
Feedback is only as effective as the follow-up that ensures it’s addressed and
acted upon. After you’ve had the initial conversation, your work isn’t over. You

UNLOCKING THE POWER OF FEEDBACK | 127

need to track how the situation develops, observe changes in behavior, and
decide whether the feedback needs to be reinforced or adjusted.

The simplest way to ensure you’re following up effectively is to track the
feedback you give. Create a system, like an online note for each team member,
where you record what feedback you delivered, when you delivered it, any specific
examples discussed, a timestamp, the actions you agreed on, and what has
happened since. This serves as a record you can revisit over time, helping you
see if progress has been made or if patterns persist. Make sure to store this
information somewhere private and secure.

For example, if you’ve addressed issues with late arrivals to standups, track
their attendance over the next few weeks. Did the feedback lead to improved
punctuality, or are there still recurring issues? Adding specific examples, such
as “Arrived on time for every standup this sprint” or “Late three times this
week,” allows you to keep the discussion grounded in facts during any follow-up
conversations.

Likewise, if the conversation was about code review engagement, you might
note: “Reviewed 5 PRs this sprint and left constructive comments on each.” Or if
the topic was about responsiveness in tickets: “Replied to support queries within
24 hours consistently.”

Regardless of the outcome, following up is mandatory to ensure your feed-
back is not being ignored and is being acted on. If the behavior improves, use
positive reinforcing feedback to acknowledge the progress. For example, you
could say, “I noticed you’ve been consistently on time for standups this sprint. I
really appreciate the effort you’ve put into this. It makes a big difference for the
team.” Recognizing their efforts reinforces the desired behavior and motivates
them to continue.

If the behavior hasn’t improved, it’s time to revisit the feedback using spe-
cific examples to re-address the issue. Here’s where the tracking comes in handy.
For instance, “I noticed you were still late three times this week. Let’s discuss
what didn’t work and what worked since our last conversation.” By tying the
follow-up to observable patterns, you make it clear that the feedback is ongoing,
not a one-time event.

Feedback isn’t a one-and-done process. As you track and follow up, continue
to adjust your approach as needed. If the same issue persists, consider exploring
deeper reasons behind the behavior. Is there an external factor affecting their
ability to change? Are they unclear on the expectations? Or do they need addi-
tional support to succeed? Asking questions and revisiting the conversation helps

128 | LEVELING UP AS A TECH LEAD

ensure they understand the importance of the feedback and have the tools to
address it.

On the other hand, if the behavior improves and becomes consistent, you
can begin to phase out the need for follow-ups, focusing instead on recognizing
and reinforcing their strengths. The ultimate goal is to create a culture where
feedback leads to growth, not just temporary fixes.

Constructive feedback only achieves its purpose when it’s followed through.
Without tracking and follow-up, you risk creating confusion or leaving unre-
solved issues. Following up demonstrates that you’re invested in their growth
and that the feedback wasn’t just a passing comment but a shared commitment
to improvement.

Overcoming Common Challenges

Even with a solid understanding of how to ask for feedback, deliver constructive
feedback, and apply feedback principles effectively, challenges will still appear.

Tech leads often find themselves facing recurring issues like running out of
feedback to give, struggling to get their team to provide honest and constructive
input, or building a feedback culture within the team. These are normal pain
points you will encounter in the process of feedback.

Each of these challenges requires its own strategies to address. In the follow-
ing sections, I’ll break them down one by one and share practical, actionable
approaches to help you navigate these tricky situations.

“I HAVE NO FEEDBACK TO GIVE”

Every single day offers opportunities for feedback; you just have to pay attention.
Once you become intentional about looking for it, you’ll start noticing things.
The truth is, everyone has strengths to be recognized and areas where they can
grow. Your role as a tech lead is to observe, acknowledge, and act on these
moments.

If you’re struggling to find feedback, start by reflecting on the behaviors
that trigger strong reactions in you. Are there moments that frustrate you or
make you uncomfortable? For instance, maybe in planning sessions, the product
manager always asks, “Who wants to work on this ticket?” and the same few
people always jump in, while others rarely volunteer and end up with little to do.
Over time, this kind of imbalance can lead to tension or disengagement within
the team, and it creates more work for you as those left out frequently ask for
new tasks mid-sprint. Even just opening the conversation with the manager by
pointing this out can lead to a more inclusive task assignment process. Together,

UNLOCKING THE POWER OF FEEDBACK | 129

you might explore new approaches that ensure everyone gets equal opportunities
to contribute.

At the same time, take note of the positive actions that might otherwise
go unnoticed. Maybe a team member consistently takes on tasks no one else
volunteers for, or someone always steps up to help a colleague who’s stuck. Even
when it’s part of their role, these efforts deserve recognition. Highlighting these
actions shows your team that you value and appreciate their contributions, no
matter how small they may seem.

To ensure you always have meaningful feedback to give, start keeping a
record of your observations. Jot down what you notice: when and where some-
thing happened, what was said or done, how it made you feel, and the impact it
had on you, the team, or the clients. This helps you stay prepared for feedback
sessions by building a history of examples. Over time, this makes it easier
to follow up on positive behaviors you want to reinforce or areas that need
improvement.

Once you start paying attention and documenting what you see, you’ll
quickly realize you’re never out of feedback. The key is to look, listen, and be
intentional. There’s always something to acknowledge, whether it’s to celebrate
progress or address challenges.

“I CANNOT GET MY TEAM TO GIVE ME CONSTRUCTIVE FEEDBACK”

Getting constructive feedback from your team can be challenging. Fear of your
reaction, worries about damaging relationships, or concerns about how their
honesty might affect their growth often hold people back. Building trust is
essential, as discussed in Chapter 3. Beyond that foundation, here are a variety
of strategies you can use to encourage your team to provide you with useful
feedback:

Display vulnerability
When it comes to feedback, vulnerability can be your most powerful tool.
Openly admit areas where you know you can improve. For example, say,
“This is a topic where I know I have room to grow. Do you have any ideas
on what I should start or stop doing to get better at this?” When you show
that you’re open to improvement, it makes it easier for your team to be
honest, as you’ve already done the hard part: acknowledging the area of
improvement.

130 | LEVELING UP AS A TECH LEAD

Use structured input
Share a list of role expectations and ask team members to highlight three
things you’re doing well and three areas for improvement. This clear
framework makes it easier for them to provide actionable feedback.

Focus on specific situations
Reflecting on specific moments that didn’t go as planned is a highly effec-
tive way to encourage constructive feedback. For example, you can ask,
“What do you think about the way I handled that situation? What could
I have done differently?” By acknowledging that the situation didn’t go
smoothly, you’re signaling to your team that you’re open to critique and
actively seeking to improve.

This approach reduces the pressure on them to identify flaws, as the
example is already on the table. If their response is overly positive despite
a clear misstep, it might indicate a lack of trust or hesitation to deliver
tough feedback, which is a sign that there’s more work to do in building
psychological safety within your team.

Ask for anonymous feedback
Provide an alternative channel for feedback, like an anonymous form. This
can encourage those who feel hesitant to speak up directly to share their
insights. To make these forms truly effective, include open-ended, thought-
ful questions that invite reflection and specificity. For example: “What’s
one thing I should start doing to better support the team?”

That said, anonymous feedback has its limitations. You can’t easily
follow up to clarify or dive deeper. In small teams, it’s often possible to
guess who submitted the feedback, which can erode trust. And if overused,
it might reinforce a culture of avoidance rather than openness. Use it as a
supportive tool to get people sharing but not as a substitute for a proper
feedback conversation.

Go first
There’s often that awkward pause at the start of a feedback session: “Do
you want to go first?” “No, you go.” Instead of waiting it out, take the
lead. Just say, “I can go first, if it’s the same to you.” Starting with your
own feedback, especially something thoughtful and focused on growth, can
make the other person feel more comfortable and open to sharing feedback
with you in return.

UNLOCKING THE POWER OF FEEDBACK | 131

Ask targeted questions
Sometimes the key to unlocking useful feedback is to make it as easy as
possible for your team to respond. Frame your request in specific, manage-
able terms, such as “What is one thing I should improve at?” or “What is
one thing I can do to better support you?” Another effective question is
“What is one thing I should start doing as a tech lead?” These focused and
direct questions simplify the process for your team, guiding their thoughts
and making it less intimidating to share feedback.

Don’t call it feedback
Sometimes, the word feedback itself can feel intimidating, especially in for-
mal settings. Instead, approach the topic casually by asking about specific
events. After a challenging conversation, you might say, “How do you think
that conversation went?” Similarly, following a presentation, you could ask,
“What did you think about my presentation?” By focusing on the situation
rather than labeling it as feedback, you create a more relaxed and open
environment, encouraging honest and constructive input without the extra
pressure.

Getting useful feedback from your team won’t happen overnight. It takes
consistency, intention, and a willingness to show up vulnerably. These strategies
can help you encourage your team to start giving you constructive feedback more
openly and quickly, but there’s no one-size-fits-all approach. Try them at different
times, with different people. Each individual will respond differently, and it may
take some experimentation to find what works best. What matters is that you
keep trying. When your team sees that you genuinely care about growing, that
you act on what you hear, and that their input has a real impact, they’re far more
likely to speak up.

BUILDING A FEEDBACK CULTURE ON YOUR TEAM

A team that embraces feedback bonds faster because it requires openness and
vulnerability. Constructive feedback speeds up individual growth by providing
clear improvement points. Positive feedback boosts morale, giving team mem-
bers validation and reassurance that builds confidence and motivation.

Without a strong feedback culture, however, teams often fall into stagnation,
misalignment, and quiet frustration. Problems go unspoken, growth stalls, and
trust can quietly erode. Over time, the lack of honest conversations becomes a
bigger blocker than any technical debt.

132 | LEVELING UP AS A TECH LEAD

But even being aware of all its benefits, many developers aren’t fans of
feedback because it can feel uncomfortable and might even put them in a tricky
situation with another team member. Also, proper feedback requires preparation
and time that they just prefer putting into something else.

The strategies in this chapter will help your team feel more comfortable giv-
ing you feedback and make that feedback more useful and actionable. But if you
want to build a true feedback culture, that’s not enough. A strong team culture
requires everyone to be involved: you don’t want feedback flowing only between
you and your team members but also among the team members themselves.

Here are some strategies that can help you to have this multiplying effect:

Start with you
One of the most powerful tools you have to shape your team’s culture,
especially around feedback, is leading by example. It’s not just about telling
people what to do but about showing them every single day. Consistency is
key here. How you handle feedback, the priority you give it, and the effort
you invest all set the standard for what you expect from others.

If you want your team to embrace feedback, start with how you
approach it. Show them what asking for feedback looks like, how to receive
it gracefully, and what to do with it afterward. Apply the same care and
effort when you give feedback, whether it’s positive or constructive.

Let your team see how you incorporate feedback. Share examples of
when a piece of feedback led you to change something, whether it’s how
you run a meeting, communicate an idea, or manage a process, and what
happened as a result.

Build psychological safety
For your team to consistently provide honest feedback, they must feel
psychologically safe. This means creating an environment where they feel
comfortable speaking up, sharing ideas, and expressing their thoughts
without fear of negative consequences. They need to trust that their input
won’t harm their chances of promotion or damage relationships within the
team.

Psychological safety is the foundation for open communication, and
without it, feedback will always be limited or surface-level. I’ll dive deeper
into this critical topic in the section “How to Create Psychological Safety on
Your Team” on page 188, but it’s worth remembering that trust and safety
take time and consistent effort to build.

UNLOCKING THE POWER OF FEEDBACK | 133

Encourage feedback between team members
Feedback shouldn’t flow only between you and your team members; it
needs to happen among them too. For example, when two team members
are in conflict and one comes to you frustrated, don’t take on the problem
as your own. Instead, encourage them to provide direct feedback to the
other person. Help them prepare for the conversation by walking through
what they want to say and how they might say it. Remind them to focus
on the behavior and its impact, not on judging the person. You can even
rehearse the conversation together and help them rephrase statements
using the same principles we’ve covered earlier: be specific, clear, and
honest, and avoid assumptions.

Educate your team on feedback
Your team may not naturally know how to give or receive feedback. Teach
them what useful feedback looks like and share strategies to make it more
effective. Demonstrate the importance of being specific, clear, and honest.
Explain how feedback can help the team grow and improve, not just indi-
vidually but collectively. You can do all this in an open session with your
team about feedback.

Create opportunities to practice feedback
A great way to introduce this practice is through an exercise called Speed-
back. Speedback is a quick, structured way for teams to practice feedback.
I first encountered it during my time at Thoughtworks, and I’ve used it in
every team since.

Speedback is a simple and efficient method for exchanging feedback
among team members. The process involves pairing team members for
four minutes, during which each person has two minutes to give feedback
to their partner. After the four minutes, the pairs rotate, and the process
repeats until everyone has had the chance to exchange feedback with every
other team member. This can be done either face-to-face or remotely using
tools like Zoom breakout rooms.

To ensure the session runs smoothly, block time on everyone’s calen-
dar in advance, including 30 minutes of dedicated preparation time for
them to put together the feedback, and share tips for giving useful feedback
to set expectations. A straightforward structure works best: for example,
team members can share two things the other person should continue
doing and two areas for improvement. Or it can be as simple as one thing:
“One thing I appreciate about working with you is…” and “One area where

134 | LEVELING UP AS A TECH LEAD

I think you could grow is…” If possible, involve an external facilitator to
handle the logistics, such as tracking time and managing transitions, so
participants can focus entirely on the feedback exchange.

It’s important to emphasize that Speedback is just the starting point
for deeper conversations. The goal is to trigger follow-up discussions where
participants can explore the feedback further, share examples, and define
actionable steps. These sessions are particularly useful after completing
a significant milestone, when joining a new team, or during periods of
complicated team dynamics, but I advise you to run them monthly just to
get into the habit.

Make feedback a constant process
As useful as Speedback sessions are to get your team started with feedback,
they are not a replacement for ongoing feedback. Running one session
a month doesn’t mean you’ve established a feedback culture in your
team. To embed feedback into your team’s culture, it needs to happen
consistently and naturally as part of your team’s ways of working. Start
by planning regular Speedback sessions to get everyone comfortable with
giving and receiving feedback. But don’t stop there. Follow up with broader
conversations and encourage the team to keep those discussions alive.

Involve your team in sustaining this process. Ask for volunteers to
help move the initiative forward, whether it’s planning the sessions, track-
ing progress, or scheduling time on everyone’s calendar. When the effort
doesn’t just come from you but also from other team members, people are
often more receptive. It also signals that feedback is a shared responsibility,
not just something pushed by leadership.

If you notice that feedback isn’t happening as often as it should,
address it in your team retrospectives. Reflecting on how feedback is
exchanged is just as relevant and valuable a topic for a retrospective
as discussing how a feature was delivered, since strong feedback prac-
tices directly impact collaboration, alignment, and, ultimately, delivery
outcomes.

Track progress
Like any process, tracking and measuring the success of your feedback
efforts is essential. How else will you know you are improving? Start small
with metrics like the number of feedback sessions held, how many people
are actively involved, and how ownership is being shared. Beyond the
numbers, focus on the impact feedback is having on your team.

UNLOCKING THE POWER OF FEEDBACK | 135

Ask yourself: “Are people acting on the feedback they receive, or is it
being ignored?” or “Are your efforts making feedback a visible and valued
part of your team?”

Look for signs that things are improving. For instance, team members
might feel less stressed and more prepared during performance reviews
because they’ve already received regular feedback throughout the year. This
reduces the pressure of last-minute feedback prep and ensures there are no
big surprises.

Different stages of your team’s development might require different
ways to measure success. The key is to focus on what works best for your
team right now and adapt as you go.

Building a feedback culture requires a mindset shift and an ongoing com-
mitment. The real payoff comes when feedback becomes second nature: when
your team regularly gives and receives feedback, reflects on it, and acts on it
without prompting. That’s when feedback stops being a “thing you do” and
becomes just part of how your team works and grows together.

Start small, be consistent, and keep showing up for the process. Over time,
the ripple effects will show, in your team’s collaboration, growth, and ability to
tackle challenges.

Key Takeaway

Feedback is how teams grow…and it starts with you.
Creating a feedback culture means making feedback a natural, expected, and

valued part of your team’s daily rhythm. That includes asking for feedback regu-
larly, receiving it with humility, giving it clearly and consistently, and creating
space for others to do the same, not just with you but with each other.

It takes practice, courage, and care. But when done well, feedback strength-
ens relationships, accelerates growth, and builds a foundation of trust that will
carry your team through every challenge.

You won’t get it right every time, and that’s OK. Just stay open, stay human,
and keep the conversation going.

136 | LEVELING UP AS A TECH LEAD

Delegating

Delegation is the process of assigning tasks or responsibilities to others while
maintaining accountability for the outcome. It means letting go of work that
others can take on so you can focus on your main priorities. But delegation is
more than just offloading tasks; it’s about working as a team, relying on others,
and creating opportunities for growth.

For example, as a tech lead, you might delegate a feature implementation to
a developer instead of coding it yourself. You provide context, set expectations,
and offer guidance, but you allow them to own the execution. The key is balanc-
ing trust, oversight, and clear communication to ensure success.

The reason why delegation is a key skill to master as a tech lead is simple:
you can’t do everything yourself. Eventually, your workload becomes unsustaina-
ble. Your role shifts from being a great individual contributor to enabling your
team to succeed. The most effective tech leads aren’t the ones who take on every
critical task themselves; they’re the ones who build strong, autonomous teams
that can execute effectively without micromanagement.

Despite its importance, delegation is one of the hardest skills for tech leads
to develop. Many struggle with it, often hesitating because they fear losing con-
trol, worry about the outcome, or feel like it’s faster to just do it themselves.
Some even hold back because they fear they won’t get the credit for work they
delegate.

That’s why this chapter is structured to cover everything you need to know to
delegate effectively and with confidence:

• The benefits of delegation: how it helps you gain back time, grow your•
team (and yourself), and improve overall team performance.

137

| 6

• A step-by-step guide to delegation, from deciding what to delegate and•
who to delegate to, to choosing the right delegation strategy, setting clear
expectations, and following up.

• The four most common fears tech leads face when delegating and how to•
overcome them.

By the end of this chapter, you’ll have the tools to delegate with confidence,
scale your impact as a leader, and build a stronger, more self-reliant team.

Benefits of Delegation

Delegation is one of the most underrated yet powerful skills a tech lead can
develop.

When done right, delegation frees up your time to focus on high-impact
work while also empowering your team members by giving them ownership and
growth opportunities. Over time, this leads to a team that runs more efficiently,
makes better decisions, and requires less hands-on oversight from you.

Each of these outcomes is worth unpacking on its own, so let’s look more
closely at the core benefits of delegation and how they show up in your day-to-day
work as a tech lead.

GAINING TIME FOR YOU

One of the biggest struggles tech leads bring to me in coaching is time man-
agement. They feel constantly overwhelmed, juggling too many responsibilities:
coding, one-on-ones, alignment meetings, firefighting, and performance reviews
while still feeling like they’re never doing enough. There’s always something
important that gets pushed aside. They end up chasing their day, moving from
one thing to another without ever feeling in control.

Delegation is one of the most effective ways to offload some of these tasks
and win back time.

When working with overwhelmed tech leads, the first thing I do is analyze
their workload. We look at what’s on their plate and identify tasks that don’t
require their direct involvement, tasks that could be handled by others in the
team. The goal is to redistribute their responsibilities effectively. Once we iden-
tify what to delegate, the next step is making it happen (more on that in the
section “Delegation Process: Step-by-Step” on page 143).

A classic example I see all the time: a technical, repetitive task that only the
tech lead knows how to do. Maybe it’s for an important client, and it involves a
system or service that no one else fully understands. It’s a 30-minute task every

138 | LEVELING UP AS A TECH LEAD

week. Easy, routine, predictable. You could do it with your eyes closed. You even
do the task on vacation because, well, it’s just easier to do it yourself. You’ve been
meaning to automate it or, at the very least, document the steps to do it, but
there’s always something more urgent.

There are multiple problems with this approach. Besides wasting your time
on something that could easily be delegated, you’re creating a knowledge silo and
increasing your team’s bus factor risk. If you’re suddenly unavailable, whether
due to illness, an emergency, or simply being on leave, no one else can step in.
Your team depends on you for this task, and no one else gets the opportunity to
learn it.

Now imagine delegating it, not just passing the task on but giving someone
else ownership of it, including finding a way to automate it. Yes, it might take
some effort up front to train them, but the payoff in the long run is that you can
remove it from your to-do list.

These “quick” 30-minute tasks are the real silent killers of your time. It’s
never just about the time spent doing them; it’s about the impact of context
switching. Studies show that it takes around 23 minutes to fully regain focus
after being distracted. So those “easy” tasks might be stealing more of your time
than you realize.

Letting go of some things on your plate doesn’t mean you’re doing less; it
means you’re focusing on what really needs your attention as a tech lead—the
things only you can do.

By delegating effectively, you take back control of your time. You can finally
plan your work, make space for strategic thinking, and stop feeling like you’re
constantly playing catch-up.

HELPING YOUR TEAM (AND YOURSELF) GROW

Besides freeing up your time, delegation is also one of the most powerful ways to
help your team grow and build confidence.

One of the most common traps tech leads fall into (especially in smaller
teams) is trying to stay on top of everything. They want to know the status of
every feature, make sure everything is moving forward, and be involved in every
decision. But this approach quickly becomes unsustainable.

A strategy that completely changed the way I worked at Thoughtworks was
assigning feature leads. Instead of keeping everything on my plate, each feature
had an owner. That meant another developer, not me, was responsible for
making sure there was a clear plan, ensuring the team was aligned, tracking
dependencies, creating stories, making progress visible, and identifying risks

DELEGATING | 139

early. Their job wasn’t to do all the work alone but to own the process, involve the
team, and escalate issues when needed.

My involvement dropped significantly. I was still accountable for the out-
come and needed to stay informed, but I no longer had to micromanage every
step. Depending on the feature, I even encouraged them to handle stakeholder
updates themselves. That way, they had full autonomy, and I stepped in only if
something went wrong.

As they took on these new responsibilities, I could see them testing out
leadership skills, managing complexity, communicating across roles, and making
trade-offs, all in a safe, supported environment. These opportunities built not just
their technical confidence but their leadership capabilities.

At the same time, what I didn’t expect was that I often learned more from
the process than they did. There’s a saying that you don’t truly know something
until you explain it to someone else. The longer you do things a certain way,
the less you question them. But when you hand a task over to someone new,
suddenly, they start asking all the right questions. “Why do we do it like this?”
“What if we changed that?” “Could this be improved?" Delegating opened the
door to fresh ideas, challenges to the status quo, and improvements I never
would have thought of. I was able to help others grow, and I was pushed to grow
as well. Letting go means being open to the idea that your way might not always
be the best way. And people will surprise you, if you give them the chance.

Delegation works best when it’s rooted in trust. It’s about giving people
opportunities to grow and making sure the entire team shares the responsibility
of delivering work. And the best way to build confidence in someone is to tell
them: “I trust you to handle this.” This single sentence can completely change
how someone sees themselves.

Delegation gives others space to step up, experiment, and learn while also
helping you grow as a leader who empowers rather than controls. If you want to
build a strong, resilient team, learning to let go, strategically and supportively, is
one of the most effective things you can do.

BOOSTING TEAM PERFORMANCE

Beyond individual growth, delegation also strengthens the team as a whole. As
more team members step into ownership, the team becomes more collaborative,
resilient, and efficient. People start supporting one another, spotting gaps, shar-
ing knowledge, and solving problems together. Instead of relying on a single
point of decision making, they learn to move forward confidently as a group. This
shift positively impacts the overall performance of the team.

140 | LEVELING UP AS A TECH LEAD

A great example of this is handling technical interviews. I worked with a
tech lead who believed she needed to be involved in every single interview to
ensure quality hires. She spent hours reviewing resumes, conducting coding
assessments, and leading debriefs. While hiring is undeniably important, this
level of involvement drained her time and slowed down the hiring process.

We worked on a plan: instead of being the bottleneck, she trained senior
engineers to take over key parts of the hiring pipeline. She created a structured
rubric for technical evaluations, standardized interview questions, and a clear
debriefing process. Over time, she stepped in only when absolutely necessary. As
a result, the team fully owned the process, and the overall performance of both
the hiring process and the team improved dramatically:

• The hiring process moved faster because it no longer relied on just one•
person. The team could conduct multiple interviews simultaneously, keep-
ing the pipeline flowing.

• Team members had a say in who joined, increasing alignment between•
new hires and the existing culture.

• Everyone learned something. Some engineers developed interviewing•
skills, while the tech lead gained insight into hiring bottlenecks and how to
avoid them in the future.

• Onboarding time was reduced. With more time freed up, the tech lead•
could focus on refining the onboarding process, ensuring new hires could
contribute faster and more effectively.

A high-performing team is one that functions well even when you’re not
around. A big part of being a tech lead is helping the team get there. That means
taking what’s in your head and sharing it with others.

One of the biggest blockers I see in tech teams is work that isn’t ready to be
worked on. People end up sitting around because the next tasks aren’t refined
enough. The natural reaction is that the tech lead and product manager take over
pre-refinement, preparing stories in advance so the team can keep moving. It
works but only for a while. Eventually, it becomes another bottleneck, another
task weighing you down.

In my team, we made pre-refinement a shared responsibility. Instead of me
always working with the product manager to prepare upcoming work, everyone
took turns. It became part of the team’s weekly work, ensuring that when sprint

DELEGATING | 141

planning came around, stories were ready to go. No one was left waiting, and I
wasn’t scrambling to do it all.

But of course, getting there was a journey. It didn’t happen overnight.
We started by laying the groundwork. We defined a clear structure for user

stories, including consistent formatting, required context, and clearly written
acceptance criteria. That gave everyone a shared understanding of what “ready”
looked like.

We also leaned into pair programming, but not randomly. We put more
thought into how we formed pairs for pre-refinement. One person would bring
the technical context, while the other might be newer to the feature or to refine-
ment itself or have less experience. That way, the task got done well, and some-
one also learned in the process.

Before anything was brought in front of stakeholders or the product man-
ager, we would often run pre-refinement discussions as a team, diving into
technical considerations and edge cases together. The goal of these conversations
was getting stories ready and building shared ownership and technical judgment.

With time, people got the hang of it. The structure, pairing, and shared
discussions gave everyone the tools they needed to contribute meaningfully. And
as their confidence grew, my involvement became less and less.

Delegation means investing in your team’s growth so you can step back,
knowing things will still run smoothly. And someone not being ready yet is not a
reason to avoid delegating; rather, it’s your invitation to start preparing them.

By sharing knowledge and responsibility, you remove yourself as a bottle-
neck and enable your team to function independently. A good test of healthy
delegation is this: can you take a real two-week vacation without needing to check
in constantly? If the answer is yes, you’ve done it right.

Of course, you might argue that teaching others to take over tasks slows the
team down in the short term. And that’s true, at first. But in the long run, your
team becomes more autonomous, less dependent on you, and better equipped to
move faster and more efficiently without unnecessary blockers. Less time wasted
waiting for you. More time for you to focus on what only you can do.

As a tech lead, you’re always playing the long game. Delegation is how you
win it.

142 | LEVELING UP AS A TECH LEAD

Delegation Process: Step-by-Step

Now that I’ve covered why delegation is essential and the countless benefits it
brings, like gaining back your time, growing your team, reducing bottlenecks,
and ultimately improving team performance, let’s move on to the how.

Delegating is about making sure the right people are handling the right tasks
in a way that benefits both them and the team. When done right, it builds con-
fidence, distributes workload effectively, and helps the team operate smoothly,
even without you overseeing everything. But if done without care, it can create
confusion, frustration, and more problems than it solves.

Some tech leads struggle more with certain aspects of delegation than oth-
ers. Maybe you find it hard to decide what to delegate. Maybe you’re unsure
who should take on a task or you’re worried the outcome won’t meet your
expectations. That’s why breaking down the process step-by-step is so important.

In this section, I’ll go deep into each step of effective delegation: identifying
the right tasks, choosing the right person and the right delegation strategy, and
setting clear expectations, all while maintaining accountability.

WHAT TO DELEGATE

Many tech leads struggle with feeling like they need to do everything themselves
when, in reality, the opposite is true. The first step to effective delegation is
figuring out what can be handed off, something that a lot of tech leads find
surprisingly difficult. It often feels like everything they do is essential, but that’s
rarely the case.

A simple exercise to start is this: at the end of the week, write down all
the tasks you handled. Then analyze: what are the things only you can do?
This might include holding one-on-ones with stakeholders, defining the technical
strategy for a company-wide cloud migration, refining technical stories with the
product manager, or running performance reviews. These are tasks that often
require your insight and full attention. Everything else is potentially delegatable.

And honestly, even those high-level tasks like defining the technical strategy
for a company-wide cloud migration don’t always need to be yours. Another
developer on your team should be able to step into some of those conversations
over time. And likewise, you can share the responsibility of refining technical sto-
ries with the whole team. If your absence causes a roadblock, then you’ve become
a bottleneck. What happens when you’re not around? Why can’t someone else
take over? The reality is, in many companies, tech leads are expected to be the
go-to for everything, but that doesn’t mean it has to stay that way.

DELEGATING | 143

Start small. Delegating simpler, repetitive tasks first will help you get com-
fortable with the process while showing your team you trust them. You can dele-
gate both technical and nontechnical tasks, as you’ll see in the coming examples.

Another great category of tasks to delegate are tasks you don’t want to
do. That might sound selfish at first, but often these are tasks you’ve simply
outgrown. Just because you find something tedious doesn’t mean someone else
on the team won’t see it as a great learning opportunity. What’s routine for you
might be new and exciting for them, and a great opportunity to develop new
skills.

Onboarding new engineers is also a great example of a delegatable task.
Many tech leads take full ownership of onboarding, walking every new hire
through documentation, setting up their local environment, and explaining com-
pany processes. While it’s important to ensure new team members are set up for
success, this entire process doesn’t have to be done by you.

Instead, create an onboarding buddy system where a senior or mid-level
engineer takes responsibility for guiding new hires through their first few weeks.
They can help with setup, answer questions, and provide technical context. You
can still check in at key points, but by delegating the hands-on part, you ensure
new hires get support while freeing yourself up for higher-level tasks. Plus, it’s
a great leadership development opportunity for the buddy. (For a deeper dive
into how to set up an effective onboarding system, see the section “Onboarding
Effectively” on page 175.)

Meetings are another easy win. I worked with a client whose company had
recurring guild meetings on architecture, frontend solutions, and other topics.
Instead of attending all of them, I found team members interested in those areas
and had them go instead. Their job was to attend the meetings consistently,
bring back insights, and flag anything that might impact our team. The outcome
was highly effective: it saved me time, kept the team informed, and gave those
team members a sense of ownership and visibility across the organization. It also
created learning opportunities and helped them build internal networks. On top
of that, by ensuring someone always showed up, we demonstrated to our client
that we prioritized these conversations and cared about cross-team collaboration,
without it always having to come from me.

If you’re unsure where to start, the Eisenhower Matrix is a great tool to
categorize your workload (check out the section “Time Management” on page 45
for details). It helps you separate what’s truly urgent and important from what
can be delegated, postponed, or dropped entirely.

144 | LEVELING UP AS A TECH LEAD

And if you want even more ideas, ask your team. One-on-ones are a perfect
space for this. Try: “Is there anything I’m doing that you’d be interested in taking
over?” You’d be surprised at the answers you get if you just ask.

These are just some ideas to get you started. Once you begin thinking more
intentionally about delegation, you’ll find even more opportunities to free up
your time while empowering your team.

WHO TO DELEGATE TO

Once you know what to delegate, the next step is figuring out who should take
it on. The goal is to balance team growth, workload, and efficiency. Choose
someone who not only has the capability but is also in a position to benefit from
the opportunity. The right match leads to a smooth handoff. Otherwise, the task
may end up right back on your plate.

The following sections cover some things to consider when choosing the
person to delegate to.

Who is interested?

Motivation often matters more than prior experience. Someone eager to learn
will put in the effort to get up to speed quickly. Instead of assuming who might
be interested, ask.

For example, a tech lead I worked with always was the one to run sprint
demos or showcases. I encouraged him to delegate the responsibility to different
team members on a rotating basis by simply saying in a standup, “I usually run
the sprint demo, but I’d love for someone else to take the lead this time. Who’s
interested?”

This not only distributes the workload but also helps developers improve
their presentation skills, gain visibility, and build confidence in communicating
with stakeholders. It also supports inclusion by creating visible opportunities that
more junior or underrepresented team members can step into—opportunities
they might not have asked for otherwise.

If more than one person expresses interest, that’s a great sign. You can rotate
the responsibility across people, pair them up, or take into account the criteria
that follow, like skill fit or availability, to decide who takes the lead this time.
Either way, interest is a strong signal that’s worth nurturing.

One-on-ones are also a great space to identify interest. If you notice a team
member looking to grow in a specific area, you can frame it like this: “I usually
handle [task], but I think this could be a great learning opportunity for you. Want
to pair on it this time?”

DELEGATING | 145

Who has the knowledge?

How urgent or high-impact is the task? If something needs to be done quickly
and correctly with minimal support, delegate it to someone who already has the
knowledge.

If no one else on the team can do it, it means you are a bottleneck. Start by
pairing with someone. Have them document the process and try replicating the
task when there’s no pressure. Next time, let them take the wheel while you stay
in the background for support.

For example, a tech lead was responsible for setting up CI/CD pipelines for
every new microservice. It was slowing him down, and the team relied on him
as the only person who understood the setup. Instead of being a bottleneck, he
paired with another engineer, documented the steps, and let them handle the
setup for the next service. Eventually, multiple people could set up pipelines,
reducing dependency on him.

If working remotely and both agree, you could even record the pairing ses-
sion or create a quick screencast walkthrough. It’s a lightweight, low-lift way to
capture the knowledge transfer and helps the person reviewing the task later to
document the process more thoroughly. It becomes a reusable reference for the
whole team.

Be careful not to always choose the most qualified person. This can create
knowledge silos or overwhelm certain team members while others miss learning
opportunities. For low-risk tasks with no urgent deadline, give them to someone
who wants to build experience in that area. Yes, it might take longer the first
time, but in the long run, it distributes knowledge across the team.

What’s their current workload?

Delegation is meant to reduce your workload, not just shift it onto someone
else. Before assigning a task, check in with them. Some team members might
say yes to everything because they see it as a privilege, but they may already
be overloaded. Ask directly: “How would this fit into your workload right now?”
instead of assuming that it does.

A common pitfall I’ve seen is tech leads always delegating to the same per-
son. One tech lead always relied on a senior engineer for documentation-heavy
tasks like writing architecture decision records (ADRs). After a while, the engi-
neer got frustrated and asked why no one else was responsible for it. The tech
lead realized that she hadn’t considered workload balance and started rotating
this responsibility, giving others a chance to develop that skill.

146 | LEVELING UP AS A TECH LEAD

Does their working style match the task?

The right person isn’t always the most experienced; it depends on the nature of
the task.

If you need someone to own communication and alignment between teams
on a high-impact project, pick someone who enjoys collaboration and has strong
soft skills.

If you’re trying to debug a complex memory leak, delegate it to someone who
thrives on technical deep dives and enjoys solving intricate problems.

If you’re unsure how to spot these traits in your team, you’re not alone. It
takes time to develop this skill. A good first step is simply paying attention to
how people behave in different situations.

For example, someone who’s a strong communicator often volunteers to
clarify points in meetings, follows up in writing, facilitates retrospectives, and
checks in with team members to keep everyone aligned. They tend to be proac-
tive, taking on extra responsibilities, stepping up to lead initiatives, and looking
for ways to be involved in broader conversations.

In contrast, someone who thrives on deep technical work might light up
when tackling complex problems, eagerly jump into debugging, or take the lead
during incidents. They’re often the ones suggesting technical improvements or
exploring new tools and approaches.

Pay attention to what energizes each person, what they naturally take owner-
ship of, and how they engage with others. These patterns can give you valuable
insight into their strengths.

Of course, this doesn’t mean the task always needs to match their current
style. Delegation can be a great growth opportunity. Sometimes it’s worth giving
a strong IC a chance to lead a cross-team initiative or asking a great communi-
cator to dive deeper into technical ownership. These mismatches can challenge
people to build new muscles and grow in unexpected ways, especially when they
have deep expertise in a certain area and can bring unique value to the task.

These are not a strict checklist; you don’t need to tick every box for delega-
tion to happen. Often, you’re balancing a mix of factors. You might not have
someone who does not have the knowledge to do the task yet, but they’re eager to
learn. Or someone may be the ideal person, but they’re currently at capacity. Or
no one might be volunteering at all.

When no one steps up, try the following strategies to get people engaged.

DELEGATING | 147

Ask directly, especially if you think someone is a strong fit: “I think you’d be
great at this. How would you feel about taking it on?”

Connect it to their growth goals: “In your last review, we talked about build-
ing confidence through knowledge sharing. Want to run the next show-and-tell
session?” Explain why you think it’s a good opportunity and have an open conver-
sation. If they hesitate, explore why. Maybe they’re unsure how to start. Offer
support by pairing with someone or doing a dry run.

Ask for help, with vulnerability: “I’m overloaded with this stakeholder pre-
sentation. Could you please prepare and run next week’s product demo?” Being
honest about your own challenges makes people more willing to step up.

Don’t expect everyone to jump in. But one person might, and that’s enough
to start momentum. Often, delegation creates compounding effects. When others
see peers take on new responsibilities and succeed, they’re more likely to follow.
Highlight these examples in one-on-ones to encourage others.

The tone of your ask matters. Avoid assigning or pressuring people into
something they clearly don’t want. Ownership can’t be forced.

Still, if you’ve tried all this and the team continues to resist, that’s likely
pointing to a deeper issue. At that point, I’d bring it to a retrospective. Talk about
the elephant in the room—the lack of engagement or willingness to take owner-
ship—and work together to understand why. Whatever the reason, surfacing the
issue is the first step to solving it.

Choosing the right person to delegate to takes intention, not perfection.
There’s no one-size-fits-all answer, just a mix of judgment, context, and experi-
mentation. The more you practice, the better you’ll get at reading the room,
matching people with opportunities, and creating space for everyone to grow.

CHOOSE THE RIGHT DELEGATION STRATEGY

Delegation doesn’t mean dumping your work onto someone else. You can’t just
hand off a task and expect it to be done perfectly without any guidance. Some
people will need more support, some less. Your job is to provide the right level
of direction based on the person’s experience, skill level, and confidence with the
task.

148 | LEVELING UP AS A TECH LEAD

Once you’ve identified the right person, the actual handover begins. Start by
explaining why you’re choosing them for this task. Maybe it’s because they’ve
shown interest in the topic or because of their technical knowledge, their ability
to think outside the box, or their strong collaboration skills. Whatever the reason,
say it out loud. This helps set the right expectations and avoids misunderstand-
ings like “Why am I getting more work?” or “Are they just throwing this on
my plate because they don’t want to do it?” If people understand why you’re
delegating something to them, they’re more likely to approach it with the right
mindset.

Of course, give them a chance to ask questions, raise concerns, or even push
back if it’s not something they feel ready for or interested in.

Match delegation style to the situation

Not everyone needs the same level of support when taking on a task. The way you
delegate should depend on the person’s knowledge, experience, and confidence
in handling it. Think of delegation as a spectrum, from high direction and
hands-on support to full autonomy.

This approach is inspired by the Situational Leadership Model (originally
developed by Hersey and Blanchard), which emphasizes adapting your leader-
ship style to the development level of the person you’re supporting.

Here are four key approaches based on the person’s situation:

Telling (directing)
This is for someone who has little to no experience with the task and may
also be hesitant or unwilling to take it on. In this case, clear instructions
and close guidance are necessary. Define the task step-by-step, explain
exactly what’s expected, and check in frequently to make sure they’re on
the right track.

Example: A team member is preparing for their first client-facing
demo. Instead of just handing over the calendar invite, help them under-
stand the audience and their expectations, review the content together, and
do a dry run where they can practice with you and get feedback. Attend the
demo to offer backup if needed, and debrief together afterward.

DELEGATING | 149

Selling (coaching)
This approach works when someone is eager to take on a task but lacks the
skills or confidence to do it on their own. They might hesitate because they
think they’re not capable. Here, your job is to build their confidence while
providing the necessary training and support.

Example: If a team member is interested in leading sprint planning
but feels unsure, you could coach them through the process. Have them
shadow you the first time, then let them lead the next session with your
support, offering feedback and encouragement afterward.

Participating (supporting)
At this stage, the person has the skills and experience to perform the task
but may benefit from occasional input, encouragement, or collaboration.
The focus here is less on instruction and more on confidence-building,
motivation, or being a sounding board. You take a more collaborative
approach, supporting their decisions, removing blockers, and checking in
as needed while allowing them to take the lead.

Example: A developer who has previously worked on tech design docu-
ments together with you now wants to write one independently. Instead of
reviewing every line, you provide feedback only if needed and encourage
them to refine their approach. Finally, before the document is officially
finalized, you might want to review it with them, ensuring alignment and
making any necessary adjustments together, as the accountability remains
with you as the tech lead.

Delegating (hands-off)
When someone is fully capable and confident in handling a task, your job
is to step back. Let them own it entirely while staying available if they need
support.

Example: A senior engineer has been leading technical discovery ses-
sions for new projects. She is experienced in gathering requirements,
assessing technical feasibility, and facilitating discussions with stakehold-
ers. At this point, she doesn’t need your guidance, just the space to do
her job. You check in occasionally to offer support or remove blockers if
needed, but you fully trust her to handle it independently.

150 | LEVELING UP AS A TECH LEAD

Adjust your delegation approach

People don’t stay in one category forever. The goal is to help them move from
needing a high amount of direction to full autonomy. If you’re always in “telling
mode” with a capable team, you’ll be micromanaging. If you immediately take a
hands-off approach with someone new to a task, they might feel abandoned and
struggle.

A good rule of thumb is to start with more guidance and gradually pull back
as the person builds confidence and skills. Effective delegation removes work
from your plate while helping your team grow and ensuring tasks are completed
successfully.

It’s useful to mention that not everyone needs the same level of support for
every task. One person might be highly autonomous when working on backend
systems but need more direction when dealing with stakeholders. It’s not about
labeling people but about adapting your approach to each situation and skill set.
Think of it as calibrating your support to match the task at hand.

A great way to refine your delegation approach is by asking for feedback.
After the task is completed, check in with them: how did they feel about the
process? Did they get enough support? What could have been done differently?
Their input will help you adjust your style and improve future delegations.

Effective delegation is about thoughtful adaptation. The more you tune into
each person’s experience and confidence level, the better you can support their
growth and ensure successful outcomes.

SET CLEAR EXPECTATIONS

“I’ll just do it myself next time.” If you’ve ever caught yourself thinking that after
delegating a task, unclear expectations might be the real issue. Clear, up-front
communication is what separates effective delegation from a frustrating cycle of
rework and misalignment.

I remember this time when I asked a developer to prepare a showcase
presentation. I thought it was obvious: prepare slides, do a demo, and get ready
to present for five minutes like we usually do. I told her to ask me if she had
any questions, have everything ready before the showcase, and leave some time
for feedback. She didn’t reach out during the preparation process, so I assumed
things were going smoothly.

DELEGATING | 151

Two hours before the showcase, I checked in to ask about the status, as I
hadn’t heard anything from her. She told me she had everything ready to go.
Then, she showed up at the showcase with only one slide and one picture, which
didn’t take her longer than one minute to present. I was shocked. I definitely
didn’t react well at the moment. She didn’t understand what she had done
wrong, and to be honest, she was right. Because I never clearly told her what
exactly I expected, I just assumed she knew.

That’s when I learned a valuable lesson about the power of setting clear
expectations when delegating. It’s not enough to assume the other person under-
stands. I needed to clearly communicate what I expected the outcome to be,
define our roles in the process, explain how I’d know the task was done, and
agree on all of this up front. After that experience, I made it a point to be much
more specific about expectations whenever I delegated a task.

That’s also when I started leaning on a familiar framework: SMART goals.
SMART goals aren’t just for personal productivity; they’re a powerful way to
create alignment and accountability when delegating. They help ensure both
sides are on the same page about what success looks like, what’s expected, and
when it should happen.

But over time, I realized something was missing. Delegation doesn’t stop
after the initial handoff; you also need a way to track how things are going.
So I added one more T to the model: trackable. The result is a lightweight but
powerful extension I use with my teams: SMARTT goals. Let’s break it down:

Specific
Be specific in outcome, flexible in execution. Be crystal clear about what the
expected outcome is. If needed, provide some guidance on how you expect
the task to be tackled, but keep in mind that the person taking it over
should have the autonomy to decide the best approach. If the task requires
collaboration, specify who else should be involved: team members, other
teams, or even different departments. Also, share any relevant information
you already have to give them a head start.

152 | LEVELING UP AS A TECH LEAD

Measurable
Define how success will be measured. This could be quantitative (e.g.,
reducing build time by 20%) or based on deliverables (e.g., producing a
report with recommendations for improving system performance). Having
a measurable goal helps track progress and ensures alignment.

Achievable
Is the goal realistic given the timeline and available resources? This is
something you should discuss and agree on with the person taking over the
task. If it’s not achievable as originally planned, adjust accordingly.

Relevant
Why does this task matter? Even if you think the purpose is obvious, take a
moment to reiterate the “why.” Understanding how their work contributes
to the bigger picture will make them more engaged and invested in the
task.

Time-bound
Agree on a deadline. A clear timeline prevents tasks from dragging on
indefinitely and helps the person prioritize effectively. Without this, things
tend to get pushed to the bottom of the list, especially in busy teams.

Trackable
How are you going to keep track of progress? Will it be on a Confluence
board or a shared doc or via a regular check-in? How often will you review
progress together to ensure things are on track? Having a clear system for
tracking progress and checking in on progress significantly reduces the
risk of unexpected surprises down the line.

Table 6-1 shows an example of how you can apply SMARTT goals to a classic
delegation scenario: delegate the initiative of reducing tech debt in your codebase
to a senior engineer on your team.

By setting clear expectations like this, you significantly reduce the risk of
misunderstandings, misalignment, and disappointing outcomes. When both you
and the person you delegate to are on the same page from the start, it increases
the likelihood of success and makes delegation a much smoother process.

DELEGATING | 153

Table 6-1. Example scenario using SMARTT goals

Suggestions Example: Delegate the initiative of
reducing tech debt in your codebase to a
senior dev in your team.

Specific What are the
expected results?

Who should be
involved?

Provide all relevant
information you
have about the task.

You are responsible for leading the initiative to
address and reduce technical debt within our
codebase.

This includes:

• Reviewing the current list of technical debt
tasks

• Working with the team to identify areas of high
technical debt

• Prioritizing them based on impact and urgency

• Creating a detailed plan for addressing these
issues

• Ensuring the team is following the plan

Measurable Quantities/
deliverables

The goal is to address 30% of technical debt tasks
over the next three months.

Achievable Can the objective
really be
accomplished?

This tech debt task will be addressed alongside
regular feature development tasks, with dedicated
time allocated in each sprint.

Relevant What is the point of
doing this task?

Reducing technical debt is critical for:

• Improving the long-term maintainability of our
codebase

• Speeding up future development

• Reducing the occurrence of bugs

• Reducing onboarding time for new developers

This initiative aligns with our broader goal of
ensuring product stability.

Time-
bound

Clear timelines This initiative should be completed within three
months.

Trackable How will progress
be monitored or
reviewed?

• Progress will be tracked in a shared Confluence
page, updated weekly with completed tasks and
blockers.

• We’ll review the status together during our
Monday check-in meetings to ensure we’re on
track, and adjust if needed.

• The plan and updates will also be visible to the
whole team for transparency.

154 | LEVELING UP AS A TECH LEAD

FOLLOW UP

Once a task is completed, regardless of the outcome, following up is essential. It
supports your team’s growth and helps you refine your leadership approach.

Share your feedback on how the process went, looking at both the final result
and how things went overall with the person you delegated to:

• What worked well?•

• What challenges did they face?•

• What could be done better next time?•

Make sure to ask them for their feedback too. A simple but powerful ques-
tion like “What could I have done differently to support you better in this pro-
cess?” keeps delegation iterative and continuously improving, making it easier
for both you and your team to refine how you work together over time.

Follow-ups also help validate your perspective on how things went, because
sometimes, what you think happened and what the other person experienced
can be completely different. Here’s an example: a tech lead delegated the task
of documenting the deployment process to another developer in the team. The
goal was to get a high-level view of all the steps involved so the team could later
discuss and identify blockers or areas for improvement. The tech lead also asked
that the document be created in Confluence, since that was the team’s standard
documentation tool.

The final result was great. The tech lead was happy with the work and
assumed the other developer was too. But when they had the follow-up conversa-
tion, he was surprised to hear “I would have preferred using a better tool for
building the diagram instead of Confluence, something more interactive.”

Turns out, while the other developer did the task as requested, she was a
little frustrated with the process but didn’t say anything at the time. The tech lead
realized he had been unnecessarily rigid about the tool choice. He wasn’t even
aware that this had caused friction until the follow-up chat.

As you can see from the previous example, delegation doesn’t end when the
task is done. Following up is an opportunity for growth and refinement, both for
the person you delegated to and for yourself. It ensures that delegation remains a
learning process rather than just a one-time transfer of responsibility.

STAY ACCOUNTABLE

Delegation is the process of assigning tasks or responsibilities to others while
maintaining accountability for the outcome. This means that, as a tech lead,

DELEGATING | 155

even when you delegate a task to someone on your team, you are still the one
stakeholders will turn to if things go wrong. You don’t get to say, “Well, that was
someone else’s responsibility.” Just as you get credit for your team’s successes,
you also take ownership of its failures.

This is where the difference between accountability and responsibility
becomes important:

Responsibility means taking ownership of the work.

Accountability means taking ownership of the outcome.

A tech lead is accountable for the team’s outcomes, while the whole team is
responsible for executing the work. Think of it this way: when things go south,
the tech lead is the first one in the line of fire. That’s why effective delegation
isn’t just about handing off tasks; it’s about ensuring that the work is done right,
without micromanaging.

Being accountable also means you can’t suddenly offload your entire plate
and expect everything to run smoothly. You can’t just toss tasks at people and
walk away. You have to support them in delivering it well. It’s a balance; you
need to delegate enough to empower others without disappearing from the pro-
cess.

If you start throwing things into people’s laps, not only will your team likely
grow frustrated, but the work itself might suffer. And since you’re still accounta-
ble for the outcome, it could easily backfire on you. Like you’ve seen throughout
this chapter, even if you’re not doing the task yourself, successful delegation still
takes effort and intentionality. Start small by delegating one task at a time, so you
can build trust, learn what works, and grow your confidence along the way.

The key to maintaining accountability while delegating is to create a clear
feedback loop. Regular check-ins, structured updates, and clear expectations (as
I cover in the section “Set Clear Expectations” on page 151) help them do a great
job.

Of course, even with all of these practices in place, delegation still carries
some risks. You can never control everything, especially when it comes to people.
Tasks may get deprioritized, misunderstandings can happen, or someone might
not deliver to the level you expected. You might realize too late that the person
didn’t feel comfortable asking for help. These things happen.

So, even though these steps aren’t a guarantee that everything will go per-
fectly, they significantly reduce the chances of things going wrong. And even

156 | LEVELING UP AS A TECH LEAD

when things do go wrong, you can recover. What’s far riskier is trying to do it all
yourself: that’s the path to burnout, bottlenecks, and a team that never grows.

Mastering delegation means being intentional at every stage. From deciding
what to delegate and to whom, to adjusting your style based on the situation,
setting clear expectations, and following through with accountability, each step
plays a role in making delegation really work.

Why Tech Leads Struggle to Delegate and How to Overcome It

Some tech leads feel constantly overwhelmed, juggling too many things at once:
coding, one-on-ones, alignment conversations, and putting out fires, all while
trying to keep up with strategic initiatives. And despite working long hours and
being in endless meetings, there are always more things they know are important
but never get around to. They feel like their days slip away, running from one
task to another, without ever having time to step back and plan.

Yet, even when it’s obvious they need to offload work, they still hesitate to
delegate. Why? Because deep down, they’re afraid: afraid that the outcome won’t
be as good as if they did it themselves, afraid of not getting credit, afraid of the
effort required to teach someone else, and ultimately, afraid of losing control.

The reality is that the main reason tech leads start delegating isn’t because
they want to; it’s because they have to. Eventually, it just becomes impossible
not to.

This struggle is completely normal, especially for tech leads transitioning
from an individual contributor role. As ICs, they were used to full ownership:
knowing every detail of their work, delivering high-quality outcomes, and receiv-
ing direct recognition for it. Now, suddenly, success is no longer about what they
personally deliver but about what their team delivers. That shift is not easy, but
there is no way around it, as great leadership is about scaling impact.

In this section, I’ll dive deep into the most common fears tech leads have
around delegation, exploring practical ways to overcome them. The goal is to help
you ease into delegation with more confidence, so you can reclaim your time,
grow your team (and yourself), and ultimately improve overall team performance.

AFRAID OF LOSING CONTROL

Delegation means enabling others to do the work, which is often harder than just
doing it yourself because it requires you to let go of control.

Most tech leads struggle with this, especially in the beginning. They’re used
to having full ownership over their own work as individual contributors in the
team, knowing every detail, and being in control of outcomes. When they step

DELEGATING | 157

into a leadership role, they try to maintain that same level of control across the
entire team. This often leads to micromanaging: reviewing every PR, being part
of every decision, attending every team conversation. Many tech leads have tried
this, but it’s just not sustainable. Eventually, they burn out.

And the worst part is that no matter how much effort you put into control-
ling everything, you’re never truly in control. There are too many moving parts,
too many variables that can shift unexpectedly. Trying to control everything
creates frustration, both for you and your team. You feel like things are slipping
through the cracks despite your best efforts, and in response, you try to control
even more, trapping yourself in a cycle. The only way to break free from this loop
is to accept that you can’t control every little detail. What you can do is prepare
for uncertainty and learn how to navigate things when they don’t go as planned.
That’s what experienced tech leads continuously try to do.

At the root of most delegation struggles, whether it’s worrying about the
outcome, thinking “it’s quicker and easier to just do it myself,” or even fearing
that you won’t get the credit, lies the fear of losing control. It’s the biggest mental
challenge tech leads face when letting go.

This fear is especially strong because delegation requires vulnerability. It
means trusting others with responsibilities you used to own. In leadership, vul-
nerability is often misunderstood as a weakness, when in fact, it’s one of the
greatest strengths of a successful tech lead, and a powerful way to build trust.

If you want your team to trust you, you need to trust them. Struggling to let
go is often a sign of distrust: worrying that they will drop the ball, that they won’t
do the task as well as you, that things won’t turn out exactly how you want. And if
you don’t know what your team is capable of, that fear makes sense. But the only
way to find out is to take chances on people, give them opportunities to prove
themselves. You might be surprised at what they can do when given the space to
own a task.

So, I invite you to try. The best way to start overcoming the fear of losing con-
trol is to practice delegation in small steps. You don’t have to hand off everything
at once, and there are ways to do so without micromanaging. The secret is slow
exposure: start with a low-risk task, set clear expectations, and check in without
hovering. By applying the strategies from the section “Delegation Process: Step-
by-Step” on page 143, setting clear expectations, having a transparent tracking
process, and understanding your role in delegation, you can maintain visibility
without needing to be involved in every step.

158 | LEVELING UP AS A TECH LEAD

A simple task to start with is asking someone else to facilitate the daily
standup. This is a common action that tech leads, focused on control, do to
ensure they are getting all the necessary updates and information to stay up-to-
date with everything that is happening, often saying, “No one else will do it if I
don’t.” But the opposite can be true too: no one else jumps in because they know
you are always the one doing it. So, try telling your team that you’d like to mix
it up a bit, and ask who would like to take over or come up with a plan for a
rotation process. This might be an easy way to start exploring delegation since
you’re still part of those conversations. You can continue asking the questions
you need to ask and make sure you get the information, even if you’re not
the one facilitating. Plus, the chances of things going completely sideways are
smaller because they’ve seen you run it for a while now.

Once you agree on a process for facilitation, set some ground rules. For
example: we go over the board left to right (Backlog → To Do → In Progress →
In Review → Testing → Done), discussing progress and potential blockers with
the goal of going through all the tasks within the reserved time, leaving a few
minutes at the end for announcements like “I have a medical appointment from
3 to 4, so I will not be available.” Say the things that sound obvious; those are the
ones that generate the most misunderstanding and conflicts in the team. Also,
keep in mind that this is a continuous process. If you feel something isn’t being
addressed correctly, you can always discuss it with your team or give individual
feedback.

The same applies when handling urgent bugs reported by clients. Instead
of taking the lead and verifying what is happening yourself, agree on a process
with your team to handle them together, perhaps by rotating people, for example.
To help you feel more in control at first, you can ask them to escalate to you if
there’s a bigger problem or if they can’t handle it within a certain time threshold.

Sometimes, losing control is exactly what needs to happen. When you give
people ownership, they bring fresh ideas and approaches you may not have
considered. It will also help you develop resilience and learn how to deal with
things when they go wrong.

I can say from experience that once you experience the benefits of letting go
of control, you won’t want to go back. I started off as a micromanager and burned
out one month into the role. But I learned to do better, and delegation was a
game-changer.

Over time, you’ll see that letting go doesn’t mean losing control. It means
gaining a stronger, more capable team. By embracing vulnerability and letting

DELEGATING | 159

go of control, you’ll scale your positive impact as a leader in tech: you’ll create
growth opportunities for your team members, and both they and you will learn
and grow together.

WORRIED ABOUT THE OUTCOME

The second common fear tech leads have when delegating is worrying about the
outcome of the delegated task not being as good as if they did it themselves.

This can be addressed by setting clear expectations.
I remember when I was talking to another tech lead about a situation he had

gone through. He had delegated the task of writing technical documentation for
a new feature to one of his team members. He had originally planned to do it
himself but, like many of us, got overwhelmed with other tasks. So, he decided to
ask a team member to handle it instead.

He gave the person a vague instruction: “Please write up the documentation
for the new feature so the team can understand how it works.” He didn’t specify
things like the format, the level of detail, or even if things like code examples,
diagrams, or edge cases were necessary. He assumed that the team member
knew what was expected, based on the way other technical documents had looked
before.

A day later than expected, the documentation came in. But when he reviewed
it, he was disappointed. It was just a brief overview, explaining what the feature
did, but it lacked real depth. There were no architectural diagrams, no edge case
handling, and no detailed explanations that would have made it helpful for the
team. It was functional, but far from what he needed. In the end, he ended up
spending more time updating and fixing the documentation than he would have
if he had just written it himself from scratch.

He shared with me how frustrated he was, but as we discussed it, he realized
he was partly to blame. He hadn’t set clear expectations from the start. He hadn’t
explicitly stated what level of detail was needed, who the documentation was for
(developers, QA, or nontechnical people), or even the key components like code
examples, error handling, or diagrams.

When he reflected on it and talked about it with another colleague, he came
to the conclusion that, had he set proper expectations, this could have been
avoided. The next time he delegated a similar task, he was much more specific
about what he expected, and the outcome was completely different.

This is a common story I hear from tech leads, and it’s a great example
of how important it is to be clear and specific when delegating tasks, especially
something like documentation, where the format, level of detail, and intended

160 | LEVELING UP AS A TECH LEAD

audience can really affect how useful the end result is. (More on this in the
section “Set Clear Expectations” on page 151.)

Giving very specific instructions is a way to ease into the process of delega-
tion and get more comfortable with it. But it shouldn’t always be your default
strategy. As you get more into the habit of delegation and gain more trust in your
team members, your guidelines should become more high-level. Focus on what
the outcome should be, share the information you already have on the task, agree
on a timeline, and leave the rest to them. Give them more autonomy to figure
out how to address the task, who to talk to, and how to approach the solution.
You might be surprised by how people can positively surprise you when given
the chance.

When you give others the space to add their own touch to a task, they often
come up with better solutions than you might have. They have a more objective
view of the problem or maybe a different experience to draw from. A lot of great
things can come from letting people put their own spin on the task. They’re more
motivated because they can get creative, instead of just following a list of steps,
and the solution they come up with could be even better than yours, ultimately
benefiting the entire team. And keep in mind that whatever good work your team
produces reflects positively on you as a tech lead. This has happened to me.

There was a time when I delegated a complex task of optimizing a perfor-
mance bottleneck in our application. I had initially thought of a solution that I
thought would be the best approach, but one of the developers on my team came
up with an alternative method. She suggested a faster, more efficient solution
that was more streamlined than my own idea. After reviewing it, I realized that
her approach was not only faster but also easier to implement with fewer changes
to the existing codebase. The result was a performance boost that exceeded our
expectations in both speed and stability, and she felt more empowered because
she was able to take ownership of the solution. It made me realize that some-
times stepping back and trusting the team can lead to even better outcomes than
I had initially anticipated.

This brings me to the point that while delegation starts with providing clear
expectations, it also grows into empowering your team. Trusting them with
autonomy can lead to great things.

“IT’S QUICKER AND EASIER TO JUST DO IT MYSELF”

As a tech lead, there’s always that one task you’ve been doing for what feels like
forever because you know how to do it best. Maybe it’s debugging the CI/CD
pipeline when it fails, because you’ve been in the team the longest, were there

DELEGATING | 161

when it was first set up, and know all its moving parts. You’ve done it a dozen
times, it doesn’t break often, and fixing it usually takes only 15 minutes. It’s
easier to just take care of it yourself rather than delegate it to someone else. It’s a
scenario most of us have been in: feeling like it’ll just take too long to explain to
someone else, and you can knock it out in half the time.

But that 15-minute fix comes at a cost. Every time something breaks, it
derails your day. Beyond the disruption, context switching, and handling some-
thing that could easily be done by someone else in the team, you are also putting
your team at risk. If the issue happens while you’re on vacation, out sick, or just
unavailable, your team is blocked from deploying. They’re stuck, unsure where
to start, and delivery stalls. Also, by always being the one to jump in and fix it,
you’re creating a knowledge silo; no one else gets the chance to learn the process
or improve upon it.

Now, let’s say you pass the task on to someone else. Here’s how you could
approach it.

During your next standup, say something like “I’ve been handling CI/CD
issues when they pop up, but I’d like to teach someone else how to manage
them. Who’s interested?” You’ll likely get a volunteer who’s eager to grow in that
area.

Alternatively, bring it up in a one-on-one. If you notice someone who’s
curious or looking for a new challenge, you might say: “I usually take care of this,
but I think it’s a great opportunity for you to learn. Want to pair on it this time?”
That way, you’re not just delegating a task; you’re giving them space to grow and
build confidence in a new skill.

Imagine next week, the issue comes up again. Instead of jumping in solo,
you spend 30 minutes pairing with them to fix it, or better yet, record a walk-
through or help them document the process. Maybe you’ll spend another 30
minutes answering follow-up questions. But once that knowledge is shared,
the task is no longer solely yours to manage. You might even encourage them
to share what they’ve learned with someone else in the team, spreading the
knowledge even further. Over time, your team becomes capable of handling it
independently. It might take a little effort up front, but soon enough, you’ll no
longer have to worry about it. The delivery risk will be removed and your team
will be stronger for it.

Delegating tasks like this may take effort up front, but the long-term payoff
is clear: your team becomes more capable, confident, and independent. You’re

162 | LEVELING UP AS A TECH LEAD

investing in your team’s resilience. Ultimately, that’s the job of a great tech lead:
scaling both your impact and the success of your team.

AFRAID OF LOSING THE CREDIT

This fear is common but often unspoken. Many tech leads hesitate to delegate
because they worry that if they’re not the one directly producing the work, their
contributions will go unnoticed. They fear that their impact will be invisible, that
leadership or peers will recognize only the person who completed the task, not
the one who made it happen.

I want to start by saying that this is a very normal fear and nothing to be
ashamed of. The reason is simple: as individual contributors, tech leads were
used to full ownership of their work, the outcomes, and all the praise that comes
with it. This is how they’ve grown, how they’ve been evaluated, how they’ve built
their careers. Promotions and recognition have always been tied to what they did,
not necessarily what they enabled others to do. Shifting away from this mindset
is complicated and takes time.

If this fear resonates with you, here’s a story that might feel familiar. A
tech lead I know was working on a critical performance optimization for their
product. The issue had been on the radar for months, but due to other priorities,
she hadn’t been able to focus on it. When the time finally came to address it, she
had a clear idea of how to tackle the problem but decided to delegate the task to a
senior developer on the team so that it wouldn’t be delayed any longer.

She outlined the approach, provided guidance on what to look for, and even
suggested a few potential solutions based on her prior research. She checked
in regularly, helped troubleshoot blockers, and refined the approach when neces-
sary but made a conscious effort to let the developer take ownership.

A few weeks later, the developer successfully implemented the optimization,
and the results were impressive: query response times improved by 40%, and
system stability significantly improved. When the work was presented in a
company-wide demo, leadership and peers applauded the developer for his great
work. The team was also recognized for solving a long-standing problem, and the
developer even got a personal shoutout from leadership in an all-hands meeting.

The tech lead, however, received no direct recognition. The developer per-
sonally thanked her, but she would have liked others to know how she had
guided, mentored, and provided solutions behind the scenes. While she was gen-
uinely happy for the developer, she couldn’t shake the feeling of being invisible
in the process.

DELEGATING | 163

This situation is exactly why many tech leads struggle with delegation. It’s
hard to let go when you fear that your impact will go unnoticed.

But after some time, she started to see things differently. In her following
one-on-ones with stakeholders and managers, she heard things like “That was
a great achievement your team delivered. Sounds like you’re doing a great job
leading them and prioritizing tasks like this” or “I heard you had something to
do with it.”

She realized that the credit did come back to her, just in a different way than
she was used to. And when it came time for performance reviews, she wasn’t
writing, “I improved system performance by X%” but rather, “Led an initiative
that improved system performance by X%.” That subtle shift in framing made all
the difference.

As she continued to delegate more, leadership started recognizing her not
just as an individual contributor but as someone who was building and enabling
a strong, capable team. That’s when it clicked: true leadership isn’t about individ-
ual credit; it’s about scaling impact. The fact that her team could execute at a high
level without her needing to do everything herself was the real win.

As a tech lead, your success is no longer measured by the number of tasks
you complete. Your value isn’t tied to how much you deliver personally but how
much your team delivers. That’s what your stakeholders and leadership care
about.

A big part of transitioning to leadership is understanding that it’s not about
you anymore. Your results are now your team’s results. This shift requires mov-
ing from an I mindset to a We mindset:

• Instead of doing it yourself, empower your team to take ownership.•

• Instead of controlling every detail, focus on making your team more auton-•
omous.

• Instead of optimizing for the best short-term result, optimize for sustaina-•
ble long-term growth.

• Instead of constantly checking up on or redoing your team’s work, trust•
them and provide guidance when needed.

• And most importantly, instead of just taking accountability when things go•
wrong, share the credit when things go right.

164 | LEVELING UP AS A TECH LEAD

In the situation mentioned earlier, the tech lead was very involved in the
success of that performance optimization. But the best part is that, as a tech lead,
you also get credit for things you weren’t even directly involved in. Anything your
team delivers is a reflection on you. Whether you were closely involved in the task
or not, you will always be associated with the results of your team. The credit
might not be instant or as direct as when you were an individual contributor, but
it’s there. And more importantly, the impact of your work is multiplied by the
people you lead.

Key Takeaway

Stepping into a tech lead role means redefining how you create impact. Your
value isn’t tied to doing everything yourself; it comes from how well you guide
and support your team to succeed.

Delegation plays a central role in that shift. When you delegate effectively,
you create space for your team to grow, take ownership, and develop confidence.
At the same time, you gain the bandwidth to focus on higher-level priorities like
team alignment, system design, and long-term strategy.

This shift can feel uncomfortable. It takes time to build trust in others and
in your own ability to lead without micromanaging. You may feel the urge to stay
involved in every detail, especially if you’re used to being the go-to person for
execution.

But strong leadership means creating an environment where great work
happens through others. When you invest in delegation, you’re investing in your
team’s strength and in your own evolution as a leader. That’s what unlocks real,
sustainable impact.

DELEGATING | 165

Building and Scaling
Tech Teams

Besides building relationships, running one-on-ones, providing feedback, and
growing people through delegation, which are the foundational responsibilities
of a tech lead to ensure smooth day-to-day team operations, you’ll also take
on broader team-building responsibilities. These include recruiting new team
members, onboarding them effectively, and conducting performance reviews, all
while shaping the team’s culture and supporting its growth.

In this chapter, scaling doesn’t just refer to growing your team in size; it’s
also about taking your team to the next level in terms of capability, structure, and
effectiveness.

I’ll share practical guidance on these aspects of the role, drawn from my own
experience. You might face these responsibilities sooner than you expect, and
being unprepared can slow down your team’s momentum or lead to avoidable
friction.

I’ll also cover three key challenges that often come up when building and
scaling tech teams: building an onboarding process from scratch, enabling effec-
tive collaboration, and addressing underperformance when it arises.

These challenges are complex, but they’re also solvable, with the right mind-
set, tools, and systems in place. This chapter aims to give you a starting point to
tackle them confidently and proactively as your team grows.

Recruiting and Onboarding Developers

The amount of effort you’ll need to invest in recruiting and onboarding depends
on factors such as the size of your team and the reason for the opening, whether
you’re building a new team from scratch, scaling an existing one, or backfilling

167

| 7

for someone who left. While these tasks might not be part of your day-to-day
work, they become a key focus when the need arises.

In more established teams, recruitment may come in waves, triggered by
new projects, team members leaving, or evolving business needs. Sometimes,
the hiring need isn’t about growth but about balance, bringing in the right
mix of experience levels, skills, and interests to ensure strong team dynamics,
well-rounded coverage, and no one being stretched too thin.

As a tech lead, your level of involvement in hiring depends greatly on your
company’s size and structure. In some organizations, tech leads are expected
to co-own the process alongside engineering managers or internal recruiters.
In others, you might simply provide input at key stages, such as designing the
technical evaluation or participating in final decision making.

Even when you’re not leading the process end to end, your input remains
critical. You’re often best positioned to assess a candidate’s technical fit for your
team’s specific work, how well they’ll mesh with the team’s culture and ways of
working, and whether they bring complementary skills or perspectives.

You may also be asked to help shape or adapt existing hiring processes by
refining interview rubrics, identifying gaps in the evaluation loop, or helping to
clarify what “good” looks like for a particular role. And while you might not be
the one pushing the process forward alone, you’ll still need to ensure it aligns
with your team’s needs and timelines, and that whoever joins is set up to succeed
from day one.

This section will help you step confidently into this responsibility, covering
what to focus on when interviewing and how to design an onboarding process
that supports both the new hire and the team as a whole.

IDENTIFYING TEAM NEEDS

A balanced team is one that meets the needs of the organization while staying
effective and growing sustainably. It’s about having a good mix of experience
levels: junior developers, mid-level developers, senior developers, and leads (tech
leads, staff engineers, principal engineers) so that responsibilities are covered
without gaps or overload.

When a team lacks this balance, problems start to appear.
Many businesses assume that a team made up entirely of senior engineers

and leads will run smoothly with fewer issues. In reality, that setup brings its
own challenges. With too much seniority, responsibilities can start to overlap,
leading to inefficiencies and, at times, conflicts over ownership. For example,
when multiple senior engineers all want to take the lead on a new initiative,

168 | LEVELING UP AS A TECH LEAD

it can create competition and friction instead of clear direction. Without clear
role distribution, decision making can become slow and contentious, impacting
overall team productivity. Everyone can do everything, and everyone is expected
to do the same things.

This can go in two directions. One possibility is long conversations and
debates whenever a decision needs to be made, as everyone has experience
and a strong opinion on how things should be; seniors tend to be particularly
opinionated. The other outcome is that some people become unmotivated and
hold back their input because they feel there isn’t enough space for their voice to
be heard.

Also, everyone tends to aim for the same career advancements. Seniors
often aspire to move into staff engineer or principal roles, but there are usually
limited opportunities for these career advancements. This increased competition
can lead to frustration and stagnation, making some individuals feel stuck or
demotivated. This means more competition and less opportunities for upscaling.
This can quickly demotivate people, causing them to become complacent, stop
pushing themselves, or, in some cases, burn out or leave altogether.

There’s also the issue of pressure: when everyone is senior, some may
hesitate to ask questions they consider basic or challenge their peers, fearing they
“should already know this.”

Junior engineers, on the other hand, bring fresh perspectives. They ask
questions that challenge assumptions and encourage rethinking long-standing
practices because they want to learn. They might also see activities like cleaning
feature toggles as interesting and as an opportunity to learn something new,
which will make them prioritize them, making it a win for the whole team,
whereas seniors might find it boring. A team without juniors might lose out on
this energy and innovation.

Another downside to having a team of only very experienced members is the
lack of mentorship opportunities. If there are no less experienced devs to mentor,
senior engineers miss out on developing leadership skills. I once saw a team
where all the engineers were senior-level really struggling to make decisions.
While technically strong, they often got stuck debating architectural decisions for
too long. When they brought in junior developers, explaining concepts to them
forced the seniors to clarify their thinking, leading to faster and better decision
making.

On the other end of the spectrum, a team made up entirely of less experi-
enced engineers faces different struggles. Without experienced team members to

BUILDING AND SCALING TECH TEAMS | 169

learn from, they rely on trial and error, which slows down progress and increases
mistakes. This also puts a huge burden on the tech lead, who becomes the
only source of guidance. Without additional experienced engineers to help set
standards, code quality and architecture will suffer.

I know a startup that decided to hire only junior engineers to cut costs.
While they were enthusiastic and quick learners, they struggled with structuring
their codebase efficiently. Without experienced engineers to guide them, they
ended up with an overly complex system filled with redundant logic, making
maintenance and scaling the business difficult. Eventually, the company had to
bring in senior engineers to refactor large parts of the code, costing more time
and resources than if they had built a balanced team from the start.

To build a truly balanced team, you need to think beyond just roles and
titles. A balanced team means having a healthy mix of experience levels, skill
sets, interests, and motivations. This kind of diversity brings many advantages:
broader coverage of your product’s needs and greater innovation through varied
perspectives.

For example, in a full-stack team, some people might prefer frontend work
while others are more interested in infrastructure. This balance ensures that
different areas of the system get proper attention. This does not mean creating
knowledge silos; it’s just about having people who will go the extra mile when it
comes to that particular topic because they are more interested in it.

But achieving this balance requires intentionality. Start by asking yourself:
What problem am I trying to solve? Are there skill gaps on the team? The good
news is that answering these questions and deciding how to move forward is a
shared responsibility. You’ll work closely with your manager, product managers,
and other key stakeholders to make these decisions together and ensure the team
is set up to deliver effectively.

If the issue is experience, consider whether some of your junior engineers
are ready to take on more responsibility. Promoting from within can inject new
energy into the team while solving capability gaps. If the issue is a lack of specific
technical skills—perhaps your team is about to adopt a new technology that no
one is familiar with—this might require hiring externally or temporarily bringing
in experts from other teams to share knowledge.

Don’t just default to thinking, “I need two more seniors.” Instead, reframe
the question: “What outcomes are we missing because of the current imbal-
ance?” Maybe the team is too quiet and lacks fresh perspectives. In that case,
bringing in enthusiastic junior talent can help. Or maybe the team debates

170 | LEVELING UP AS A TECH LEAD

endlessly without clear decisions, pointing to a need for stronger leadership or
clarity.

Also, keep in mind that every team is different. They’re at different stages of
growth and have unique challenges. When joining or starting a new team, the
key is to assess where they are right now and what’s holding them back. Once
you understand that, you can decide whether the answer is promotion, hiring,
restructuring, or something else.

The best part of a well-balanced team is that it creates a strong learning
culture. Juniors have mentors to guide them. Seniors and leads get leadership
opportunities. The tech lead can focus on strategy instead of being the sole
source of knowledge. And with diverse perspectives in the mix, the team
becomes better at solving problems and thinking critically about its work.

EFFECTIVE RECRUITING AND INTERVIEWING STRATEGIES

At some point as a tech lead, you’ll find yourself hiring people for your team. The
level of your involvement may vary depending on the company, but you should at
least be aware of the process and know what to expect. Here are some strategies
that can help you recruit and interview tech candidates more effectively:

Get clear on why you’re hiring
You might think, “Obviously, we need more people.” But take a moment
to get specific. Are you hiring because someone left and there’s a team
size quota? Because you’re starting a new initiative and need to build a
team from scratch? Because you’re overloaded with work and the current
team can’t keep up? Or maybe you’re missing a key skill set or trying to
rebalance your team across experience levels? The answer to this question
shapes everything: how you interview, what you look for, and how the new
hire will integrate. I’ve seen engineers struggle when they join a team with
vague expectations. And when that’s the case, guess who they turn to for
clarity? You. That lack of alignment not only frustrates them but slows
everyone else down.

When you’re clear on why you’re hiring, it becomes much easier to
answer that common interview question: “How will I contribute to the
team?”

Get clarity on the whole process
Even if you’re not involved in every step of the hiring process, it’s incredi-
bly useful to understand the full journey a candidate goes through. Before
jumping into interviews, take some time to familiarize yourself with the

BUILDING AND SCALING TECH TEAMS | 171

entire flow. Look for any documented processes and have a check-in with
the HR person responsible for the process and work closely with this per-
son to understand what each stage looks like, where you fit in and what’s
expected of you, how you will track candidates and feedback, and how you
will collaborate during the process. To get even more context, jump into a
quick conversation with another tech lead who’s been part of recent hiring
rounds.

This broader view will help you prepare for candidate questions, and
the close collaboration with HR will make the process smoother on all
sides but also might trigger some ideas for improvement of the overall
process.

Write a job description that reflects reality
Sometimes you get a boilerplate job description handed down from HR or
a company-wide template. If you are interviewing for your team and can
influence or adjust it, absolutely do it. Add context that’s specific to your
team. What problem are you solving? What stage is your team at? What
kind of collaboration do you expect: do you pair regularly, do you work
async, are there on-call rotations? What are the must-have technical skills
and the nice-to-haves? When candidates understand the real picture, you
attract people who are both more qualified and more enthusiastic about
your specific context, not just “a backend role somewhere.”

Even if you’re conducting interviews that aren’t directly for your team,
like contributing to a company-wide hiring pipeline or helping out another
team, don’t overlook opportunities to improve the process. If you notice
something that could be better, share your feedback with HR or the hiring
coordinator. Whether it’s a gap in the interview loop, unclear evaluation
criteria, or a misalignment between job descriptions and reality, your input
can make a big difference. Improving the hiring process benefits not just
your team but the entire organization.

Make the process inclusive (on purpose)
Inclusion doesn’t start in the interview room. It begins with the job
description and runs through every step of the hiring process.

Even small details, like how you write a job ad, can influence who
applies. Certain phrases or tone choices can unintentionally discourage
women or underrepresented candidates from applying.

172 | LEVELING UP AS A TECH LEAD

Interview format matters too. A two-hour whiteboard session in front
of multiple interviewers might feel standard to some but intimidating or
exclusionary to others. That’s why flexibility matters.

Ideally, your process offers a few different options and adapts to the
needs of individual candidates. For example, someone with caregiving
responsibilities might prefer the flexibility of a take-home task. Take-home
tests, pair programming sessions, and async exercises all have their pros
and cons, and no one format works for everyone.

That said, adapting the process to each candidate takes coordination
and effort. It requires alignment across the hiring team and more flexibility
in scheduling, which is why only a handful of tech companies have been
experimenting with this kind of customization so far.

But even if you can’t offer this level of flexibility just yet, it’s worth
rethinking your current approach. Instead of sticking with “This is how
we’ve always done it,” start small. Test changes. Pay attention to the candi-
date experience.

Also, you can only hire a diverse team if you’re starting with one.
Homogeneous teams tend to hire in their own image, even unintention-
ally. If your interview panel lacks diversity, try borrowing interviewers
from other teams or departments, especially those who can bring different
perspectives. You can also introduce external tools to help reduce implicit
bias in your filtering and evaluation process. Injecting diverse voices into
hiring decisions at every stage makes it far more likely you’ll build a team
that reflects a broader range of experiences and ideas.

Your hiring process should aim to get the best out of each candidate
by creating a fair, inclusive environment that mirrors the actual work of the
role, without introducing unnecessary barriers.

Keep an open mind when interviewing
We all carry biases, even if we don’t realize it. It’s very natural to gravitate
toward people who share your background, your interests, your career
path. But that mindset can really narrow your field of view. You risk
overlooking someone who could bring fresh ideas, different experiences,
or complementary skills to your team. Not only that, but you slow down the
process because your bar becomes too specific.

The best teams aren’t made up of clones; they’re made up of people
who cover each other’s gaps. So when you’re interviewing, pause and

BUILDING AND SCALING TECH TEAMS | 173

reflect on what you’re actually evaluating. Are you looking for familiarity,
or for someone who could challenge your assumptions in a good way?

Involve the whole team
Hiring shouldn’t rest solely on your shoulders. The team will work with
the new person, so they should share responsibility in choosing them. That
shared ownership often leads to better hires and a stronger team culture
overall.

Involving the team doesn’t mean the candidate needs to meet every
single person during interviews. But everyone should have a chance to
contribute to the process. That might mean helping draft the job descrip-
tion, participating in technical interviews, or leading culture interviews.
A common trap is letting only the tech lead or senior engineers handle
interviews, which misses out on a bunch of benefits. When more people
are involved, you can run interviews faster and avoid bottlenecks.

It’s also a growth opportunity. Interviewing builds soft skills like ask-
ing thoughtful questions, really listening, and clearly explaining complex
ideas. Plus, more voices mean a better chance of spotting whether some-
one is a good culture fit. And from the candidate’s side, it makes the
process feel more authentic, as they’re not just meeting the leadership;
they’re meeting the team they might actually work with.

Constantly improve as an interviewer
Interviewing is a skill like any other. Just because you’re expected to jump
into it doesn’t mean you’re instantly good at it. And that’s totally OK. Start
small. Reflect after each interview: Did the conversation flow naturally? Did
you find yourself repeating questions or running out of time? Were there
moments where you weren’t sure what to ask next? Talk to someone with
more interviewing experience and bounce your challenges off them. Ask
how they would approach the situations you found tricky.

If you’re pairing during interviews, like we used to do at Thought-
works, take advantage of that setup. Ask your partner for feedback. Did
they notice anything you could do differently next time?

And don’t forget the most direct source of feedback: the candidate.
While this might be new for your company, or not part of the default
process, it’s worth exploring. Sometimes it requires building a stronger
relationship with HR or recruiting so that feedback isn’t filtered or lost.
Hearing how the interview experience felt from the candidate’s side can
uncover blind spots and help you improve faster.

174 | LEVELING UP AS A TECH LEAD

Improving your interview skills is good for your team and for you.
The more prepared and confident you become, the less stressful and more
effective interviews will feel.

Get involved in sourcing candidates
It’s easy for tech leads to take a backseat when it comes to sourcing,
assuming it’s entirely the recruiting team’s job. But you can have a real
impact here, and the earlier you get involved, the more influence you have
over the type of candidates coming through the pipeline.

Start by thinking about your own network. Are there people you’ve
worked with before or know from the community who might be a good
fit? Reach out. Be vocal about hiring when you attend meetups or industry
events. A simple post on LinkedIn sharing what your team is working on
can go a long way.

You can also help by reviewing inbound applications more intention-
ally, flagging promising candidates early on, or sharing feedback to refine
the sourcing criteria.

The more you engage, the better the odds you’ll attract people who are
genuinely excited about your team and the problems you’re solving.

The more you invest in the hiring process, from sourcing to interviews to
team involvement, the more you reduce the risk of hiring the wrong fit and
having to go through the whole thing again. Being intentional up front saves you
a lot of time, energy, and disruption down the line.

ONBOARDING EFFECTIVELY

A smooth onboarding process is a key part of a high-performing team and will
have a great impact on your overall team success. A well-structured onboarding
process enables new hires to ramp up quickly, work autonomously, and feel like
valuable contributors from day one. It ensures they gain mastery over their daily
tasks and develop a solid understanding of the team’s history, expectations, and
ways of working. Yet, it’s often treated as an afterthought in tech teams, leading
to unnecessary confusion and frustration.

I’ve seen people leave companies because of a poor onboarding experience.
A staff engineer once joined a large tech company only to find no clear documen-
tation, no connections between systems, and no defined expectations for her role,
leaving her frustrated and unsupported. Six months later, she left. And she’s not
alone. Many companies underestimate how critical those first few months are for
retention and productivity.

BUILDING AND SCALING TECH TEAMS | 175

Given the fast-changing nature of the tech industry, ensuring new joiners
ramp up quickly and contribute effectively has never been more important.
A great onboarding process means guiding new hires through a structured,
engaging experience that helps them integrate smoothly, rather than simply
overwhelming them with documentation.

The best onboarding experiences share common characteristics. They are
intentional, structured, and involve the whole team. In the following sections,
we’ll go over what they look like in practice.

Start onboarding before day one

Onboarding begins the moment an offer is accepted. A simple welcome email
with practical details, like what to expect on the first day, an agenda, and key
contacts, sets the tone. For remote employees, laptops and other equipment
should arrive before their start date. For in-office hires, everything from desk
setups to system access should be ready. Account setups should be completed in
advance, or at the very least, there should be a clear process for requesting access
to essential tools, so new hires aren’t stuck waiting during their first few days.

While these tasks may technically fall under other departments, it’s still
valuable for tech leads to be aware of the pre-day-one experience. It directly
impacts how a new hire shows up on their first day: whether they feel confident,
welcomed, and ready to contribute or confused and disconnected.

If you notice gaps in this early process, don’t hesitate to offer feedback or
collaborate with the relevant teams to improve it. Even small improvements here
can make a big difference in how smoothly onboarding begins. One simple but
effective step you can own: keep a checklist of the essential tools, systems, and
services your new team member will need in their first weeks. This gives you
a quick way to double-check readiness and, if something is missing, helps you
guide the new hire to the right people who can unblock them.

Involve the whole team

As a tech lead, you don’t have to do all of this yourself; you just need to make
sure it gets done.

Too often, I see tech leads taking on the full burden of onboarding, prepar-
ing sessions, answering every question, and trying to manage it all alone. Not
only does this overwhelm you, but it also robs your team of mentoring opportuni-
ties and fresh perspectives on improving the onboarding process. When only one
person owns onboarding, it reflects a single viewpoint, and we all know that can

176 | LEVELING UP AS A TECH LEAD

be limiting. It’s a great opportunity to delegate (you can find the whole delegation
process in Chapter 6).

A common approach is assigning a buddy to the new joiner from day one
until onboarding is complete. A buddy is typically a peer, often on the same
team, making the process more personal and helping to fill in any gaps. They
take ownership of onboarding tasks, plan sessions, and provide day-to-day guid-
ance. Being an onboarding buddy gives new hires the support they need, and at
the same time, it offers engineers a valuable opportunity to grow professionally.

While a buddy can deliver all the onboarding sessions, I prefer involving
the whole team. In my teams, we split onboarding topics among different
members: high-level product overview, architecture, path to production, coding
environment setup, ways of working, and team values. Each person prepared
documentation, shared it with the team for feedback, and updated it accordingly
before presenting it to the new joiner. Even the product owner was part of the
process. This not only helped the new joiner meet the team and start building
relationships but also encouraged shared ownership of onboarding.

As a tech lead, make sure the buddy has time to prepare and support
onboarding. Expect that their usual workload will be reduced for the first few
weeks as they focus on helping the new joiner settle in.

Another way to involve the team in the onboarding process is to have them
pair on tasks with the new joiner. Pairing is one of the fastest ways to get a new
joiner up to speed and integrated into the team. These sessions naturally become
mini knowledge exchanges, as they help the new joiner explore the codebase,
understand past decisions, and learn any quirks in the tooling. The best part is
that no extra preparation is needed, just a task to work on and time to collaborate.

Define a clear plan with actionable steps

A well-structured onboarding process includes a clear plan with actionable steps
to help new joiners ramp up quickly. In the first few days, they should get an
overview of essential topics, from how the company operates to the tools they’ll
use to ship code.

A good onboarding schedule includes several key sessions:

Company values and mission
Understanding the broader vision

Team ways of working
How the team collaborates and communicates

BUILDING AND SCALING TECH TEAMS | 177

Product definition
The team’s role within the company and its impact

What the team is building and why
The purpose and goals behind their work

Many teams skip these high-level sessions and jump straight into technical
details, but this foundational knowledge is crucial. Once the big picture is cov-
ered, onboarding should move into a few key areas:

Architecture overview
How the system is structured

Path to production
Steps to deploy code successfully

Pairing sessions
Hands-on guidance for setting up the development environment

To support these meetings, provide documentation that new hires can refer-
ence later, including the following:

Architecture diagrams
A visual representation of the system

Path to production guide
A step-by-step breakdown of deployments

Product documentation
Key details about what the team is building

Tooling overview
The technologies and platforms used

Setup instructions
How to configure their local environment and access essential tools

This documentation can quickly become outdated. Maintaining accurate,
up-to-date docs requires discipline, but when it’s treated as a shared team respon-
sibility, the effort becomes much more manageable. And this is one of the few
types of documentation truly worth investing in keeping up-to-date, as it has a
direct impact on how quickly and smoothly new team members can get up to
speed.

178 | LEVELING UP AS A TECH LEAD

Having a structured onboarding guide ensures new joiners have all the
information they need to become productive quickly.

Track progress

Onboarding is a team effort, and tracking progress should reflect that. My
approach is to create a task on the main team board, assigning both the new
joiner and their buddy as owners. This makes onboarding visible and ensures
shared responsibility. After all, it affects the whole team and our delivery; even if
a buddy has been assigned, it’s not just one person’s job.

By having this task on the board, the new joiner is included in the team’s
workflow from day one. They have a task to track, give updates on, and, most
importantly, use as a way to raise blockers in standups. As we all know, it can
be intimidating for a new hire to speak up and ask for help. This setup makes it
easier and encourages them to engage early.

Another benefit is that it immediately gives them a sense of contribution.
Talking about onboarding in stand-ups reinforces that they’re part of the team
and helps them build confidence as they navigate their first few weeks.

Continuously improve

You can’t improve what you don’t measure. Without tracking the impact of
changes, you won’t know if your onboarding process is actually getting better or
making things worse.

Some teams track onboarding efficiency by measuring how quickly a new
hire starts contributing to the codebase. For instance, getting a pull request
merged in the first week can signal a few positive things: a solid CI/CD system
with guardrails, a culture of frequent iteration, a fast-moving organization, and a
practical onboarding process that gets people working quickly.

In fact, some teams go as far as encouraging new hires to ship code to
production on their very first day. And while this is a popular idea in tech circles,
I’m personally not a big fan.

Shipping something on day one can demonstrate maturity in your systems
and processes, but it’s not always the best experience for the person doing it.
For some, it’s an exciting challenge. For others, it creates pressure and sends the
wrong message, like that speed is more important than integrating in the team or
understanding the context.

There are easier, lower-pressure ways to introduce someone to the codebase,
like pairing or helping them set up their environment.

BUILDING AND SCALING TECH TEAMS | 179

One practice I often encourage is giving new joiners full access to update
onboarding documentation, especially setup guides. These are typically the first
things to become outdated as tools evolve. Some teams hesitate to allow this,
worrying that someone without full context might make incorrect edits. But who
better to spot unclear steps than someone going through the process for the first
time? It’s a chance to make the process clearer and give them an immediate
sense of ownership and involvement. If you’re concerned about accuracy, simply
ask their onboarding buddy or a more experienced team member to review
changes before they’re finalized.

Of course, just because someone pushes code doesn’t mean they’re fully
onboarded. They still need to meet the team, understand the product and its
purpose, get to know the system, and learn how the team works.

That’s why I prefer other metrics for tracking onboarding efficiency: ones
that reflect the full experience.

For example, you can track the time it takes to complete an onboarding
checklist: attending onboarding sessions, gaining access, reading the starting
documentation, and setting up the development environment.

Others use lightweight surveys or informal conversations to gather feedback.
Was the experience smooth or frustrating? Did they feel supported? Whether or
not this is your primary metric, I highly recommend building in feedback loops.
Ask new hires to note what felt confusing or missing while the experience is still
fresh.

The key takeaway: there’s no one-size-fits-all metric. What matters is that
you’re tracking something. Whether it’s checklist progress, feedback, or some-
thing else, choose a signal that fits your team and use it to learn and improve.

Because the real issue is that many teams don’t track onboarding at all.
They simply assume “it’ll get done when it’s done,” leaving them with no way to
estimate its impact on the team, delivery timelines, or overall efficiency.

The goal is to recognize onboarding as a system worth improving, then
gather feedback, measure progress, and iterate on it continuously.

Building a High-Performing Team

Having, or better said, leading a high-performing team is the ultimate proof of a
great tech lead. It’s every tech lead’s dream to have a team that enjoys working
together, feels motivated about what they’re building, and runs like a well-oiled
machine. A team that’s seen as reliable, efficient, and capable of consistently
delivering impact.

180 | LEVELING UP AS A TECH LEAD

But it’s also one of the hardest things to achieve.
Most teams don’t struggle because they lack talent or tools. They struggle

because they have the wrong idea of what a high-performing team actually is,
and more importantly, what behaviors, principles, and habits are needed to build
one. That’s why in this section, I want to break some of the most common myths
around high-performing teams and instead give you a clear, practical view of
what “high-performing” really means and how to get there.

I’ll start by redefining what a high-performing team truly looks like, beyond
just fast delivery or coding velocity. Then, I’ll walk you through the five key
dynamics that make these teams successful, how to build and protect a healthy
team culture, how to create and maintain psychological safety, and finally, how to
evaluate if your team is actually high-performing.

High performance goes beyond output; it’s shaped by how your team works,
thinks, collaborates, and grows. As a tech lead, you play a critical role in enabling
that growth.

UNDERSTAND THE FIVE DYNAMICS OF A HIGH-PERFORMING TEAM

Google conducted one of the most well-known studies on effective software
engineering teams, known as Project Aristotle. Starting in 2012, Google spent
two years studying 180 teams, 115 in engineering and 65 in sales, examining over
250 different team attributes. The goal was to identify what makes some teams
more successful than others. Instead of focusing on individual talent, the study
found that how team members interact with each other is the most critical factor.

Through this research, Google identified five key dynamics that define
high-performing teams: psychological safety, dependability, structure and clarity,
meaning, and impact. When I first came across these, I immediately reflected
on how they applied to a team I led, one that was consistently described as
high-performing.

Psychological safety

Having psychological safety in a team means that everyone feels safe to share
ideas, challenge decisions, take ownership without fear of judgment or punish-
ment, openly express their thoughts, admit mistakes, and ask questions without
hesitation.

In our team, psychological safety meant we had a culture where speaking up
was encouraged, and no one was afraid to challenge the status quo. Even though
we came from different backgrounds and cultures, openness was a core part of
how we worked. If something was bothering someone, they spoke up, whether

BUILDING AND SCALING TECH TEAMS | 181

https://oreil.ly/mUG1N

it was about blockers, frustrations, or disagreements. They were vocal with me,
with the team, and even with the client.

People asked “Why?,” “Why like this?,” “Why now?” constantly. Overcom-
munication became one of our most annoying and effective habits. We repeated
things as many times as needed, reinforcing ideas and clarifying misunderstand-
ings. There was no “You should already know this” or “Why are you asking this
now?”

This openness extended beyond our team. Because we were so transparent,
our stakeholders became more open and direct with us. Instead of vague conver-
sations full of political correctness, discussions were clear and straightforward.
We would hear things like “We need to go to market fast with this feature. We
will pay the price of tech debt in the next iteration,” and they actually followed
through when we later said, “This time we need to do it right.”

You can find more on this in the section “How to Create Psychological Safety
on Your Team” on page 188.

Dependability

A high-performing team is reliable: things get done, up to the standard of quality,
on time, consistently. This was one of the key pieces of feedback I kept getting
from our stakeholders: “I can rely on you. I know things will either be delivered
on time or I will know about any blockers or possible issues way ahead of time. I
don’t have to worry.”

We were consistently delivering value, and this came from always challeng-
ing the value of the work we were doing and constantly asking the why behind
it. Stakeholders knew that if we committed to something, it would either be
delivered on time or they would be informed well in advance of any issues.

People would take initiative. When a blocker or a problem arose, they would
reach out to other teams, talk to stakeholders, reach out to the whole company,
making use of #general channels, just to get the thing done. Getting approval
before acting was not our way. We were more of an “ask for forgiveness instead
of permission” group. While this tendency tended to provoke my anxiety, as
sometimes I felt like I was losing track of all the moving pieces, overall, their
proactiveness and autonomy benefited me greatly; I never felt like a bottleneck in
their way.

That reliability was fully embedded in how we operated internally. We could
rely on each other as a group: we made sure no one was ever blocked for long.
We used pair programming, knowledge-sharing sessions, and daily tech huddles
to prevent knowledge silos. Standups weren’t just status updates; they were about

182 | LEVELING UP AS A TECH LEAD

identifying blockers and helping each other move forward. We often said things
like “It’d be good if another pair took a look at this; we’ve been stuck for three
days and need a fresh perspective.”

We extended that same mindset beyond the team. We kept dedicated Slack
channels open with the teams who relied on us and made sure communication
stayed consistent and smooth. We were always available to support others, and
team members regularly jumped into conversations in other parts of the com-
pany when they had something valuable to add.

Even in a remote setup, we prioritized real-time conversations; for example,
we preferred a quick call over a long Slack thread. Not everyone agrees with
that approach, but I found that it created a sense of presence and dependability.
People knew we were there, ready to talk things through. Of course, for this to
work well, the calls had to be focused: we clarified the problem and outlined the
key questions in advance to respect everyone’s time. Whatever we discussed and
clarified on the call was then shared back in the Slack thread so everyone stayed
in the loop.

Structure and clarity

While adaptability was key, we also had well-defined processes to provide stability
and clarity. Flexibility allowed us to respond to change, but structure ensured
we weren’t reinventing the wheel every time. Everything had a clear structure:
delivery, deployment, onboarding, decision making, progress tracking, goals,
ways of working, growth, and roles definition.

I am a huge fan of documentation, so I constantly encouraged my team to
track changes on architecture diagrams, retro discussions, infrastructure changes
(tracked through an infrastructure-as-code process), and decisions. This made
onboarding a breeze, ensuring new team members quickly understood how
we worked and their role in it. It also kept our day-to-day running smoothly;
everyone knew exactly what was expected of them and what to focus on, which
enabled efficiency and speed.

Meaning and impact

I grouped these two concepts together because they overlap: they both refer to
the extent to which team members feel their work has a purpose and is making
a difference, whether in the organization or society. We all want our work to be
meaningful at some level, and we all know how important it is that people believe
in what they do. When people feel connected to the purpose of their work, it has

BUILDING AND SCALING TECH TEAMS | 183

a massive impact on motivation and engagement. This is a game-changer for a
tech team.

The mistake many companies make is involving developers too late in the
process, only after the product has been defined. But in our case, our PM
included us from step one, the initial brainstorming. We were part of the ide-
ation phase, free to ask questions and challenge assumptions. This is crucial
because developers are often assumed to be uninterested in the “why” behind a
product, when in reality, they often don’t see the value simply because they were
never included in the conversation.

Being involved from the start has two key benefits. First, the whole team
gains a deep understanding of why they are building something, who it helps,
what problem it solves, and why it matters. This alignment ensures that every
decision and line of code contributes meaningfully to the final product. Second,
team members see a clear connection between their daily tasks and the bigger
picture, making even routine work feel impactful.

Another common mistake is assuming that meaningful work applies only
to customer-facing features, revenue-generating initiatives, or socially impactful
projects. But different people find meaning in different things. In our case, we
worked on maintaining and migrating a huge monolith. Even though it was
the “money-maker” product of our client, it was still something that could feel
tedious for developers. What motivated us wasn’t its impact on revenue but the
technical challenge of understanding this massive system, improving its quality,
and migrating it without breaking anything. It was like solving a giant puzzle.

The same applies to platform teams. Because their users are internal teams
rather than customers, many struggle to connect their work to the end product.
But once they spend time with the teams using their tools and see the direct
impact of their work, their motivation increases significantly.

Doing impactful work is just the first step. Equally important is making
that work visible. I made it a habit to highlight my team’s accomplishments
and challenges in every possible setting. As a tech lead, you’re often the only
person from your team in the room, whether it’s with clients, executives, or other
stakeholders. That makes it your responsibility to represent your team effectively.
Show up prepared, with a clear understanding of progress, open questions, and
any blockers. Don’t just report status; advocate for your team and make their
contributions visible.

I encouraged my team to use every opportunity to make our work visible,
starting with showcases. One of the most effective examples was our quarterly

184 | LEVELING UP AS A TECH LEAD

client showcase. While many teams treated it as a checkbox exercise, throwing
together slides an hour before, I saw it as a powerful platform to highlight our
impact, especially to stakeholders and teams we didn’t interact with day to day.

So we treated showcases like any other deliverable. We added a dedicated
preparation task to our board, prioritized it, estimated the time it would take to
prepare, and planned it with clear expectations. We made sure to include context
about our team, any changes since the last quarter, a rundown of accomplish-
ments both big and small, the challenges we faced, and what was coming next.
Everyone on the team was involved, and we ran dry runs to stay within the time
limit and polish the delivery.

These sessions weren’t just about recognition, though the positive feedback
we received was motivating. They became moments of reflection and celebration,
a chance for the team to step back and appreciate what we had achieved together.
Over time, they also became a valuable way for team members to develop their
presentation and storytelling skills, which helped build confidence and visibility
across the organization.

This doesn’t mean we were perfect; no team is. Every time you solve one
problem, another appears. Overcommunication can be frustrating. Constantly
challenging each other could get exhausting. And as a tech lead, you never feel
like things are truly “smooth,” because if you’re focused on improvement, there’s
always something to work on. The key is keeping the bigger picture in mind,
questioning why you’re doing things the way you are, and being open to evolving
your ways of working. What made us efficient was our honesty, our ability to talk
things through, and our willingness to adapt, even when challenges came up.

In conclusion, a high-performing team is not defined by having the best
developers, making no mistakes, or always meeting deadlines, and it’s definitely
not about being perfect. Instead, it’s a group of people who care about each other,
work well together, and have a healthy team culture, as the team results are
deeply tied to how people collaborate, not just individual skills.

HOW TO BUILD A HEALTHY TEAM CULTURE

Team culture is how you work together, shaped by shared values, behaviors, and
team norms. It’s intangible and hard to measure, but it influences everything:
how decisions get made, how fast you move, how people communicate, and how
feedback flows.

While you can’t track culture with a single metric, there are clear signs when
something is off. In teams with a weak culture, trust is often missing. People
hesitate to speak up, avoid risks, and hold back feedback. Collaboration drops.

BUILDING AND SCALING TECH TEAMS | 185

Problems get pointed out, but no one steps in to solve them. Decision making
slows, and progress grinds down.

In contrast, a strong culture feels energized. People feel safe, take owner-
ship, offer feedback freely, and support each other. They challenge ideas without
fear and focus on making things better.

Whether you like it or not, every team has a culture. The question is whether
you’re shaping it intentionally or letting it form by accident. If your team’s
dynamics don’t reflect your values or expectations, the most effective way to
change that is to shape the culture from day one.

One of the most powerful ways to do that is by aligning on how you’ll
work together. Every time a new person joins, the team changes. Don’t assume
everyone shares the same expectations. Instead, make them explicit.

A simple and powerful tool is a “Ways of Working” session. This is a struc-
tured conversation you run when forming a new team or when major changes
happen. The goal is to agree on how the team will operate. This can include how
feedback is given, how decisions are made, how often you run retrospectives, and
anything else that shapes the team experience.

The intention of the session is surfacing assumptions. Write them down,
talk through them, and listen for disagreement. You’ll often uncover mismatches
you didn’t expect. That’s where the value is. For example, one person might
expect pull requests to be reviewed within a few hours, while another thinks 48
hours is totally reasonable. Or you might have different understandings of what
“done” means; does it mean merged or fully deployed to production? Clarifying
those early prevents future misalignment and gives you a shared foundation to
return to.

Teams aren’t static, so team processes shouldn’t be either. Every time some-
one joins or leaves, you have a new team. Dynamics, needs, and expectations
shift. What worked before might need rethinking. For example, when a new
team member joined, we realized our 9 AM standup clashed with their child’s
school drop-off routine. We discussed it together and moved it to 10 AM. Small
adjustments like this can go a long way in supporting inclusion, morale, and
team performance.

This document becomes an anchor. When things drift, feedback sessions
stop happening, or decisions start getting made in silos, you can return to what
you agreed on and ask the team, “Do we want to change this? Or recommit to it?”

186 | LEVELING UP AS A TECH LEAD

It also becomes a powerful onboarding tool. Instead of new hires guessing
how the team works or making assumptions, they can see the team’s expecta-
tions clearly from day one. It helps them integrate faster and more confidently.

You can even use this shared agreement in hiring. It gives candidates a
clear sense of what it’s like to work on the team and helps you assess fit more
meaningfully.

As you define and evolve how your team works, it’s critical to make sure
those processes are actually working for everyone, not just the loudest voices or
the most experienced members. Inclusion doesn’t happen automatically. It has
to be built into the way you run meetings, gather feedback, and make decisions.
Every process you design, like retrospectives, standups, one-on-ones, should be
intentionally inclusive. For example, when running retrospectives, use multiple
ways to gather input: out loud, Post-its, anonymous forms. People have different
communication styles, and a one-size-fits-all approach limits participation.

Here are some key processes every team should define and continuously
revisit:

Onboarding
This helps new members integrate quickly and understand how the team
works.

Hiring (if applicable)
The team’s values and ways of working should be reflected in how you
assess candidates.

One-on-ones between tech leads and each team member
These build trust, uncover blockers, and maintain alignment.

Standups
Daily or regular check-ins that highlight progress, blockers, and opportuni-
ties to help.

Progress tracking
A system that’s visible and understandable to both the team and stakehold-
ers. Avoid tools that are too technical or go unused. If nobody’s using it,
revisit or remove it.

Retrospectives
Structured reflection points to discuss what’s working, what’s not, and how
to improve generating improving actions.

BUILDING AND SCALING TECH TEAMS | 187

Even if your team is small or just getting started, having these foundations in
place makes a big difference. They don’t need to be complicated; they just need
to be intentional. Every process you define contributes to shaping a team culture
where people feel safe, supported, and set up to thrive.

HOW TO CREATE PSYCHOLOGICAL SAFETY ON YOUR TEAM

The first sign of a healthy team culture is that everyone feels safe to speak up,
ask questions, and take risks without fear of judgment. This kind of safety is
foundational to team performance. You can’t even begin to address other team
issues until it’s in place. But, as important as it is, creating it isn’t easy. In the
following sections, I’ll share some ways you can build it as a tech lead.

Act as an example

The best tool you have to shape your team’s culture is yourself. If you expect
people to behave a certain way, you have to consistently model that behavior.
Your actions speak louder than any values slide or process document.

As a tech lead, you set the tone more than anyone else. How you give
feedback, how open you are to criticism, how well you listen: these all send
strong signals to your team. While psychological safety is a shared responsibility,
your behavior sets the foundation.

Your team looks to you for cues, and the way you handle mistakes, feedback,
and collaboration directly shapes how safe others feel to speak up and contribute.
So constantly keep yourself in check: reflect on your behavior and actions and the
impact it has on your team, and adapt if needed.

Normalize failure

One of the best ways to build psychological safety is to change how failure is per-
ceived, both human failure (like making a mistake or not knowing something)
and system failure (like production incidents or process breakdowns). Mistakes
are inevitable in both areas. So instead of hiding them or punishing them, bring
them into the open and make learning from failure part of how your team works.

Encourage your team to take ownership of their mistakes and admit when
they don’t know something. Support them in taking risks and using failure as
a chance to learn and grow, instead of being afraid of how others might react.
And the best way to teach this is by doing it yourself. Start by admitting when
you don’t know something. A lot of tech leads feel pressure to always have the
answers, but showing your team that it’s OK to say “I don’t know” builds trust.
If they see you do it, they’ll feel safer doing the same. The next step is asking

188 | LEVELING UP AS A TECH LEAD

for clarification—“Can you please explain this again?”—instead of staying quiet.
Chances are, someone else in the room is feeling just as lost.

Own your mistakes. Say, “I’m sorry, I made a mistake.” Acknowledge what
happened instead of pretending it didn’t. Start small: share when you mixed up
a date or used the wrong variable. As that becomes more natural, you’ll get more
comfortable being open about bigger issues too. This creates space for others to
do the same.

Failure is one of the best opportunities for growth because we tend to stop
and reflect only when things go wrong. For example, in one of my teams, a
release unexpectedly took down a key part of the product. It was stressful at
the moment, but the team came together afterward to run a postmortem. That
session led to some of our best process improvements, from better automated
tests to tighter release checklists, that we might not have prioritized otherwise.

Postmortems are a great tool for learning, but they work only if you run
them with the right mindset. Instead of trying to find someone to blame, focus
on what went wrong. What failed in the process? What were the conditions that
led to the mistake? And how can we prevent it from happening again? The goal is
to make sure it doesn’t happen again, no matter who’s involved.

Let’s say someone broke production with a commit, and it took ages to revert
because your deployment pipeline is slow. Instead of pointing fingers, use that
moment to ask: how can we make this better for everyone? Maybe the pipeline
needs to be faster. Maybe you need to add feature flags so you can turn things
off quickly when something goes wrong. The point is to make recovery easier,
reduce pressure on individuals, and improve the system, not to blame someone
for triggering the problem.

Another great way to normalize failure is by creating a controlled environ-
ment where experimentation is encouraged and mistakes are easy to recover
from. For example, having a strong set of automated tests, an integrated devel-
opment environment, smooth rollback processes, and well-defined staging work-
flows that mirror production allows people to take action without the fear of
irreversible damage.

Some teams even run “game days,” structured exercises where a team mem-
ber intentionally injects a fault into the system and the rest of the team conducts
a mock incident response.

In one of my teams, we used a tool called Chaos Monkey, which was
designed to randomly shut down services in our production environment. While
it sounds risky, we used it carefully and intentionally to test the resilience of

BUILDING AND SCALING TECH TEAMS | 189

our systems and processes. It forced us to build more fault-tolerant architecture
and improved our team’s confidence in handling unexpected failures. You don’t
need to go this far to benefit from the same mindset. But aiming for this level of
trust in your systems, where failure can be tested safely, is a goal worth working
toward.

In a team where failure is normalized, people feel safer to experiment, speak
up, and take initiative. That’s how you build a team that learns fast, improves
constantly, and supports each other through the ups and downs of product
development.

Plan for failure, not just success

I remember this time my team was doing a huge migration from one system
to another. Everything seemed ready, but I had a gut feeling something was off,
something that stopped me from pulling the switch. I tried explaining my worry
to the team, and we double-checked everything, but I still couldn’t put my finger
on what exactly was wrong. So instead of endlessly checking again, we came
up with a different approach: preparing for failure as much as for success. We
shifted our thinking from “How do we avoid something happening?” to a set of
questions like “What if it goes wrong?,” “Who will fix it?,” “Can we roll back the
change?” We made a plan: who would be on call if things went wrong overnight,
who needed to be informed about the problem, what the financial impact could
be. We even flagged it to our PM: “Something might go wrong, but we’re ready
to handle it.”

Unfortunately, my hunch was right. Errors started rolling in during the
night. It took us a while to fix them, but we were ready. We had a plan. And
honestly, looking back, moments like that were great team-building exercises.
Everyone was focused on solving a common problem, everyone was equally part
of the decision, and it didn’t matter who wrote the commit; it mattered that we
agreed together to go for it.

It was also a great learning opportunity. We grew from it. We got better
not just at shipping code but at thinking ahead, at supporting each other under
pressure, and at owning the outcome together.

Also, by describing the worst-case scenario and having a clear plan to deal
with it, you make people less afraid, because the biggest fear is often fear of the
unknown.

How you deal with failure builds your character as a leader and shapes your
team culture. So learning how to use it right benefits everyone.

190 | LEVELING UP AS A TECH LEAD

Encourage honest feedback

Make feedback a key part of your team culture. It shouldn’t be something you
save for performance reviews; it should be part of how you work every day. When
feedback becomes normal, people get used to sharing what’s on their mind, what
bothers them, and what could be better. It helps build a habit of honesty.

You can also encourage people to use feedback in their day-to-day interac-
tions. When someone asks you how they can grow, don’t just give them your
input; point them to others who work closely with them and suggest they ask for
feedback there too. Or, when someone comes to you with an issue they’re having
with a team member, instead of jumping in to solve it for them, ask if they’ve
shared that feedback directly. More often than not, that conversation is exactly
what’s needed to move forward.

The more your team gets used to sharing feedback in real time, the more
comfortable they’ll be being honest with each other, and with you.

More on this in Chapter 5.

Encourage diverse perspectives

In a psychologically safe team, all perspectives are welcomed—not just tolerated
but actively encouraged. As a tech lead, this means your team’s day-to-day pro-
cesses need to be designed with inclusion in mind. From onboarding to delivery
rituals to performance reviews, every part of how your team operates should
support a wide range of people, not just those who already “get how things
work.”

The best teams work because their differences strengthen them. When peo-
ple bring different strengths, backgrounds, and perspectives, those differences
can fill gaps and elevate the whole team. As a tech lead, your role is to create the
kind of environment where that can happen: where differences are valued and
used well.

This starts by asking the team how they work best. Get a sense of how each
person prefers to receive feedback, what makes them feel comfortable sharing
ideas, and how they like to make decisions together. These conversations might
feel small, but they shape whether people feel heard, or invisible.

The onboarding experience is one of the earliest and clearest signals of
whether a team truly supports diverse perspectives. Without a good onboarding
process, the people most likely to thrive are those who’ve worked at similar
companies before. Everyone else, especially those coming from different indus-
tries, backgrounds, or cultures, starts at a disadvantage. For example, without

BUILDING AND SCALING TECH TEAMS | 191

high-quality onboarding, engineers joining a fast-moving tech company from a
non-digital-first company might struggle to find their footing in the first months
and be more likely to leave.

Building a psychologically safe team also means creating space for all
kinds of ideas, including the strange or unconventional ones. On my team,
we used to hold brainstorm sessions where the only rule was that nothing was
off-limits. Anyone could propose anything, no matter how wild it sounded. And
that’s exactly where some of our best ideas came from: the simple, elegant
solutions that we wouldn’t have considered in a more constrained or judgmental
environment.

Of course, welcoming diverse perspectives also means learning to handle
conflict. And while it might feel counterintuitive, conflict is actually a good sign.
It means people care. It means they’re comfortable enough to challenge each
other and raise concerns. When everyone always agrees or, worse, no one speaks
up at all, that’s when you should worry. Healthy teams debate. They wrestle with
decisions. And they emerge stronger because of it.

Inclusive collaboration also extends to technical practices like estimation.
Too often, estimates are made solely by the most senior engineers on the team.
But complexity isn’t one-size-fits-all; what feels simple to a senior might be far
more time-consuming for someone with less experience. If the task ends up in
the hands of a junior engineer, will the original estimate still hold? Involving
the whole team in estimation discussions helps surface these differences early,
promotes learning, and results in more accurate, realistic plans. When you make
space for open conversation around complexity, everyone’s perspective has value.

Overcommunicate

Overcommunication was one of my high-performing team’s most effective,
and occasionally most annoying, habits. We repeated things constantly: goals,
updates, questions, and answers. There was no “You should know this already”
or “Why are you asking this now?” We’d rather explain something one more time
than risk confusion or silent struggles. Everyone was vocal: to me, to each other,
and to the client.

This openness brought many benefits but sometimes required some fine-
tuning. I remember needing to have a few conversations with team members
about adjusting how they communicated in front of clients. Not to silence them
but to help them consider the delivery. New clients, especially, weren’t always
used to such direct communication. Still, the habit of overcommunicating, from
asking “Why?,” “Why like this?,” “Why now?” to revisiting our goals or decisions,

192 | LEVELING UP AS A TECH LEAD

helped us avoid misunderstandings and supported clarity throughout our work.
Even with these risks, I still believe the benefits of overcommunication outweigh
the downsides, so I absolutely recommend it.

Build trust

None of the strategies mentioned before can be achieved without trust in the
team.

Trust is built through constant communication, transparency, and follow-
through.

Constant communication means having recurring checkpoints with your
team through one-on-ones, or team alignment meetings like standups or plan-
nings, and continuously sharing information and knowledge with them.

Transparency means being honest about blockers and possible issues, admit-
ting to mistakes and when you don’t know, and providing balanced feedback:
both positive and improvement feedback.

Whatever you say or agree to doesn’t mean much if you don’t act on it.
Actually, one of the simplest ways to build trust is this: say you’ll do something,
and then do it.

More strategies on building and maintaining trust with your team can be
found in the section “How to Build Strong Relationships” on page 62.

Psychological safety must be inclusive. If even one person doesn’t feel safe,
the team as a whole isn’t truly safe. It counts only when everyone feels free to
speak up without fear of being judged, ignored, or penalized.

To understand how your team is really feeling, build regular check-ins into
your team’s rhythm. Retrospectives are a natural opportunity for this. Try start-
ing with a quick safety check: ask each person to rate, on a scale from one to five,
how comfortable they feel speaking up in the team. If several people respond
with low numbers, that’s a clear signal that psychological safety is lacking, which
means the retrospective might surface the views of only the most vocal team
members. In that case, pause and make psychological safety the main topic of
discussion.

One-on-ones are another key tool. Use them not just to talk about work
but to create space for people to share how they’re really feeling. If you notice
someone regularly holding back, withdrawing, or not contributing in meetings,
bring it up gently and supportively. These conversations show that you care and
that you’re paying attention to more than just output; they help people feel seen
and heard.

BUILDING AND SCALING TECH TEAMS | 193

You can also use tools like the Psychological Safety Ladder Canvas that can
help your team visualize how safe team members feel and where support is
needed.

Encouraging collaboration also greatly contributes to psychological safety, as
it builds trust, mutual respect, and shared ownership. More on this in the section
“Enabling Collaboration Inside the Team” on page 209.

By showing vulnerability, encouraging open discussions, and encouraging a
learning mindset, you create the foundation for a strong, positive culture.

WHAT HAPPENS WHEN PSYCHOLOGICAL SAFETY IS LOST

As hard as psychological safety is to build, it’s incredibly easy to lose. You can
spend months creating a safe environment, only to undo it in a moment. I’ve
experienced this firsthand.

I was part of a team that felt genuinely close; we were collaborative, positive,
and high-performing. We had been working together for a while, and we had a
strong bond with our tech lead and good rapport with leadership. Everything felt
solid.

Then one day, without warning, one of our team members was let go. No
heads-up, no context, just that it was a “performance issue” and she had to leave
immediately. The effect on the team was instant. Suddenly, it didn’t feel like any
of us were safe. People grew anxious, worried about their own performance, and
afraid to speak up. Trust was shaken. The openness we had built disappeared
almost overnight.

Whether or not the decision was justified isn’t the point. How it was handled
sent a message: you’re replaceable, and no one will tell you why. Morale dropped.
Engagement dropped. And it took us months to feel like a team again.

You can think of trust like social capital: every respectful interaction, suppor-
tive gesture, or fair decision adds to your balance. But it takes only one misstep,
like ignoring team input or showing bias, to make a significant withdrawal. The
more capital you build, the more resilient your team becomes. But the account is
never infinite.

One of the quickest ways to damage psychological safety is through discrim-
ination, even in subtle forms like microaggressions. Things like a casual joke
or an offhand comment can land harder than you realize. They don’t need to
be overt to do harm. Culture is shaped by small, everyday actions, not grand
gestures. So reflect on your own biases, stay aware of how your words affect
others, and speak up when something feels off. If someone on your team is

194 | LEVELING UP AS A TECH LEAD

https://oreil.ly/H6vPX

affected by bias or exclusion, check in with them. A quiet acknowledgment can
mean more than you think.

Mistakes will happen, and will happen to you too. What matters most is
how you respond. A simple, sincere apology goes much further than a defensive
explanation. Avoid phrases like “I didn’t mean to offend you” or “It was just a
joke”; intent doesn’t erase impact. Acknowledge the harm, take ownership, and
show that you’re committed to doing better. And when you witness something
inappropriate, even a quiet “Hey, that didn’t sit right with me” can help uphold
the team’s values.

Unconscious bias exists in all of us. As a tech lead, these biases can show
up in how you assign work, who you go to for input, or whose ideas you ele-
vate, often without you realizing it. For example, you might find yourself more
frequently connecting with people who share similar backgrounds or communi-
cation styles. While this is human, it’s important to recognize the pattern. Even
subtle imbalances can lead to a perception of favoritism, which erodes trust.

To keep yourself in check, make a habit of gathering feedback from everyone
on the team, especially from quieter members. Staying self-aware, questioning
your patterns, and striving to be fair in every interaction are essential to main-
taining a culture of psychological safety.

HOW TO EVALUATE IF YOUR TEAM IS HIGH-PERFORMING

High performance is more of an aim than a goal. It’s about continuously push-
ing and striving to do better as a team. It’s about continuously checking that
you are on the right track. It’s not something you can check completely off your
list: you cannot get to a point where you say, “I have a high-performing team.
It’s done.” Even when you get there, it takes continuous effort to keep the high
standards.

You can’t improve what you don’t measure. But when it comes to evaluating
things like psychological safety, collaboration, or trust, the metrics become more
nuanced.

There are well-known frameworks and tools that attempt to measure engi-
neering team performance, such as the following:

DORA (DevOps Research and Assessment)
Focuses on deployment frequency, lead time for changes, change failure
rate, and time to recovery. It’s commonly used to assess software delivery
performance.

BUILDING AND SCALING TECH TEAMS | 195

SPACE framework
A more holistic model that includes dimensions like satisfaction and
well-being, performance, activity, communication and collaboration, and
efficiency and flow.

Accelerate framework
Closely tied to DORA, it provides research-backed insights into what drives
high-performing engineering teams, with a focus on lean product develop-
ment and DevOps practices.

While none are perfect, it’s useful to be familiar with them, as they may be
referenced in your organization.

These tools can be valuable, but they often require investment in data gather-
ing, processes, and consistent interpretation. In the meantime, there are simpler,
more qualitative signals you can use to evaluate how your team is doing and
where you might improve:

Your own observations
Start with regular reflection. Amid the pace of delivery, it’s easy to overlook
signs of drift or tension. Block time to ask yourself, “What feels off in
the team right now?,” “What would I change if I could?,” or “Is everyone
contributing equally in meetings?” Look for quiet voices, disengagement,
or recurring topics in one-on-ones or retrospectives that might point to
deeper issues.

Team feedback
But don’t rely on only your own lens; your interpretation could be biased
or incomplete. Always bring these reflections into conversation with your
team. Ask the team directly how they feel about working together. Retro-
spectives, one-on-ones, and anonymous surveys are all useful entry points.
Go beyond surface-level questions. Instead of asking, “How do you think
we’re doing?” try “What’s one thing we could improve about how we col-
laborate?” or “When do you feel most included or excluded in this team?”
Use this feedback to validate or challenge your own assumptions.

Stakeholder feedback
External recognition is one of the clearest signs of a high-performing team.
When stakeholders, whether PMs, execs, or other teams, trust you, they’ll
show it. That might look like positive, unsolicited feedback about your

196 | LEVELING UP AS A TECH LEAD

impact, stakeholders referencing your work to others, or being entrusted
with high-visibility or critical projects.

If external praise is rare or vague, it could mean the team’s value isn’t
well understood, or not as strong as it should be.

Reputation and interest
When your team is truly high-performing, others want to work with you.
People will ask to join your team, shadow how you work, or borrow your
practices. In my team, we saw this when engineers from other projects
reached out for advice or expressed interest in rotating onto our team.

Engagement and ownership
Another good indicator is engagement. Are team members bringing
energy and initiative to problems? Do they raise issues without being
asked, follow through on commitments, and hold each other accountable?
Or do you have to follow up repeatedly just to maintain momentum? A
team’s internal motivation is one of the most telling signs of its health.

Results and standards
Of course, performance also shows up in outcomes. Are you delivering
what’s expected? Are you hitting quality benchmarks? But results alone
don’t tell the whole story. It’s the consistency, the collaboration, and the
trust behind those results that really matter.

High performance is an ongoing pursuit. You don’t “arrive” at having a
high-performing team. Even once you’ve built one, it takes constant care to
maintain. Priorities shift, people change, and new challenges emerge. Nobody
out there has a team that’s 100% high-performing, 100% of the time, and that’s
OK. Teams go through ups and downs, and part of your role as a tech lead is to
keep checking the pulse, respond with empathy, and continually adjust.

How to Approach Performance Reviews

The goal of performance reviews is to have people reflect on their overall per-
formance from the previous six months or one year and to give raises and
promotions. It’s also an opportunity to have people reflect on where they want
to go and where they are and identify gaps in their skills and create a plan to
address them. It’s a chance to get feedback and give feedback, but it should not
replace timely feedback (more on this in Chapter 5).

BUILDING AND SCALING TECH TEAMS | 197

Based on your company structure and culture, your role in performance
reviews for your team might be different. Some tech leads are barely involved
in the performance review process for their team, as they are not expected to be
involved. Other roles, like team leads or engineering managers, will take care of
the heavy lifting of the process of review and growth.

And there are companies where you, as a tech lead, play a key role in the
performance review process, given that the team lead role overlaps with your role
and the engineering manager has a more high-level approach in the process.

My personal opinion is that the tech lead should play a key role in reviewing
the performance of their team members, helping them build a case for promo-
tion and acting as a supporter or cheerleader in front of management, or giving
honest feedback when someone isn’t meeting expectations. Who better to know
about people’s performance than you, who work daily side by side with them on
technical and nontechnical topics?

Also, as a tech lead, I want to have a say in my team members’ growth and
development and do everything in my power to support them, as that will highly
impact the overall performance of my team and, of course, me.

I have always been a key player in the performance review process for my
team members, and this is the case that I will prepare you for in the next
sections. I’ll cover how to ensure everyone is aligned on the process and is fully
making use of it, how to support them in the process, how to use different tools
to measure performance, and what to do with the results.

But before we dive into supporting others, let’s start with your own review
process. Learning how to manage your own review well will help you better
understand the system, set the right tone, and apply the same principles when
guiding your team.

HOW TO PREPARE FOR YOUR OWN PERFORMANCE REVIEW

Your own performance review is the first process you need to manage. Leading
by example will not only make it easier to guide your team through the process
but also help you refine how you approach it. Instead of just telling them how to
prepare, you’ll be able to show them.

Get clarity on the process

Start by understanding how performance reviews work in your company. What
are the timelines, expectations, and key steps? Who is involved, what tools are
used, and how is progress tracked? Who makes the decisions, and who can
support you? Some companies, like Thoughtworks, have the role of performance

198 | LEVELING UP AS A TECH LEAD

partners that act as mentors and advocate for your growth. Identify the people
who can help you navigate this process, and make sure they are aware of your
plans.

Gather all available documentation and list anything unclear. Then, go back
to your manager to clarify assumptions and questions. Role expectations docu-
ments can also be useful, as they help you understand how performance is
evaluated at different levels.

Once you have a clear understanding of the process, create a plan: define the
actions you need to take, who you need feedback from, and how you will track
everything. Many companies provide tools to collect and visualize feedback, but if
yours doesn’t, a simple spreadsheet will do.

Define what you want

What do you expect from your next performance review? Maybe you’re aiming
for a salary raise, a grade change, or opportunities to develop specific skills
and connections. For example, I got most of my leadership training through a
performance review cycle. I researched internal leadership programs and built a
strong case for why I should be part of them, highlighting how they aligned with
my development and the value I could bring back to the company.

Be specific about your goals. Whether it’s getting a mentor, working on a
particular skill, or connecting with peers in similar roles, having a clear ask
increases your chances of getting what you want.

Build your lists

Start by listing what you’re proud of, the impact you’ve had. As a tech lead, it’s
not just about your individual contributions anymore. Your success is measured
by your team’s success. Shift from “I delivered this feature” to “I helped Alan
improve his soft skills through mentoring” or “I unblocked the team on an
initiative by facilitating key conversations.” Think about how you’ve enabled your
team to do their best work.

Note

Consider keeping a running “brag document”, as recommended by Julia Evans. It’s

a simple practice: maintain a private doc where you jot down accomplishments as

they happen. That way, when review season rolls around, you’re not starting from

scratch, and you’re less likely to forget the small, important wins.

BUILDING AND SCALING TECH TEAMS | 199

https://oreil.ly/shufi

Just as relevant as accomplishments are the challenges you’ve faced. The
best learning often comes from things that went wrong. That’s why postmortems
exist, because reflecting on failures helps us improve. The same applies to per-
formance reviews. Managers don’t just want to hear that everything is great.
They want to see growth and how you’ve handled setbacks, missed deadlines,
skill gaps, and difficult situations. Take a look at what’s happened since your
last review: major milestones, wins, struggles, incidents, and feedback you’ve
received. Use these to build a well-rounded view of your progress.

Make sure your accomplishments and challenges align with the expectations
of your role. Many tech leads never revisit their job description; they simply
assume they know what’s expected. This mismatch often leads to frustration
when aiming for promotions, as what they consider valuable may not align with
what the organization or leadership is actually looking for.

For instance, some tech leads believe their main responsibility is only deal-
ing with every technical challenge their team faces. As a result, they spend
most of their time staying up-to-date on technologies and reviewing code
while neglecting critical responsibilities like mentoring team members, enabling
growth, or collaborating with product managers to shape a strategic roadmap.
These overlooked areas are often exactly what the organization expects from
someone in a leadership position. So, to avoid any bad surprises, make sure to
validate your lists against the official role description and in conversation with
your manager before moving forward. You can find more on this topic in the
section “Understanding the Expectations of Your Role” on page 12.

Once you have your accomplishments and challenges, combine them into
a cohesive narrative. Show how your wins and struggles contributed to your
growth as a tech lead and the overall success of the team.

Ask for feedback

Feedback is a critical part of any performance review. You’ll likely need input
from your team, managers, and stakeholders. As a tech lead, this feedback is
even more required because your performance is heavily influenced by how
others perceive your leadership.

I’ve seen tech leads struggle because they felt they were doing poorly when
their team actually thought otherwise or were caught off guard by unexpected
feedback because they weren’t checking in regularly. It’s easy to misjudge your
own impact when you don’t have external perspectives. (For a detailed process on
how to collect and use feedback effectively, check out Chapter 5.)

Use the feedback to refine your accomplishments and challenges lists.

200 | LEVELING UP AS A TECH LEAD

Feedback is valuable only if you follow up on it. Have conversations to clar-
ify points, gather additional examples, and resolve inconsistencies. Sometimes,
different team members will have conflicting views of your role. Juniors may
expect you to code more, while seniors appreciate that you focus on strategy and
alignment. Understanding these perspectives will help you address concerns and
set expectations.

Make your work visible

Use every opportunity in the review process to advocate for yourself and your
team. Even if something is optional, consider doing it anyway.

At Thoughtworks, we had an optional presentation phase where people
could present their case to senior leadership. Many skipped it because it wasn’t
required, but I always did it. It gave me a rare opportunity to tell my story,
clearly state what I wanted, and address any concerns directly. Senior leadership
taking the time to attend these sessions was a sign of great leadership in itself.
These presentations didn’t just impact my performance review; they helped build
relationships with decision makers that benefited my career long term.

Performance reviews are a powerful opportunity to reflect on your impact,
advocate for your growth, and shape your development path. As a tech lead, how
you approach them influences your own progress and sets the tone for how your
team engages with the process too.

HOW TO HELP YOUR TEAM PREPARE FOR THEIR REVIEWS

Now that you’ve seen how to manage your own performance review, it’s time
to apply that same mindset to supporting your team. Many of the steps, like
reflecting on achievements, gathering feedback, and clarifying goals, overlap, but
your role shifts. Instead of advocating for yourself, you’re now helping others do
the same.

As a tech lead, you play a key role in the performance review process, not just
in guiding your team through it but also in evaluating their work. Your assess-
ment carries weight, so it’s essential to approach this process with intention and
clarity.

If you’re new to a team and have to conduct performance reviews without
much historical context, acknowledge this up front. Let both your team and your
manager know that your insights may be limited. In some cases, tech leads
ask their engineering manager to handle the formal review while they focus on
helping their team reflect on accomplishments and future goals. Even if you’re

BUILDING AND SCALING TECH TEAMS | 201

not the final decision maker, you should still facilitate meaningful discussions to
help your team navigate the process effectively.

Set the right mindset

First, make sure your team understands why performance reviews matter. Many
techies see them as just another task to check off the list, missing opportunities
to showcase their work, get valuable feedback, and advocate for growth. Without
proper guidance, they often scramble to collect feedback last minute, leading to
unnecessary stress and missed chances for meaningful recognition.

Take the time to communicate the purpose of the review process and how
it impacts promotions, salary increases, and professional development. Clarify
expectations, timelines, and what happens after the review. People are more
likely to take the process seriously when they understand its value.

Make the process smoother

You can help reduce the friction of performance reviews by integrating them into
your team’s workflow well in advance. Plan ahead and factor in the time required
for feedback collection, reflection, and discussions. This period will inevitably
impact your team’s delivery, so acknowledge that and adjust roadmaps accord-
ingly. Keeping stakeholders informed of this impact helps manage expectations.

Make sure everyone knows the steps, roles, and responsibilities involved. Be
clear about your role, what decisions you influence, what is outside your control,
and how much weight your input carries. Ensure your team has access to all the
necessary resources, templates, and tools, and encourage them to start preparing
early. One-on-ones are a great way to bring up performance review prep gradually
instead of dumping everything on them last minute.

Encourage your team members to think about their expectations for the
process. Are they aiming for a promotion, a salary increase, or feedback on
their growth? The earlier they articulate this, the better you can support them.
If someone expects a 10% raise but the company’s maximum is 5%, setting that
expectation early prevents frustration. If someone is striving for a senior role, you
can gather examples of when they demonstrated leadership or took initiative to
strengthen their case.

Give effective feedback

Don’t leave your feedback until the last minute. Some companies use automa-
ted tools for performance reviews, while others rely on individuals to gather
input manually. Regardless of the system, aim to submit your feedback early

202 | LEVELING UP AS A TECH LEAD

and include specific examples. This not only strengthens your team’s self-
assessments but also gives them more insights into their own performance.

Before finalizing your evaluations, have one-on-one conversations with each
team member. Go over your feedback together, highlight areas of agreement, and
discuss any discrepancies. This reduces the risk of unpleasant surprises where
people might read something later in your feedback they were not aware of.

Keep the process moving

Use your one-on-ones to check in on progress and ensure people are actively
reflecting on their work, gathering feedback, and preparing their reviews. Run-
ning feedback-focused sessions, like Speedback (covered in the section “Building
a Feedback Culture on Your Team” on page 132), can also help jump-start the
process.

If you’ve been tracking team milestones and feedback throughout the year
(as recommended in the previous section), this is the time to revisit those notes.
Use them to remind people of their accomplishments and challenges, helping
them build a more complete picture of their growth.

Help your team evaluate themselves

One of the most impactful ways you can support your team during performance
reviews as a tech lead is by helping them evaluate themselves with honesty and
clarity.

A great starting point is your company’s official role descriptions or skills
matrix. Use these as a shared reference to guide your conversations. Ask each
team member to self-assess across the different expectations, either for their
current role or the one they’re aiming for. This will surface strengths, reveal
growth areas, and help set a common foundation.

A 1–10 scale can be a useful tool here but only if used intentionally. Have
them rate themselves across the relevant competencies, and then ask, “Why
did you choose that number?” This simple question often unlocks insights they
hadn’t fully articulated. For team members who tend to undersell their contribu-
tions, walking through real examples can help them realize they’re further along
than they thought. For others, the conversation might highlight blind spots or the
need to gather better evidence to support their self-assessment.

Then ask, “What would make this a 10?” This helps define what success
looks like in practical terms. If you can’t describe a 10, how will you know when
you’ve arrived? I once had a junior engineer say their “10” in technical skills
meant “being the best Scala developer on the team.” But as she said it out loud,

BUILDING AND SCALING TECH TEAMS | 203

she realized that wasn’t realistic, or necessary. She redefined it to something
more grounded: “Being able to deliver a feature end to end in our Scala service
on time and with minimal support.”

Some people hesitate to ever rate themselves a 9 or 10, even when they meet
the bar, because they fear appearing arrogant. I often say, “If you’re never going
to use a 10, why have it on the scale?” Or “Why should they promote you if you
are not exceeding expectations in any area?” This might sound harsh at first but
it usually triggers a shift in mindset, helping people assess themselves fairly.

Disclosure: this process isn’t really about the numbers. It’s about the clarity
and reflection that come from justifying them and using that insight to shape
what comes next.

Sometimes, you and a team member might not see eye to eye, especially
when it comes to promotions. For example, many developers, especially at the
senior level, fall into the trap of thinking that technical improvement is all that
matters. But being a senior developer goes far beyond writing excellent code.
It often includes mentoring others, leading initiatives, owning outcomes, collabo-
rating effectively across departments, and demonstrating accountability. If a team
member is focused only on developing their coding skills while working in a silo,
they’re missing key parts of their role, and that can hold them back.

These conversations can feel personal or even tense, but the solution is to
move away from subjective opinions and focus on shared criteria. Refer back
to the company’s expectations and ask: What behaviors are visible today? What
impact are they having? If they feel ready and you don’t, walk through the
expectations together. Point to concrete examples of where they meet them and
where growth is still needed.

Handled well, this becomes a constructive, collaborative conversation. It’s
not “your opinion versus theirs.” You’re working together to evaluate what suc-
cess looks like and how to get there. I’ve seen this go wrong when the only
feedback someone receives is “I just don’t feel you’re there yet.” That’s when
frustration and defensiveness take over. If you instead offer specific examples
and show the path forward, most people will be open to, and even grateful for,
the clarity.

Helping your team align their self-perception with the actual expectations
of the role is one of the most empowering things you can do as a tech lead. It
prepares them not just for performance reviews but for long-term, sustainable
growth.

204 | LEVELING UP AS A TECH LEAD

Answer last-minute questions

As the deadline approaches, expect a spike in last-minute questions and con-
cerns. Keep your calendar slightly more flexible so you can provide guidance, set
expectations, and help the team approach the process with clarity and confidence.

Helping your team through performance reviews means setting the tone,
reducing anxiety, and creating opportunities for growth. By offering support, giv-
ing thoughtful feedback, and aligning self-assessments with company standards,
you empower them to take ownership of their development and ensure no one is
caught off guard when decisions are made.

WHAT TO DO AFTER THE REVIEW CONVERSATION

At this stage, your involvement becomes more limited, as the formal perfor-
mance review process typically involves multiple managers. They take a high-
level view, considering factors like budget, business priorities, and overall team
performance. Their decisions about things like who gets promoted and who gets
a raise are based on feedback, assessments, and company objectives.

As a tech lead, you likely won’t have the final say on salary adjustments or
promotions, but your input carries weight. Since you work closely with the team,
your perspective on an individual’s readiness for a senior role or their overall
contribution will be valuable. Your written feedback is crucial, but expect to be
asked by managers for promotion recommendations as well. Your insights can
influence outcomes, even if the final decision rests with upper management.
Any input you provide in these meetings should reinforce the guidance and
expectations you’ve already communicated.

Once decisions are finalized, the results will be shared with the team. As
always, some people will be happy with their outcomes, while others may feel
disappointed. Be prepared for follow-up conversations; team members will want
to understand what they need to improve and how they can grow.

The formal review process may end with final decisions and outcome conver-
sations, but your role as a tech lead doesn’t stop there. Whether you’re support-
ing someone through a tough result or helping them plan their next growth step,
your ongoing involvement is what truly drives development. Don’t let the review
be the last conversation. This is the perfect time to capture growth plans, while
motivation is still high.

BUILDING AND SCALING TECH TEAMS | 205

That means different things for different people:

• For those who’ve recently been promoted into a new role—say, from•
junior to mid-level or from senior to lead—help them settle into their
new responsibilities. Review expectations together, identify stretch oppor-
tunities, and find ways for them to develop the new skills they’ll need to
succeed.

• For high performers or overachievers, don’t just say “great job” and move•
on. Use their enthusiasm as fuel. Look for opportunities to stretch them,
delegate impactful projects, and help them grow toward their next goal.
This is a great way to keep them engaged and developing.

• For someone aiming for a promotion or a role change, work with them to•
map out a clear development path. Outline what success looks like, what
gaps need to be closed, and how you’ll support them along the way.

• For someone flagged as underperforming, you’ll need to take a more•
hands-on approach. Collaborate on a targeted growth plan that addresses
the key areas of improvement highlighted in their review. (You can find
this process detailed in the section “Dealing with Underperformance on
the Team” on page 216.)

No matter the outcome, the performance review is just a milestone in a
continuous process. What happens afterward is just as impactful as the review
itself. The conversations you continue, the support you offer, and the plans you
help shape will define how each team member grows and how your team moves
forward together.

MAKE PERFORMANCE REVIEWS A CONTINUOUS PROCESS

Performance reviews don’t start with the official announcement to “get your
review ready,” and they certainly don’t end with the final conversation about
outcomes. A well-structured performance review happens all year long. Actually,
the overwhelming nature of performance reviews comes from the fact that most
people leave everything until the last minute: gathering feedback, compiling
accomplishments, and preparing discussions.

But if you consistently track your accomplishments and challenges through-
out the year, communicate them clearly to your manager, and use your one-on-
ones effectively, to discuss goals, growth areas, and progress, then the actual
review becomes a simple formality. By the time the review conversation happens,

206 | LEVELING UP AS A TECH LEAD

you should already have a clear idea of where you stand. And if something isn’t
possible, you should know well in advance rather than being caught off guard.

A simple trick I use, and one that everyone I’ve shared it with loves, is
keeping a clear jar on my desk where I throw in colored Post-its with quick
notes about things I’m proud of, milestones I’ve achieved, and challenges I’ve
overcome. It’s a low-effort way to track progress, and the visual reminder boosts
confidence. Seeing the jar fill up over time serves as motivation, making it easier
to recall accomplishments when review time comes.

If you prefer digital tools, a simple Google Doc works just as well. The key
is to choose a format that’s easy to update and review regularly, something you’ll
actually use.

The next step is to apply this same approach to your team, tracking their
progress continuously throughout the year. Keep notes on key accomplishments,
challenges, and feedback from stakeholders. Then, when review time comes,
you won’t need to scramble for details; you can just review your notes and put
together a clear, well-supported assessment. This approach saves time, reduces
stress, and ensures that nothing important gets overlooked.

This mindset should also extend to your team. If they regularly track their
progress, performance reviews won’t be a last-minute panic or a source of stress.
There should be no surprises; people should already have a solid understanding
of their strengths, areas for growth, and overall performance. A performance
review should simply formalize what they already know.

Yet, as we all know, this rarely happens. Too often, people react with “Oh
no, not again” when review time rolls around. As a tech lead, it’s on you to make
sure performance reviews aren’t just a rushed, once-a-year event but an ongoing
habit. They should be on everyone’s radar every day, with tracking accomplish-
ments, setting milestones, and having a growth plan becoming second nature.
Every one-on-one is a great opportunity to talk about their career growth and skill
development.

The good news is that most companies support ongoing performance man-
agement with structured tools for tracking feedback, growth plans, and individual
progress. These tools make it easy to navigate feedback over time, as they capture
who shared it, when, what was said, and any resulting action points.

As a tech lead, you’ll often be the one ensuring that feedback is properly
recorded and that it aligns with the expected format. It might feel like tedi-
ous admin work, but having structured, accessible records pays off, especially

BUILDING AND SCALING TECH TEAMS | 207

when it’s time to write reviews, advocate for promotions, or support someone’s
development.

And as tech evolves, you may be able to offload some of that effort. For
example, I know a tech lead who’s experimenting with building an AI agent to
input raw feedback into their internal tool, helping to save time while keeping
everything organized. It’s early days, but the idea of streamlining this kind of
repetitive work is promising.

Constantly thinking about performance, tracking it, and measuring progress
helps not only to simplify reviews but also to refine how you assess growth and
impact. Like any evolving practice, performance reviews should adapt based on
feedback and experience. Find ways to make them more effective for both you
and your team. The goal is to turn reviews into meaningful, growth-focused
conversations rather than a once-a-year stress fest. Done right, they become a
powerful tool for both personal and team development.

Common Challenges and How to Overcome Them

Stepping into the tech lead role often means facing a whole new set of responsi-
bilities, many of which no one really prepares you for. Suddenly, you’re expected
to lead hiring processes, onboard new team members, run performance reviews,
and shape the team culture. These are big, high-impact activities that affect the
team’s success, yet most tech leads are left to figure them out on their own.

Throughout this book, I’ve covered many of these responsibilities, but some
challenges consistently stand out, either because they’re hard to get right or
because they’re easy to overlook until they cause real problems.

In this section, I’ll walk you through three of the most common and critical
challenges tech leads encounter when building and scaling teams:

• Building an onboarding process from scratch•

• Enabling collaboration by building trust and alignment inside the team•

• Dealing with underperformance, one of the toughest and most uncomfort-•
able parts of leadership

If you’ve never handled these before, that’s completely normal. What matters
is how you respond. This section gives you clear, actionable strategies to tackle
these challenges head-on, and help your team grow stronger because of it.

208 | LEVELING UP AS A TECH LEAD

BUILDING AN ONBOARDING PROCESS FROM SCRATCH

If you’re starting a team from scratch or don’t have an onboarding process yet,
here’s a quick and easy way to put one in place with minimal effort the next time
you hire someone new:

1. Assign them a buddy, someone who can answer questions and guide1.

them through the first few weeks.

2. Ask them to document everything: the tools they use, the resources they2.

find helpful, the challenges they face, and who they turn to for help.

3. Review their notes to ensure accuracy and completeness.3.

4. Help them publish it as an internal guide for future hires.4.

5. Give them credit! Recognizing their contribution makes them feel valued5.

from day one.

6. Ask each new hire to use and update the guide as they go through6.

onboarding.

That’s it! You now have an onboarding process with minimal effort on your
part, and the new hire gains early positive visibility within the team. This isn’t the
perfect onboarding process, but it’s far better than having none. At the very least,
your next new hire will have an easier time than the last.

There is no such thing as a perfect onboarding process, but there are defi-
nitely bad ones. As a tech lead, your job is to be intentional about improving
and adapting your onboarding process. A well-structured, continuously evolving
onboarding experience directly contributes to team performance, helping new
hires integrate faster, feel more confident, and become productive members of
the team.

ENABLING COLLABORATION INSIDE THE TEAM

We all know the benefits of proper collaboration, yet so many teams don’t know
how to work together effectively. Instead of complementing each other, sharing
knowledge, and amplifying their collective impact, they end up getting in each
other’s way.

Some common symptoms:

• Knowledge silos; everyone depends on specific people for critical pieces of•
work

• Duplicated work; two people build the same thing, unaware of each other•

BUILDING AND SCALING TECH TEAMS | 209

• Time-wasting debates that go in circles and never lead to a clear decision•

• Lack of ownership; work bounces around with no clear driver•

• Reluctance to ask for help; people are afraid to look like they don’t know•

• Decisions made in isolation, then revisited later because others weren’t•
included

If any of this sounds familiar, you’re not alone. The good news is there’s a lot
you can do as a tech lead to encourage collaboration by designing team processes
that rely on interaction and shared ownership.

Pair programming

Pair programming is one of the simplest ways to build collaboration into your
team’s day-to-day work. Mix up pairs regularly to break down silos, spread knowl-
edge, and create natural mentoring moments, especially between juniors and
seniors. But don’t frame it as a process to enforce. Instead, introduce it as a
solution. For example, suggest two people work together to debug a tricky issue
or design a complex flow. That’s often how it sticks.

That said, be aware that some people might resist it at first. On the surface,
pair programming can feel like two people doing one person’s job. It might seem
inefficient, especially when deadlines are tight.

But the real value shows up over time. Pairing reduces the time lost in
context switching or transferring tasks when someone’s sick or goes on vacation.
It lowers the overall work in progress, helping people stay focused on finishing
instead of just starting. It naturally creates a “four eyes” check, so you often
don’t need a separate PR review. And maybe most importantly, it speeds up
onboarding, improves knowledge sharing, and builds collective code ownership
across the team.

Yes, there might be some short-term friction. But as a tech lead, you’re
thinking long term. Your goal is to help your team work more effectively
together, and pairing is one of the most powerful habits to build that kind of
culture, even if it takes some time to pay off and start seeing the benefits.

Knowledge-sharing sessions

There are a number of different ways to encourage knowledge sharing:

• Run mob programming sessions to demo new libraries or frameworks.•

• Host informal tech talks: no slides required, just show and tell.•

210 | LEVELING UP AS A TECH LEAD

• Make demos a shared responsibility: instead of running them yourself,•
assign them on the team board and rotate ownership.

Support different styles; for example, some people prefer writing to speak-
ing. Encourage those team members to write documentation, internal articles, or
public blog posts (if there are no company restrictions).

Onboarding as a team sport

Onboarding is a great opportunity to get people to collaborate by simply using
the buddy system and by making it a shared team process. This naturally gets
people working together. See more ideas in the section “Involve the whole team”
on page 176.

Distribute responsibility

If you notice that a few people in your team are owning multiple initiatives or
holding onto all the critical knowledge, it’s time to step in. This kind of concen-
tration of responsibility often leads to knowledge silos, burnout, and slowdowns
when those individuals are unavailable. It also limits growth opportunities for
others on the team. Encourage people to delegate and share ownership.

Start by having open conversations with those who hold a lot of responsibil-
ity. Many times, they don’t realize how much they’re carrying or that it’s actually
blocking others from stepping up. Explain the broader benefits of delegation,
both for the team and for themselves. For the team, it means learning, develop-
ment, and stronger collaboration. For them, it means fewer context switches,
less pressure, and possibly the freedom to take on something more exciting or
strategic. You can frame it like this: “You’ve done a great job owning this area,
and now that it’s more stable, I think it’s a great opportunity to bring someone
else in to take over. That way, you can focus on that new initiative we discussed.”

Make delegation feel like a growth opportunity, not a loss of control. Encour-
age them to mentor the person taking over. Ask them to document processes or
walk others through the context. Make it clear that stepping back from ownership
doesn’t mean stepping away from impact; it just means their impact evolves.

Rotate facilitation roles. Don’t let the same people always run retros, refine
the backlog, or chase action items. Rotate those responsibilities to build shared
ownership and reduce silent burnout.

BUILDING AND SCALING TECH TEAMS | 211

Pair people on initiatives

One of the best ways to build confidence, accelerate growth, and encourage
collaboration in your team is to pair people on initiatives, especially by giving less
experienced engineers the lead, with a more senior person supporting them in
the background as a “second chair.” This model works because it gives junior or
mid-level team members real ownership while ensuring they’re not left to figure
everything out on their own. They get the chance to navigate ambiguity, make
decisions, and present ideas, all with a safety net nearby.

The key is to be crystal clear about the roles. Set expectations with the senior
person up front: they’re not there to take over or micromanage. Their role is to
guide, mentor, and step in only when needed, allowing the less experienced lead
to truly drive the work. Think of them like a copilot, alert and ready to support
but not grabbing the wheel unless absolutely necessary.

For example, let’s say someone newer to the team wants to lead a cross-team
integration project. Instead of handing it off to your most experienced engineer,
flip the script. Have the newer person take point, leading meetings, managing
timelines, and coordinating stakeholders, while the senior team member shad-
ows, provides context, helps with tricky decisions, and acts as a sounding board
behind the scenes.

You should also make yourself available as a coach throughout the process.
Encourage questions. Offer feedback. Help them navigate the process. Don’t wait
until something goes wrong; check in regularly to see how they’re feeling and
what support they need.

Solve problems together

Solving problems as a team makes great team-building exercises.
In one of my teams, we used to hold quick tech huddles after standup,

gathering around a whiteboard to brainstorm solutions to tricky bugs or design
challenges. No pressure, no formalities, just a space to throw around ideas and
work things out together. These sessions helped us move faster, share knowl-
edge, and stay aligned. The key is creating safety. Make it clear there are no bad
ideas. Encourage everyone to speak up, even if they’re unsure. Some of our best
ideas started with “This might sound dumb, but what if…”

Postmortems are another great example. Run them with a mindset of learn-
ing, not blame. If someone pushes broken code to production, don’t ask, “Who
messed up?” Ask, “Why did this happen, and how can we make recovery easier

212 | LEVELING UP AS A TECH LEAD

next time?” Maybe your pipeline is slow or you’re missing feature flags. Focus on
fixing the system, not blaming people.

Premortems are also fun and useful. Before a risky launch, ask, “What could
go wrong?” This surfaces hidden risks early and gets everyone thinking ahead.

If you have to plan a new technical solution that will require architecture
changes and impact multiple systems, instead of leaving it to one person to
figure out the plan, use a collaborative process like a TD (technical definition)
or RFC (request for comments). This involves drafting a shared document that
outlines the proposed approach and sharing it with all relevant stakeholders:
team members, other teams, architects, staff engineers, and anyone else who
might be affected. This format gives everyone the opportunity to ask questions,
raise concerns, and offer improvements before any decisions are finalized.

Whether it’s huddles, postmortems, or premortems, the point is simple:
shift from “your problem” to “our problem.” When teams solve things together,
trust builds and collaboration becomes second nature.

Celebrate together

Dealing with problems as a team is critical, but so is celebrating wins together,
and doing it consistently. It sounds obvious, but many teams skip this step. They
move from one milestone to the next without ever pausing to acknowledge what
they’ve achieved.

I used to be guilty of this too. Focused on delivery and always thinking
about the next thing, I’d often forget to take time to celebrate. Fortunately, I had
someone on the team who didn’t forget. They’d remind us to pause, schedule a
lunch, set up a ping-pong match, or just take a moment to appreciate how far
we’d come, even for small wins. And it made a huge difference. That energy
carried into the work, strengthened our team bond, and made us more resilient
during tough stretches.

Celebration doesn’t have to be big or time-consuming. Start small: end the
week with a “what we’re proud of” round during standup or in Slack, or create
a #shoutouts or #gratitude channel to recognize individual contributions. Use
retrospectives not just to talk about what went wrong but also to highlight what
went right. And don’t just celebrate results; celebrate helpful behaviors. Call out
mentoring, unblocking others, stepping up when needed, or simply supporting a
team member.

BUILDING AND SCALING TECH TEAMS | 213

Normalize asking for help

One of the most effective leadership tools you have is vulnerability. Instead of
expecting people to just do something, or demanding they do it, try asking for
help.

This approach can be especially powerful when working with strong person-
alities: people who seem resistant to everything, who challenge every decision,
and who always push back.

I once had a senior engineer who just would not get on board with a tech-
nical strategy the team had aligned on. I tried everything: walking through the
pros and cons, looking for compromise, but nothing worked. He simply wouldn’t
budge. Meanwhile, I was under pressure from stakeholders to move forward. I
didn’t want to override him, so as a last resort, I tried something different. I got
him into a one-on-one and said, “I’m going to be honest with you here. I really
need you to get on board with this approach. I’m being pressured by stakeholders
to make a decision today, and I’d really like to have you with us on this. I see your
concerns, and the team is aware of them too. We’re all willing to take on the risks
together. So work with me here; what would it take for you to get on board?”

That conversation changed everything. He replied, “Thank you for sharing
this with me. I didn’t realize the pressure you were under or how much I was
blocking progress. I’m OK moving forward with the team’s decision. I’d just
like to write down my concerns in case things go wrong so we have my ideas
documented,” which I readily agreed to.

That moment was a turning point for me as a leader. It showed me that ask-
ing for help, even from someone who disagrees with you, can shift the dynamic
completely. It’s not easy. It requires vulnerability, humility, and getting out of
your comfort zone. But once I started doing it, everything changed. I saw my
team jump in and take things off my plate without hesitation. When I admitted
I was overwhelmed, or unsure, they didn’t judge; they supported. And not just
because they had to but because they wanted to. All I had to do was name the
thing I was struggling with and ask.

Once I experienced that kind of support, I couldn’t go back.
So if you’re facing resistance or feeling stuck, try asking for help. Not as

a tactic but as a genuine invitation. You might be surprised by how much it
changes the conversation and the relationship.

214 | LEVELING UP AS A TECH LEAD

Make information transparent and visible to everyone

If you want people to take ownership and collaborate effectively, they need access
to the right information, without having to dig for it or ask around. Transpar-
ency builds trust, reduces misunderstandings, and empowers your team to take
initiative.

Start by creating shared documentation spaces where everyone can track pro-
gress, processes, and decisions. Whether it’s a project board, a shared roadmap,
or a simple team wiki, make sure it’s easy to find, easy to update, and actually
used.

Before kicking off new projects, run short alignment check-ins. Use these
to clarify expectations, constraints, roles, and responsibilities. It’s a simple habit
that prevents weeks of confusion later. When people know what’s happening and
why, they’re more likely to contribute ideas, ask smart questions, and challenge
things that don’t make sense.

The more context you give your team, the more ownership they’ll take.
You can find more information on this topic in the section “Be Transparent

in Your Communication” on page 67.
Some of these approaches may take time to stick. Yes, pairing might feel

inefficient at first. Delegating might slow things down short-term. But these are
long-term investments. You’re building a team that shares ownership, adapts
faster, and grows together.

And remember, just because you create opportunities for collaboration
doesn’t mean people will use them right away. You need to lead by example.
Use the practices yourself, talk about why they matter, and bring people along
one step at a time. Not everything will work for your team, and that’s OK. Try,
adapt, and learn.

Hopefully, some of the techniques shared here will start to gain traction
with your team, but in my experience, if those efforts aren’t sticking, it’s often
because they’re bumping up against bigger, underlying problems in the team’s
foundation. Two of the most common root causes are lack of psychological safety
and unclear ways of working.

Lack of psychological safety is one of the biggest silent blockers to collabora-
tion. When people are afraid of being blamed, judged, or seen as incompetent,
they stop speaking up. They hold back ideas because they’re afraid they’ll sound
stupid. They don’t ask for help because they think it will make them look weak.
They don’t admit when they’ve made a mistake because they’re afraid of the
consequences.

BUILDING AND SCALING TECH TEAMS | 215

So instead of open conversation, you get silence. Instead of learning from
mistakes, you get cover-ups. And instead of collaboration, you get isolation. You
can run all the retros, tech huddles, and pairing sessions in the world, but if
people don’t feel safe to be honest, those rituals won’t work the way they’re
supposed to.

The second silent killer of collaboration is when the team doesn’t have a
shared understanding of how to work together. Everyone assumes they know
what “good” looks like, but everyone has a different version. This leads to con-
fusion around roles, ownership, and decision making. Tasks fall through the
cracks, handoffs are messy, and accountability is vague. People step on each
other’s toes or, worse, avoid taking initiative because they’re not sure it’s their
responsibility. You end up with the classic case of “everyone owns it, so no one
does.”

To dig deeper and address those root issues, I recommend checking out the
section “How to Build a Healthy Team Culture” on page 185 and the section
“How to Create Psychological Safety on Your Team” on page 188. That’s where
real, long-lasting change starts.

DEALING WITH UNDERPERFORMANCE ON THE TEAM

One of the hardest and most uncomfortable responsibilities of being a tech
lead is dealing with underperformance. Because it’s uncomfortable and hard to
navigate, most tech leads just avoid it. They wait too long or miss the opportunity
to prevent the situation altogether by not setting clear expectations early on.

Most of the time, when someone isn’t meeting expectations, it’s not because
they’re lazy or incapable, it’s because expectations were never clearly set in the
first place. We assume people know what we expect from them without actually
saying it out loud.

So the first thing you should do is make sure every team member has a
clear understanding of what’s expected in their role. Use your one-on-ones to ask
them to review the job description. Follow up on any questions or confusion.
Just getting through that list once can eliminate “I didn’t know” as a reason for
underperformance. You don’t want to end up in a conversation where someone
says, “I didn’t know you expected me to mentor others.” That’s a harder conver-
sation than it needs to be.

The second thing: act fast when you see an issue. One common mistake
tech leads make is waiting too long. You notice a problem; maybe someone is
consistently missing deliverables or they’re not as “strong” as you expected, but

216 | LEVELING UP AS A TECH LEAD

you hold off saying anything. And the longer you wait, the bigger the problem
gets.

So as soon as you notice something, bring it up. It might be something
they’re not aware of, or maybe you haven’t been super clear about what “good”
looks like. If someone is supposed to be involved in interviews but keeps skip-
ping them, ask them why. Is it because they don’t know it’s expected? Or maybe
they’re unsure how to do it and need help.

Sometimes it’s smaller stuff, like communication. Maybe someone leading
a team initiative isn’t responding to questions from other teams on Slack on the
subject. You assume it’s obvious they should, but have you ever actually said it
out loud? Have you told them that responsiveness is part of leading an initiative?
A quick conversation can clear that up.

Whatever it is, give feedback fast. The value of feedback drops the longer you
wait, especially when it’s about something that needs improvement. If you feel
like someone is struggling across multiple areas, go back to the expectations and
talk through where the gaps are.

I’ve seen a lot of tech leads put off these tough conversations, thinking they’ll
wait until the next performance review. But that’s usually months away, and
by then, it’s too late. Telling someone “You could have handled that client call
better…six months ago” just doesn’t help. It’s not actionable anymore; it just
feels like blame. And that kind of delay can mess with someone’s career path.
A simple, timely bit of feedback early on could’ve helped them course-correct
before things got worse.

Let’s say you’ve been quietly hoping someone improves their code quality.
You hint at it in retros with comments like “We need to get better at testing,”
but nothing changes. Fast forward a few months, and now you’re having a hard
conversation: “Your work keeps coming back from QA with bugs. We need to
talk about a performance improvement plan.” At that point, they’re blindsided,
and honestly, they’re not wrong to be. A simple, specific conversation early on
could’ve made a huge difference. I’ve seen people completely turn things around
after one honest and well-timed piece of feedback.

Supporting someone’s growth, especially when performance is falling short,
can be a complex and emotionally demanding process. That’s why you shouldn’t
do it alone. If you’re seeing persistent issues or if it’s unclear how to proceed,
involve your engineering manager, HR, or the people team early. Managing
underperformance often comes with legal and procedural implications, things
that are completely out of your control and outside your responsibilities.

BUILDING AND SCALING TECH TEAMS | 217

Before taking any action, make sure all the people involved agree there’s a
challenge worth addressing. This includes you, the person in question, and the
rest of the people involved mentioned before.

Once there’s alignment that something needs attention, you can jump in
to help from your role. This isn’t about creating a formal performance improve-
ment plan, which is typically owned by HR or the EM, but rather cocreating a
practical, supportive plan to help someone improve. You are the closest to this
team member in the day-to-day, so you are in the best position to help them
shape a growth plan and take action.

Start by setting the foundation. Help the person understand that growth
isn’t about being perfect; it’s about making continuous progress. Encourage a
growth mindset, frame challenges as learning opportunities, and remind them
that improvement is possible with effort.

Help them self-assess. For this, go back to the expectations of their role and
evaluate—What are they already doing well? Where are the gaps?—going point
by point. Once their assessment is done, provide your feedback on where they
are and also ask them to collect feedback from the rest of the team members to
ensure their assessment is accurate.

Then define a shared goal: “How will we know we’ve made progress?” Break
it down into smaller, actionable steps. These could be tasks, habits, or skills they
need to build. For example, if the goal is to improve communication, a milestone
might be taking over the communication on a new initiative that involves work-
ing with another team.

Set a loose timeline. Don’t overengineer it, just enough to create momentum
and accountability. Milestones might span a few weeks or a couple of months,
depending on the nature of the issue. From there, talk about who can support
them. This might be you, other senior team members, a mentor, or even external
coaching. Let those people know so they can offer guidance and help reinforce
the plan.

Just remember: support doesn’t mean taking over. At the end of the day, it’s
still their responsibility to own the plan and follow through, so make that clear.
You can create space, give guidance, and offer feedback, but you can’t do the
work for them. Improvement takes personal commitment. That’s something no
one else can provide on their behalf.

Also, look for stretch opportunities: are there projects or responsibilities that
would help this person practice the skill they need to grow? Are there books,

218 | LEVELING UP AS A TECH LEAD

courses, or other resources they can use? Make sure they have access to the tools
they need to succeed.

Finally, have a common way to track their progress. This will help with
reflection and adjustment. Use your one-on-ones to check in on progress. Cele-
brate wins, talk about blockers, and be willing to adapt the plan as things evolve.
The key is to make it a living document, not something you agree on once and
forget about.

This tracking method also serves another purpose: it becomes your record
of the steps taken. Documenting what’s been tried—feedback shared, support
offered, goals set, and check-ins held—ensures there’s a complete picture of the
situation. This helps the business make informed decisions if things escalate and
reduces the risk of legal or procedural issues later on.

You can find a much more detailed breakdown of each of these steps in the
section “Developing a Personal Growth Plan” on page 38. That section is written
for tech leads building their own growth path, but the same ideas apply perfectly
when helping someone else grow too.

As you support their growth, keep your manager or HR partner in the loop.
In some cases, the EM may want to co-own the plan or track progress directly.
They’ll also help decide what happens if things don’t improve. That next step
might involve moving toward a more formal process, such as a performance
improvement plan (PIP), to ensure fairness, alignment, and compliance with
company policies. The PIP provides one last structured opportunity for improve-
ment with clearly defined goals, timelines, and outcomes.

Eventually, it may become clear that it’s time to pull the plug and let some-
one go. This is one of the hardest processes you might face as a tech lead, but
sometimes it’s the only path left. Keeping someone in a role they’re not suited
for, despite support and second chances, not only continues to affect the rest of
the team, but it can also hold the individual back from finding an environment
where they could thrive. Letting someone go should always be done with compas-
sion, transparency, and support, but avoiding it when it’s clearly needed only
prolongs the harm to everyone involved.

Dealing with underperformance is never easy, but it’s part of the job. When
handled with care, honesty, and the right support, it can lead to real progress and
prevent long-term damage to the team.

BUILDING AND SCALING TECH TEAMS | 219

Key Takeaway

Building and scaling a tech team is one of the most rewarding, and challenging,
parts of being a tech lead. From recruiting and onboarding to running perfor-
mance reviews and building team culture, you’re responsible for shaping how
your team grows, collaborates, and succeeds together.

The work isn’t always straightforward. You’ll face ambiguity, tough conver-
sations, and growing pains. But with the right mindset, clear systems, and a
commitment to continuous improvement, you can create an environment where
your team thrives.

Whether you’re preparing your first hiring plan or dealing with underper-
formance for the first time, I hope this chapter gave you the tools to take action
with confidence, and reminded you that you don’t have to get it perfect; just be
intentional.

220 | LEVELING UP AS A TECH LEAD

Addressing Technical
Challenges

Throughout this book, I’ve focused heavily on the people side of tech leadership,
and for good reason. Trust, alignment, and collaboration are what make teams
effective.

But as a tech lead, your influence also shows up in the technical founda-
tions your team works on every day. Architecture, deployment, testing, incident
response, technical debt: these are leadership concerns too. The way you shape
and evolve your systems has a direct impact on delivery speed, product quality,
and team morale.

This chapter is about those critical technical challenges.
I’ll start with architecture: how to lead your team through design and

improvement work, whether you’re building from scratch or evolving an existing
system. Then I’ll dive into the mechanics of modern software delivery, including
integration, deployment, and testing, and how to make them smoother and
more reliable. Finally, I’ll tackle some common but often overlooked challenges:
managing tech debt, responding to incidents, and deciding how and when to
document.

If the rest of the book has helped you build a strong team, this chapter will
help you make sure that team is set up to build strong systems.

Architectural Strategies and Implementation

Architectural decisions shape everything a team builds, scales, and maintains. As
a tech lead, you need to actively guide how your architecture looks today and how
it grows and evolves over time.

221

| 8

In this section, I’ll cover both ends of the spectrum, from defining a brand-
new architecture from scratch to improving and evolving an existing one.

You’ll also learn how to make architecture more visible and actionable
through clear diagrams, how to define and manage cross-functional require-
ments, and how to navigate the trade-offs between innovation and stability.

DEFINING A SYSTEM ARCHITECTURE FROM SCRATCH

While most engineers work on existing systems, there are moments, like those
involving greenfield projects, new products, or internal tools, where you get to
define the architecture from the ground up. These are rare opportunities to shape
a system intentionally from day one and set it on the right path.

Before jumping into code, take a step back with your team to answer foun-
dational questions. Start with the problem: what are we solving, and why does
it matter? These conversations should include product and business partners.
Establishing clarity early ensures that you’re designing the right thing. It also
helps prevent overengineering, since you’ll focus on solving a clearly defined
problem.

Once the problem is clear, examine your constraints, technical, organiza-
tional, and business-related. These include decisions like which programming
language to use, which cloud provider to adopt, or whether you’ll follow certain
internal platform standards. Make trade-offs visible. If you’re optimizing for
speed now, be honest about what you’re deferring and plan to revisit later.

With this context in place, begin shaping a high-level technical vision: your
early hypothesis of what the system might look like as it grows. This doesn’t have
to be precise. A rough sketch of the major components and how they interact is
enough to align the team and prompt discussion. Questions like the following
will help guide you:

• What are the core components or services we’ll need?•

• How should those components communicate or integrate?•

• Are we anticipating shared infrastructure or reusable capabilities?•

222 | LEVELING UP AS A TECH LEAD

Then shift from the abstract to the actionable. Focus on the first working
version: what must exist to deliver value quickly? Zoom into that initial slice of
architecture:

• What is the first component or feature to build?•

• What dependencies will it have?•

• What tools or technologies will we use (e.g., databases, messaging•
systems)?

You don’t need detailed diagrams. Even a simple C1-level diagram from
the C4 model (more on the C4 model approach in the section “Visualizing a
System Architecture” on page 226) can create a shared mental model that avoids
misalignment and costly rewrites later. It also makes it easier to communicate
your thinking across engineering, product, and other stakeholders.

As the system evolves, continue to move between the vision and the current
state. Revisit your assumptions, update your diagrams, and document the deci-
sions you’re making. The point is to be deliberate about shifts in direction, and
transparent about their implications.

It’s OK if things change. They will. What matters is that the team stays
aligned on what’s changing, why it’s changing, and what it means for the product
and business. That’s what a strong architectural foundation enables.

IMPROVING AN EXISTING SYSTEM ARCHITECTURE

Most engineers are working within systems that already exist: codebases with
history, architecture shaped by past decisions, and tech debt that comes with real-
world complexity. These systems need constant improvement, and that means
their architecture must evolve over time.

As a tech lead, your role is to ensure changes happen for the right rea-
sons. Resist the temptation to chase the latest trends or rewrite systems just
for the sake of novelty. Start by asking questions: What real problem are we
trying to solve? Are we facing performance issues? Struggling with integration?
Are delivery bottlenecks slowing us down? Aligning on the true problem will
help your team make better decisions, and stop you from changing everything
unnecessarily.

ADDRESSING TECHNICAL CHALLENGES | 223

Also, keep in mind that every architecture choice comes with trade-offs. No
design is perfect. Part of your role is to make those trade-offs visible, to your
team and your stakeholders. Improving architecture always costs something,
whether that’s engineering time, focus, or added complexity. Be clear about what
you expect to gain, make sure the team has the space to do the work properly,
and be ready to measure whether the change actually delivers the promised
value, whether that’s better delivery speed, improved stability, more scalability, or
reduced operational burden.

For example, there are developers who are very keen on microservices being
the best and only way to go for architecture. But who is to say that a monolith is
fundamentally bad? The value of microservices comes when you need distributed
ownership, when your product is scaling, or when you need independent deploy-
ments to speed things up. But this doesn’t mean a monolith is wrong. Actually,
every startup idea usually begins as a monolith: a simple service solving a specific
problem. Microservices become necessary only when scaling demands it.

Passionate, deep technical developers often get caught up in big changes:
massive refactorings or endless architecture updates. I prefer to stay agnostic
about specific approaches and focus on what fits the problem best. Spend more
time understanding the problem and the current constraints than chasing shiny
new ideas. Once you jump straight into solution mode, it’s easy to lose sight of
the real goal.

Before jumping into any architectural change, pause and ask: What happens
if we don’t change this? or Why is this change necessary now? These questions
help ground the conversation in real needs and avoid you falling into the “trend-
driven development” trap.

Once there’s alignment that a change is needed, don’t assume it has to be all
or nothing. Ask: do we really need to change everything at once? Often, a smaller
incremental change is easier to execute, and easier to sell to stakeholders, than a
risky big-bang rewrite.

Here’s an example from one of my teams where the big move seemed
tempting but we chose a different path.

The problem

We had a product living inside a large monolith deployed in a datacenter. We
wanted to run some quick experiments on it, but that wasn’t easy. There were
multiple challenges that made this difficult.

224 | LEVELING UP AS A TECH LEAD

First, the business logic was tightly entangled with other features in the
monolith, making any change risky. We couldn’t confidently update one part
without potentially breaking something else.

Second, the tech stack itself added friction: .NET with C# code, RabbitMQ, a
massive MySQL database, all hosted in a datacenter. Deployments were slow and
painful.

At the same time, we had a newer environment that the team used for
more recent products, built on a Scala microservices architecture, running in the
cloud with Kafka streams and DynamoDB. It was designed for flexibility and fast
iteration.

The solution

It was tempting to start rewriting everything in the new stack. But there were
major problems with that approach.

First, it was a huge effort, impossible to estimate reliably. We could have
thrown a “six months” estimate at it, but that would just have been a number
with no real basis. Plus, during that time, we wouldn’t be able to add any new
features, which was, of course, unacceptable.

Second, blindly duplicating everything meant also migrating unused features
and tech debt, something that we were really trying to avoid.

So we asked: What’s the real reason for the move? Why now? It wasn’t an
easy discussion, but eventually we pinned it down: we needed to improve the
main ranking system, the automatic classification ranking, which was crucial for
the business. In the monolith, it was very hard to experiment with changes to it.
That was our real driver.

Instead of migrating everything, we started by isolating and moving just the
ranking feature. This approach is a classic example of the strangler fig pattern,
a gradual migration strategy where new components are built alongside the old
system, eventually replacing it piece by piece.

We deep-dived into how it worked. We added tests at every level. We isolated
the feature from tangled logic. Unsurprisingly, we found dead code and several
gaps between the actual behavior and what the product team thought it was
doing.

Once we understood exactly what needed to work, we started building the
new version: a fresh Scala microservice with its own DynamoDB database, con-
nected through Kafka streams. After setting up the service, the ranking logic
itself wasn’t hard to reimplement. The real challenge was verifying it behaved
identically to the old system.

ADDRESSING TECHNICAL CHALLENGES | 225

For a period, both systems ran side by side. Every night, the same data would
be processed by both the old and the new system, and we compared the results to
ensure perfect alignment. Once we were confident the new system matched, we
cut over. All ranking requests went through the new environment, although we
still updated the MySQL database in parallel, keeping the old system’s dependen-
cies alive.

Yes, there were downsides: increased complexity, higher operational load,
duplicated infrastructure costs. But it met our main goal: we could now experi-
ment fast with the ranking logic and had already started applying machine learn-
ing improvements. On top of that, we now could deploy changes safely and ship
in small increments.

The takeaway

Meaningful architectural change doesn’t have to be massive. Start small. Focus
on solving real, current problems. Anchor decisions in clear goals, and always
understand the “why” before diving into the “how.”

Tip

If you want to dive deeper into how to design systems that support change

over time, Building Evolutionary Architectures, 2nd edition, by Neal Ford, Rebecca

Parsons, Patrick Kua, and Pramod Sadalage (O’Reilly) is a highly recommended

resource.

VISUALIZING A SYSTEM ARCHITECTURE

Before you can improve your system, you need to see it.
Yet many teams skip this step.
I’ve definitely been guilty of postponing architecture visualization for too

long. It’s easy to get caught up in building features, fighting fires, or tackling
whatever’s directly in front of you. High-level work like this often slips through
the cracks, especially when it’s hard to explain its value to stakeholders. Until
you’ve done the work, it’s difficult to show how it will positively (or negatively)
impact delivery.

226 | LEVELING UP AS A TECH LEAD

https://learning.oreilly.com/library/view/building-evolutionary-architectures/9781492097532/

But if you want to make sound technical decisions, plan improvements, or
add more load to your system, you need a clear view of the current state. You
need to understand all the moving parts.

My mistake was making the task too big. I’d assume I needed to review all
existing diagrams, verify every system’s current state, and create everything that
was missing, all at once.

The key is to start small. Break the work into manageable steps. Build a plan
with your team to gradually develop visibility, and treat it as part of your ongoing
delivery work.

First, check if there are any existing versions of architecture diagrams. Some-
times you’ll find bits and pieces scattered across different places that you can
build on. Other times, there might already be a full diagram of the system that
just needs updating. If you find one, approach it with empathy. It’s easy to look
at an existing system and immediately start criticizing: “How could people make
these decisions?” but always keep in mind the prime directive: “The team did the
best they could with the resources and time they had.” Even if it’s not the best, at
least you have something to start from.

If there is no diagram of your current system, start building one. The sim-
plest way to start is by using the C4 model approach, developed by Simon Brown,
that helps you visualize systems at different levels (Figure 8-1):

C1: Context
The big picture, a high-level overview

C2: Containers
Applications and data stores

C3: Components
Internal structure of containers

C4: Code
Class diagrams

ADDRESSING TECHNICAL CHALLENGES | 227

Figure 8-1. C4 model example

Each level of the C4 model describes a different level of detail of a system
architecture:

228 | LEVELING UP AS A TECH LEAD

C1: Context
The C1 level shows the system in its environment: how your product
interacts with users, external systems, and other teams. Start as simply
as possible: boxes for the pieces you know, one service, one database,
one entry point, and build from there. Ask your team to contribute and
keep adding pieces. Every time you add a new feature or discover a new
dependency, update the diagram.

C2: Containers
The C2 level shows the main applications and databases in your system
and how they interact.

Use it when your system involves multiple services or data stores.
It’s especially helpful for architecture reviews, planning deployments, or
explaining runtime interactions and tech-stack choices.

C3: Components
The C3 level shows the internal structure of a single application—its main
classes, modules, or functions—and how they collaborate.

Use it when refactoring, reviewing technical debt, or onboarding devel-
opers into a specific service. It’s also useful when ownership is unclear or
responsibilities are tangled.

C4: Code
The C4 level shows class-level design and relationships between individual
classes or functions.

Use it rarely, only when working in complex legacy codebases or regu-
lated environments or when a detailed view is critical for debugging or
audits. Most teams do just fine without this level. It’s costly to maintain,
and if your code is clean, readable, and well-structured, the added value is
usually minimal.

Tip

For a deep dive into this C4 model topic, check out the C4 model website.

Start with C1, then go deeper only as needed. A good rule of thumb is to
dig further when the current level of detail no longer helps you make decisions,
clarify confusion, or explain the system to others. Sometimes, the C1 level might
be enough to drive technical decisions internally and explain to your stakeholders
the impact of their requests and why timelines may need adjusting.

ADDRESSING TECHNICAL CHALLENGES | 229

https://c4model.com

I once worked for a client migrating all their services from a datacenter to
the cloud (Amazon Web Services/AWS). It was a huge company, lots of teams,
and many interdependencies. My team owned a big monolith, the money maker,
tightly coupled to a huge common MySQL database and many other services
from other teams. We had to find a way to move this, piece by piece.

This required all teams to have an overview of their services and, most
importantly, their interdependencies. I remember we built this huge diagram
on a Confluence page that, when zoomed out, was unreadable: lots of services,
databases, Kafka streams. Someone even tried drawing it on a wall-sized board,
and it still didn’t fit.

But every time we discussed a migration or someone asked how the mono-
lith depended on other services, we went back to the diagram. Initially, it showed
only what we knew. But with every conversation with other teams, we updated it,
broadening our perspective.

While the C4 model is a great framework for visualizing architecture across
different levels, it’s not the only way to break things down. Another effective
approach is to organize your diagrams around slices of functionality. For exam-
ple, instead of one massive, unified view, you could create separate diagrams
for things like checkout flow, authentication, or inventory management. Each
of these can still share common components, but isolating them helps clarify
purpose and reduce cognitive load.

Whether you use C4, functional slices, or your own framework, what matters
most is making your system visible. Once you can see it, you can evolve it.

As teams increasingly adopt AI coding assistants, these tools are opening up
new ways to generate helpful visualizations on the fly, without heavy up-front
investment.

For example, you can use AI tools like coding assistants or chat-based
interfaces to quickly generate sequence diagrams using diagram-as-code formats
like Mermaid. These can be incredibly helpful when exploring an unfamiliar
codebase or debugging a tricky call stack. Manually creating sequence diagrams
is usually a waste of time; they’re tedious and tend to go out of date quickly.
But when generated quickly for one-time use, they become a powerful tool to
build understanding in the moment. You don’t even have to store these; just treat
them as throwaway tools to help you grasp what’s happening in the code more
easily and move forward faster.

One particular scenario I have in mind here is a project I worked on that was
built around a complex state machine. Explaining how the system worked to new

230 | LEVELING UP AS A TECH LEAD

joiners was always a bit of a struggle; even I had a hard time when I first joined.
If I’d had an AI tool back then that could analyze the code and generate a visual
diagram, showing the different states and transitions in a clear, structured way,
I would’ve absolutely used it. It could have helped me trace how state changes
flowed through the system and made those onboarding conversations far more
effective.

Even if these diagrams aren’t 100% accurate, they can still be extremely
valuable. They give you a rough map to guide exploration or uncover misunder-
standings. A “good enough” diagram can often move you forward faster than no
diagram at all.

Of course, there are limitations. If the codebase is large or you try to visual-
ize the full system, the output can quickly become overwhelming or inaccurate.
These tools are most effective when you focus the scope, just enough to answer
the question at hand.

Just like sequence diagrams, C4 diagrams can also be generated with the
help of AI tools. You can ask ChatGPT or GitHub Copilot to generate a simpli-
fied C4-style representation of your architecture directly from code. For instance,
you might paste in a few key files and ask, “Analyze this codebase and generate
a C4 container diagram in Mermaid format. Assume it’s a microservice that
processes orders, with a database, an external payment provider, and a frontend
client.”

These tools can offer a useful starting point, especially when working with
legacy systems or unfamiliar codebases. But they’re not perfect. Code rarely
captures every architectural decision. Responsibilities, boundaries, and implicit
contracts are often missing or ambiguous. As a result, AI-generated diagrams
may be overly detailed, skip important relationships, or lack the broader context
needed to interpret them effectively.

The best results come when you combine AI-generated drafts with team
input. Use the AI output to trigger conversation, then refine it collaboratively.
Store the final version as diagram-as-code (using tools like Structurizr DSL or
C4-PlantUML) so it stays versioned, reviewable, and easy to evolve.

In the end, the point of all this isn’t to produce diagrams for their own sake.
These tools, whether manual or automated, are valuable only if they help you
reason more clearly, communicate more effectively, and make better decisions
with your team.

ADDRESSING TECHNICAL CHALLENGES | 231

DEFINING AND MANAGING CROSS-FUNCTIONAL REQUIREMENTS

Cross-functional requirements (CFRs) are architectural characteristics, and they
are at the heart of every system we build. They shape the structure, the behavior,
and the experience of using our software, whether we notice them or not. When
we talk about architectural characteristics, we’re talking about things like struc-
ture (the parts and how they fit together), what makes the system unique, what
its purpose is, and what decisions along the way shaped it.

The most common CFRs you’ll run into are the famous “-ilities”: accessibil-
ity, compatibility, scalability, observability, reliability, and availability, but also
performance and cost.

There are a few things these characteristics all have in common: they’re
nonfunctional (not directly visible to users), they’re cross-cutting (impact the
whole system), and they’re much harder to test compared to normal functional
features.

You might have heard CFRs referred to as nonfunctional requirements, but I
prefer cross-functional, as nonfunctional makes them sound like an afterthought,
and that’s exactly how they often get treated, until something blows up.

Sometimes, the business itself makes these CFRs crystal clear. If you’re
working for a bank, security is nonnegotiable. It’s baked into every decision, even
if it slows development down. Or think of a high-frequency trading platform,
where performance and speed are literally the business.

But most tech teams aren’t that lucky. Most of the time, CFRs are invisible,
until something breaks. Until your website loads too slowly and customers leave.
Until your API falls over at 100 requests per second. Until you get hacked
because security was “a later thing.”

You already have CFRs, whether you think about them or not.
Every system has an expectation for speed, reliability, and resilience. The

danger is assuming everyone’s “common sense” matches. If you don’t talk about
it, you leave it open to interpretation. One person’s “fast” is another’s “barely
acceptable.” One person’s “scalable” is another’s “laughably small.” That’s how
you get into trouble. Product says, “This feature feels slow.” You say, “It’s not.”
And both of you are technically right, but you weren’t actually aligned.

The earlier you define CFRs, the fewer fights and surprises you’ll have down
the road. Ignoring CFRs can lead to expensive and painful retrofits. Things
like system performance, resilience, and observability are way harder and more
expensive to deal with later. Better to make them visible and agree on them early.

232 | LEVELING UP AS A TECH LEAD

This is exactly where SLOs (service-level objectives) and SLIs (service-level indica-
tors) come into play. They’re just ways to make CFRs explicit and measurable.

So start defining them. You don’t have to drop everything tomorrow and
make a huge CFR playbook. Start small. Capture what you already have: current
API response times, typical request volumes, average page loads, known security
gaps. Write it down. Share it with your team. Share it with your PM. Validate
assumptions. You might surface important misalignments right away.

Bring CFRs into everyday conversations. When planning a new feature,
ask how many users it needs to support. Add load testing to your major relea-
ses. When integrating with another team’s system, define what “good enough”
means on both sides.

Document whatever you find somewhere visible and versioned. Observability
dashboards work great for this. If you have monitoring tools like Datadog or Gra-
fana, use them to track CFRs like latency, throughput, error rates, and uptime.
Where it matters most, define real SLOs and alerts. For example:

• SLO: 99.9% of API requests should complete in under 300 ms over a•
30-day window.

• Alert: Page on-call if 99th percentile latency exceeds 500 ms for more than•
five minutes.

SLOs are powerful negotiation tools. They let you say, “We can’t take on this
new feature without risking our performance guarantees.”

Talking about CFRs early also helps with making real trade-offs. You can’t
have perfect scalability, reliability, performance, security, and cost optimization
all at once. Ask your stakeholders: if we had to pick, what matters most? In some
cases, the choice is already made for you: depending on your industry or location,
accessibility and security might be legal requirements. For a bank, it’s security.
For a marketing website, maybe it’s accessibility. The key is to get explicit about
priorities. Just saying “Everything is important” is the same as saying “Nothing is
prioritized.”

CFRs also help shape technical decisions. Without them, you risk overengin-
eering for imaginary problems. So many startups out there plan and build for
millions of users when their business plan might support only 10,000, or even
fewer.

Yes, business goals can change. If suddenly you do need to scale 10× faster,
you’ll deal with that when it happens. But it’s better to adapt later than to waste
months now building for problems you don’t even have yet.

ADDRESSING TECHNICAL CHALLENGES | 233

A very important CFR that comes with every system, and one we don’t talk
about enough, is cost. A simple trap teams fall into is overusing cloud resources.
Cloud feels intangible: it’s just so easy to spin up a new AWS EC2 machine,
another database, another microservice. In the datacenter world, setting up a
server meant real work, real approvals, real conversations with stakeholders.
Now, it’s just a couple of clicks. The easier it is to access resources, the harder
they are to control. Just one more server. Just one more database. Just one more
experiment.

Most teams realize the real cost too late, when the cloud bill spikes and
reversing it is no longer easy. How fast you catch it often depends on the size
of the company. In bigger companies, these things can go unnoticed longer. I’ve
been there. I’ve had that tough conversation as a tech lead, explaining to my
manager why our AWS bill was one thousand euros more because we forgot a
server still running overnight after some experiments. Not easy.

The point is this: cost should always be at the back of your mind as a tech
lead. Just because it’s easy doesn’t mean it’s free. Cost is a real architectural
concern, and you should treat it like one.

Good CFR management is about making things visible early, setting shared
expectations, and helping the team make better trade-offs as they build. It’s about
working with what you know now, being intentional with your decisions, and
adjusting when new information comes in.

In the end, thinking about CFRs early is just another way of doing the hard
part of leadership: seeing around corners and protecting your team’s future work
from today’s easy mistakes.

BALANCING INNOVATION AND STABILITY

The two extremes of innovation and stability often show up clearly in tech leads.
On one side, you have tech leads driven by trends, always chasing the latest

tools, the newest patterns, the next big thing. They move fast, they innovate con-
stantly, and sometimes they leave a trail of fires behind them. Their teams often
become polyglot, using multiple programming languages and solving similar
problems in different ways. Microservices multiply, each slightly different, and
maintenance slowly becomes harder and harder over time.

On the other side, you have tech leads who stick to what they know. They
push back on anything new, favoring stability and consistency. They reach for the
familiar solution, even when it might not be the best fit, because it feels safer.
Change makes them anxious, especially when it risks destabilizing the team or
the product.

234 | LEVELING UP AS A TECH LEAD

Finding a balance between these two extremes isn’t easy, but it’s necessary,
and it usually comes with experience.

My suggestion is simple: get curious about your default style as a tech lead.
When you face a new technical challenge, what’s your instinct?
Do you gravitate toward new tools and technologies, eager to try something

modern, excited to bring fresh ideas into the codebase? Are you naturally drawn
to innovation and exploration?

Or do you tend to lean on the tools you already know? Do you focus on
stability, consistency, and making the most of what’s already there? Are you
naturally cautious about introducing unnecessary change?

Neither approach is inherently better. Both instincts can be valuable, and
both can backfire if taken too far.

If you push too hard for constant innovation, you can easily overwhelm
people, especially those with less experience, who need time to build depth. Your
system grows more complex, as different problems get solved in different ways.
Long-term maintainability suffers. And the faster you adopt new technology
without a clear purpose, the easier it is to accumulate technical debt, inconsisten-
cies, partial migrations, and abandoned experiments that will slow you down
later.

If you cling too hard to stability, you can end up slowing the team’s growth.
You can demotivate ambitious engineers who want to learn and improve things.
They’ll feel blocked, and they’ll leave.

I know this from personal experience. I naturally lean toward stability. As a
new tech lead, I always pushed my team toward consistency. Every time a team
member proposed a new library or tool, I felt a knot in my stomach, because I
knew I’d probably have to say no. I was afraid of losing control: over our code,
over our processes, over our security.

But over time, I built more trust in my team. I also listened carefully to their
feedback. Some of them shared, gently but clearly, that my resistance to new
ideas was limiting their growth and motivation.

So I started to change, slowly. Small experiments here and there. Nothing
huge at first.

Then one day, a developer in my team proposed something bigger: running
a machine learning experiment on one of our core features. He shared the idea
with a few stakeholders and a few team members. Everyone was excited. I wanted
to support it, but I also knew I couldn’t guide him deeply through the technical
side, because I didn’t have enough experience myself.

ADDRESSING TECHNICAL CHALLENGES | 235

Instead, I leaned into trust. We sat down together and built a plan. We
agreed he would own the project end-to-end: implementation, communication
with stakeholders, tracking progress, defining success metrics. He would be the
face of the project, but we would still share responsibility for how it turned out.
That meant I’d stay involved, giving him visibility and support, setting up a clear,
continuous check-in process between the two of us, and stepping in directly only
if needed.

It worked better than I ever imagined. He delivered on time. The results
were great. He got the rest of the team excited, started knowledge-sharing
sessions, and helped upskill everyone. The product improved, and we built a
reputation inside the company as an innovative, forward-thinking team.

The lesson here isn’t “innovation is always good” or “stability is always bad.”
The lesson is: you can expand your leadership style, one step at a time. You
can find ways to experiment that feel safe, for you, for your team, for your
stakeholders.

We’re seeing the impact of this balance challenge everywhere today, espe-
cially with the rise of AI. Some tech teams are speeding ahead, experimenting
with AI wherever they can. Others are taking a more cautious approach, con-
cerned about quality and long-term implications, they prefer to carefully explore
what AI can and cannot do. Both mindsets are valid, and finding the right pace
for your team is key. For more on how to approach this shift in a thoughtful,
sustainable way, see the section “Integrating AI into Your Team” on page 28,
where I explore strategies to support your team through this transition.

Balancing innovation and stability is just another part of the everyday reality
of being a tech lead, especially in a space as fast-moving as tech. The ability to
continuously explore your leadership style, and adapt it not just to your preferen-
ces but to your team’s and company’s needs, is more critical than ever.

There is no fully right or wrong answer. Context is everything. Environment
matters. The needs of today might not be the needs of tomorrow.

As long as you keep checking in, with yourself, with your team, with your
stakeholders, and stay open to the idea that you might also be wrong sometimes,
you’ll stay on the right path.

Integration and Deployment

Integration and deployment are two of the most critical technical processes in
any product development cycle. They are the bridge between the code your team
writes and the value that code delivers to your users. Smooth, reliable integration

236 | LEVELING UP AS A TECH LEAD

and deployment processes improve engineering efficiency and build trust across
your team, your stakeholders, and your customers.

In this section, I’ll focus on how to think about and continuously improve
your CI/CD practices, define and refine your path to production, and ensure that
your testing supports the speed and safety your product needs to evolve.

DELIVERING VALUE CONTINUOUSLY

In the past couple of decades, we’ve seen several practices showcase how speed
and reliability actually go hand in hand when delivering software. DevOps,
extreme programming (XP), continuous integration (CI), and continuous deliv-
ery (CD) have all demonstrated that shorter iterations tend to improve the stabil-
ity of production systems.

Shorter iterations reduce the size of changes in each release, encourage bet-
ter communication across roles, encourage a culture of automation, and enable
early and continuous feedback. All of that leads to improved software stability
and quality. Continuous deployment (also CD) is the natural next step in this line
of thinking.

Before diving in, let’s clarify the terms:

Continuous integration
Continuous integration means automatically building and testing each
code change as it’s integrated into the main branch. This ensures that
integration issues are caught early and often, making it safer to move
quickly.

Continuous delivery
Continuous delivery builds on CI by ensuring that every change that passes
automated tests is ready to be deployed to production. However, the actual
deployment still requires manual approval; a person must push the final
button.

Continuous deployment
Continuous deployment goes one step further: every change that passes
the pipeline is automatically deployed to production without any human
intervention. There’s no faster way to get code running in front of your
users.

ADDRESSING TECHNICAL CHALLENGES | 237

Note

While the abbreviation “CD” is used for both continuous delivery and continuous

deployment, the difference lies in whether the deployment step is manual (delivery)

or automatic (deployment).

You can absolutely do CI without CD, but not the other way around. Continuous

delivery or continuous deployment can’t happen without continuous integration.

That’s why you always see them bundled together as CI/CD.

I was doing continuous deployment with my team back when pushing
every change directly to production still felt a little bit crazy. I thought it was
awesome; I couldn’t stop talking about it. In fact, my first-ever public speaking
gig was about continuous deployment. That’s also when I first saw the pushback
firsthand. People would ask, “Only working on the master branch? Every commit
going directly to production?”

And to be fair, if you’re coming from a world of long feature branches,
extended phases of manual testing, and formal approval processes, then yes, code
going to production within minutes can be quite the culture shock. It definitely
took me some time to get comfortable with it.

Even today, many teams treat CD as aspirational, something to aim for.
Some are still doing fully manual deployments. And many developers are out-
right against it. I think it’s because they’ve never truly tried it, or haven’t seen it
done well.

I get it. When I first joined Thoughtworks, I thought the idea of deploying
code multiple times a day was insane. I came from an environment where we
deployed once per sprint—maybe. Each release required manual approval from a
manager, followed by a carefully orchestrated testing process. The idea that code
could go to production automatically, minutes after being merged, felt reckless.

But once I experienced it done well, with proper testing, monitoring, and
safety nets, there was no going back.

The thing about continuous deployment is that it’s not just about tooling.
It requires a fundamental shift in how the team works together. It really works
only when the team collaborates effectively. It requires vulnerability, committing
small changes daily, even when things aren’t “done.” It requires a strong code
review process, whether through pair programming or timely, thoughtful pull
request reviews, alongside reliable tests and fast feedback loops. It needs a shared
definition of done and clear agreement on what “ready for prod” actually means.
Everyone has to be aware that a broken commit can block the whole team.

238 | LEVELING UP AS A TECH LEAD

It demands extra care: making sure code runs locally, all tests pass, and new
features are tucked safely behind flags.

Personally, I believe this is how software products should be developed
and deployed. It just makes so much sense: fast feedback, no blockers, and a
workflow that forces collaboration by design.

Now, I do acknowledge there are exceptions. Some industries, like medical
or legal, might require human sign-off for every deployment due to compliance
or legal constraints. In those cases, someone might literally need to push a
button.

Also, there are risks in implementing this approach. It’s a big cultural and
technical shift. Continuous deployment requires serious discipline: strong test
coverage, reliable pipelines, feature flagging, and a team that treats every commit
as production-ready. In complex, distributed systems, one bad change can ripple
across services in unexpected ways.

So yes, fast delivery comes with responsibilities. And just to be clear, I’m
not saying you need to embrace full continuous deployment. What I am saying
is that as a tech lead, you should be aware of where the industry is heading. Con-
tinuous deployment represents the current state of the art in modern software
delivery. You may not need it, you may not be ready for it, but understanding its
principles and trade-offs is part of growing as a technical leader.

Tip

If you’re looking for a hands-on guide to implementing continuous deployment,

check out Continuous Deployment by Valentina Servile (O’Reilly). It’s a practical,

thoughtful deep dive into the what, why, and how of modern delivery practices.

DEFINING YOUR PATH TO PRODUCTION

Regardless of where you are in your CI/CD journey, your code has a path to pro-
duction. Sometimes it is straightforward; most times it is very messy. Whatever
the state, it’s your responsibility as a tech lead to ensure smooth ways of working,
including your deployment process. That means making sure it’s fast, smooth,
and reliable and that you’re continuously looking for ways to improve it.

But you can’t improve what you don’t understand. Start by gaining clarity on
your current deployment pipeline: What does it look like today? What’s working
and what’s not?

To answer that, you need to visualize your team’s path to production, a step-
by-step map of how code (software change) moves from a developer’s machine

ADDRESSING TECHNICAL CHALLENGES | 239

https://learning.oreilly.com/library/view/continuous-deployment/9781098146719

all the way to production. It should capture the steps, people, tools, tasks, and
output involved in turning ideas into running software.

I still remember the first time I had to draw my own path to production on a
board and explain it to other tech leads as part of a tech lead training. I realized
how many gaps I had in the process: things I was not sure about regarding how
the pieces were connected and worked together.

So I brought it back to my team, and we filled in the pieces together. We
even identified a couple of small changes that could reduce our time to produc-
tion significantly.

I do have to mention that we were an autonomous team running on the
“you build it you run it” methodology: this means we were in charge of not just
developing the product but also deploying, testing, and maintaining it. There was
no other infrastructure or QA team doing this for us. The company did have a
vertical SRE (site reliability engineering) team, but they were managing just the
very low-level underlying infrastructure and resources, like setting up the actual
machines in the datacenter or setting the direction for our cloud architecture. We
did have to have constant communication with them, but the rest (deployment
pipelines, resource management, infrastructure cost management) was on us.

I am saying this because I know this is not the case everywhere. There are
tech teams that are somewhere in the middle: where infrastructure teams play a
bigger role in this process, as they define clear guidelines on how to do it, and
you, as a team, have to apply them, but still build and manage your pipeline, and
you have a bit more playing space with the settings and resources.

And there are teams that completely rely on other teams, usually referred
to as infrastructure teams, to deal with everything deployment-related: these infra-
structure teams define the rules and enforce them. They build the deployment
pipelines, and you, as a team, depend on them for any changes you might want
to make in the process. This goes to the extent that some product teams don’t
even have access to production, just to in-between stages, and the infrastructure
team is the only one that manages the production deployment.

They are all scenarios that you might fall into as a tech lead, and before
deciding which one is better, remember that the particular context of the team
and business and company has a lot to do with defining what is good. So, before
making any rash decisions, try to understand what the current process is and
why it is like that.

Here is how you can easily get started with visualizing the process.

240 | LEVELING UP AS A TECH LEAD

The template shown in Table 8-1 helps you visualize your team’s delivery
pipeline by mapping out two key dimensions:

X-axis (horizontal): Steps in the process
Each column represents a distinct step your code goes through, from the
moment it’s written to when it reaches users. This could include things
like reviews, testing, approvals, deployments—whatever makes up your
specific delivery flow.

Feel free to rename or adjust steps based on your actual process.

Y-axis (vertical): Key dimensions for each step
Each row captures a different aspect of that step, such as:

• People involved: who’s responsible or contributing here?•

• Tools used: what systems or platforms are being used?•

• Tasks performed: what actions are taken?•

• Outcomes/outputs: what is produced or expected at this point?•

Table 8-1. Path to production template

Development ? QA ? Prod

People involved

Tools

Tasks

Outcomes/outputs

Note

You could consider adding an analysis column to the “path to production” template.

Earlier, I described the path to production as the journey a piece of code takes

from a developer’s machine to the production environment. That’s the typical fram-

ing used by most engineering teams.

But depending on your context, it might be useful to go a step further and

include the pre-development stages too. Consider adding a column for analysis, the

point at which a story enters planning. This is often where work starts to move

and where bottlenecks can emerge: waiting on UX input, legal reviews, or decisions

from other teams. Mapping these steps can help you understand delays that happen

before any code is written.

It’s completely optional, but if your team often gets stuck early in the process, it

might be worth including.

ADDRESSING TECHNICAL CHALLENGES | 241

If you have multiple systems or tech stacks, you should have a path-to-
production diagram for each. The good news is these diagrams shouldn’t change
too often, so once you have them, maintaining them is relatively easy.

The value comes from doing this as a team, with all roles involved. So make
sure to bring your draft in front of your team as early as possible and fill the gaps
in the process together by answering these questions together:

• What are your dependencies?•

• What steps along the path to prod are still not clear to you as a team? Who•
can help you fill in the blanks?

• In the Development column, consider the following: Who usually partici-•
pates in development on this team? If you are doing pair programming,
what are the pairing rules?

• What branch strategy does the team use, trunk-based or feature branch?•
How is the continuous integration process of the team? Are there any
rules for using Git? What happens when there are doubts about the scope
of the task? And when new scenarios are discovered?

• In the QA column (sometimes called Sign-Off), consider the following:•
Who participates in this step? What happens if the story is found not to be
implemented as expected? What happens if bugs are discovered during?

• Are there any pre-production environments that need to be mapped out?•
Do you have dedicated environments like Dev, Staging, or QA? When are
they used and by whom? Are there environment-specific checks, access
rules, or blockers that impact the path to production?

• In the Production column, consider this: What is the process to deploy•
to production? Any manual steps involved? Is there someone outside the
team who participates in this? Who? What happens if the deployment is
not successful?

There are endless benefits to visualizing your path to production. Here are
just a few:

It makes your deployment process faster and smoother
Once you’ve built the diagram, sit down with your team and walk through
it together. Ask the right questions: What are the bottlenecks in our pro-
cess? Where do we have long wait times? Where does work tend to pile up?

242 | LEVELING UP AS A TECH LEAD

From there, identify small improvements you can start working on
today. Sometimes the smallest change can have the biggest impact. For
example, simply reordering tests or upgrading a library might significantly
reduce waiting times.

In one team, there were flaky automated tests causing random failures
in our deployment pipeline. Every time a test failed, someone had to inves-
tigate, confirm it was a known flake, and manually restart the pipeline.
Over time, this became so normalized that no one questioned it anymore.
“Oh, a flaky test. Just rerun it.” It was part of our daily routine.

These tests had been around forever. No one really knew what they
covered anymore, and people were hesitant to remove them, just in case
they were catching something important.

Once we started working on our path to production, identifying bot-
tlenecks like this one, we also added metrics to see how often it was
happening. Surprisingly, one out of five deployments was failing because
of these flaky tests, way more than we thought. We decided to take action.

We reviewed all the tests that were frequently failing. Some we fixed.
Others we removed, accepting the trade-off that if something truly critical
broke, we’d catch it elsewhere. The truth was, these flaky tests were giving
us a false sense of security. People had stopped trusting them, so in prac-
tice, they weren’t protecting us at all; they were just slowing us down.

Once we cleaned them up, our pipeline became more stable and more
trustworthy.

It was only when we mapped our path to production that the real
impact became clear, and once we saw it, we couldn’t ignore it anymore.

It improves stakeholder conversations
Becoming aware of your bottlenecks, delays, and improvement areas, and
sharing them with stakeholders, can be a game-changer. This kind of trans-
parency helps justify large estimates that depend on other teams, highlight
blockers or handoffs, and build a shared understanding of why something
is taking time. It also feeds into better forecasting and planning.

It strengthens collaboration
Mapping out your path to production can bring teams closer together.

On a new project, it helps define how you’ll work as a team from
day one. Rather than inheriting old habits or building a release process
reactively, you can be intentional about the steps you take and how you
collaborate.

ADDRESSING TECHNICAL CHALLENGES | 243

On an existing project, it can reveal process gaps or mismatched
expectations. A shaky path to production often reflects deeper communica-
tion or collaboration problems.

Beyond your immediate team, these diagrams can also lead to broader
improvements at the company level. When you start conversations with
other teams about shared bottlenecks or dependencies, you raise visibility,
and sometimes trigger momentum for cross-team process change.

It helps with onboarding
Path-to-production visualizations make excellent onboarding tools. New
joiners may not remember every step, but having a clear visual map
gives them a solid overview and something to refer back to when they’re
unsure. I strongly believe every onboarding process should include walking
through this diagram together.

The value of visualizing your path to production is just as important even if
your team does not control most of the process. A common question that comes
up is “What value is there in analyzing something we don’t control?” It’s a fair
question.

But the most effective tech leads are the ones that are involved in all stages
of development of their product, including how efficiently and reliably it makes
it to production and whether it meets business expectations. Even if parts of the
process are owned by other teams, understanding those black boxes, knowing
who manages them, and being aware of the delays they introduce can help you
work more effectively with those dependencies.

Take, for example, a common scenario: your deployment pipeline is man-
aged by a site reliability engineering team. It might be tempting to say, “The
pipeline is slow; that’s their responsibility to fix.” But it’s often more productive
to take shared ownership.

In one team I worked on, our pipeline suddenly started slowing down. After
about a week of waiting for it to resolve, I reached out to the SRE team to ask
what was going on and whether we could help. It turned out they’d recently
made a change to a config file and hadn’t realized it impacted our pipeline. Once
they looked into it, they discovered the issue was affecting multiple teams, but
since no one had raised it, they didn’t know it was a problem.

By stepping in, we solved our issue but also helped the SRE team uncover
a broader impact. That kind of awareness and collaboration happens only when
teams stay curious about the full delivery process.

244 | LEVELING UP AS A TECH LEAD

Ultimately, clarity on your path to production improves more than just
delivery speed. It builds confidence, strengthens collaboration, and lays a solid
foundation for consistently delivering quality work.

CONTINUOUSLY TESTING

These days, automated testing in software should come as a default requirement.
The benefits are huge, and we all know it. But many of us have also felt the pain
of untested code because, despite knowing better, the reality is that testing is
often skipped. This is especially true in fast-moving areas like machine learning
and AI, where excitement outpaces the maturity of the testing ecosystem.

But it’s not just about new tech. Legacy code, the kind that holds systems
together and generates most of the revenue, is often untested too. People are
afraid to touch it, and for good reason: without tests, you never know what will
break. That fear paralyzes improvement, blocks features, and raises the risk of
bugs and outages.

Well-done testing brings trust. It brings safety. It tells you if something’s
broken before it hits production. It aligns the team on what the code should do.
It documents what the code actually does. It gives you a history of how features
have evolved. And most importantly, it builds trust with customers through
stability and reliability.

Practices like continuous integration and continuous delivery depend on
proper testing to be effective. Technically, you can ship without tests, but you’ll
likely face more bugs, more regressions, and slower recovery. Fast tests mean
fast feedback, which means faster delivery.

A healthy testing strategy also impacts how your team collaborates. It affects
pair programming, code reviews, and your ways of working. A team with no
testing usually means people work in silos, and focus narrowly on getting their
own code “done,” without thinking about how it fits into the bigger picture or
might impact others.

I could go on about the benefits of testing, but you probably already get the
point. Let’s focus on why this matters to you as a tech lead. You’re accountable
for everything your team delivers. That doesn’t just mean “it works”; it means
your product meets quality standards, is scalable, and is reliable. You simply
can’t achieve that without proper testing.

But what does “proper testing” even mean? That depends on your team.
In my experience, every team is different. I’ve worked on projects with zero

tests, some with basic unit and integration tests, and others with full-blown

ADDRESSING TECHNICAL CHALLENGES | 245

1 For a deeper dive, see Kent Beck’s book Test-Driven Development: By Example (Addison-Wesley, 2002).

strategies including TDD,1 contract tests, end-to-end (E2E) tests, and automation
across the board. There’s no one-size-fits-all answer. I love TDD, but I also
know context matters. Your team’s environment, timeline, and maturity level all
influence what makes sense.

Start by defining what proper testing means for your team. Begin by under-
standing the company-wide expectations. Are there minimum standards your
team is expected to meet? Are there any tool restrictions in place that you need
to respect? Once you have clarity on these aspects, assess whether your team
is currently meeting them. Even if your team isn’t aligned yet, as a tech lead,
you need to be fully aware of these expectations because you are responsible for
enforcing them.

While thinking about how to measure your testing efforts, be cautious with
code coverage (a software testing metric that measures the percentage of source
code executed during automated testing; in simpler terms, it tells you how much
of your codebase is being covered by your tests). A lot of tech teams rely on cover-
age metrics to define how well their code is tested, but this can be misleading.
I’ve seen flaky systems with 80% coverage and working systems with 20%. Code
coverage doesn’t tell the whole story. It doesn’t account for quality, critical paths,
or meaningful assertions.

If your company doesn’t have clear testing guidelines, create them for your
team. Sit down and build a strategy together. Start by identifying what types
of testing are currently in place, whether that’s contract testing, load testing,
exploratory testing, or A/B testing.

Then, decide what testing layers you want to strengthen or introduce: unit
tests, integration tests, E2E tests, and so on. Map out the tools you’re already
using, and note where your gaps are.

One helpful mental model to guide these decisions is the test pyramid
(Figure 8-2). It emphasizes having more unit tests at the base, a moderate
number of integration tests in the middle, and fewer E2E tests at the top. This
structure helps balance speed, reliability, and coverage. Unit tests are fast and
focused, integration tests check that components work together, and E2E tests
simulate real user flows but tend to be slower and more brittle.

246 | LEVELING UP AS A TECH LEAD

https://learning.oreilly.com/library/view/test-driven-development/0321146530/

Figure 8-2. Test pyramid

This doesn’t mean blindly chasing a perfect ratio, but it’s a useful principle
to avoid common pitfalls, like teams that rely too heavily on slow or flaky E2E
tests without having a solid base of unit or integration tests.

Finally, clarify which parts of your testing process are automated and which
are still manual. Having this full picture will make it easier to spot opportunities
for improvement and build a realistic, actionable plan.

From here, shift your focus toward the biggest pain points standing in the
way of better testing. Maybe tests don’t run locally, and developers lose confi-
dence before even pushing their changes. Maybe your CI pipeline is unstable,
constantly breaking due to flaky tests that no one trusts anymore. Sometimes
the tests are simply too slow, delaying feedback and slowing down your delivery
process.

Other times, critical parts of your system, like edge cases or infrastructure
components, might not be tested at all. And in some cases, ownership of testing
might be unclear or fragmented between developers, internal QA, and external
QA. Each of these issues contributes to inefficiencies and risk. Document it all.
Whatever you decide to improve, now or later, having a written record will help.

Now that you’ve assessed your current state, the next step is to define what
“better” looks like. This might align with broader company standards or focus on
removing the day-to-day friction your team experiences. It could mean ensuring
everyone can reliably run unit and integration tests locally, eliminating flaky tests
that break the pipeline, or removing manual steps that delay deployments. Even
small goals can lead to meaningful improvements when they’re intentional and
shared.

You don’t need to fix everything at once. Start with the most painful, recur-
ring issue that’s relatively easy to address. For example, simply improving local
test reliability can significantly boost team confidence and delivery speed.

Once you’ve identified what to improve, work with your team to define a
clear, practical strategy. Agree on your goals and how you’ll get there. Whether

ADDRESSING TECHNICAL CHALLENGES | 247

that means introducing new practices or refining existing ones, the key is to be
deliberate.

Whatever your vision is, define it clearly and collaboratively with your team.
That shared vision becomes your testing strategy, even if the strategy is to keep
things as they are, as long as that decision is intentional.

Improving testing is a business win too. When you need stakeholder support
for your testing improvements, connect it to outcomes they care about: faster
delivery, reduced risk, and stronger customer trust. Frame improvements in
business language, not just technical jargon. Help them see that better testing
will help them move faster over the long term.

Once you have a clear view of your testing landscape, bring your team into
the process. Collaborate on improvements. You may even be able to delegate
ownership to someone interested in driving this forward, organizing team ses-
sions, documenting the current state, and helping prioritize fixes. Remember:
being accountable doesn’t mean doing everything yourself.

Even when you delegate, your role as a tech lead remains critical. You do
need to think deliberately about what testing should look like for your team. Stay
close to the process. Even if a separate QA team handles much of the work, make
sure you understand how testing impacts your timelines, your risks, and your
delivery flow. Work closely with this other team. Stay alert to bottlenecks and
blind spots.

Testing is one of the fundamental practices that underpins everything else
we do as tech leads. It connects to how we manage risk, improve delivery speed,
and build trust, both within our teams and with our stakeholders.

Common Technical Challenges and How to Overcome Them

Every tech team deals with messy, unglamorous problems. The kind that don’t
get talked about in architecture diagrams or sprint demos, but they slow you
down, frustrate your team, and get in the way of delivering value. As a tech lead,
you’re expected to navigate these challenges and help your team do the same.

This section is about those common technical struggles that every team faces
at some point: growing tech debt that never makes it into the roadmap, incidents
that catch you off guard and leave everyone scrambling, and the constant ques-
tion of how much documentation is enough.

I’ll go through each of these with practical strategies you can use to tackle
them—not perfectly but better. Because handling these well is what separates a
team that survives from one that thrives.

248 | LEVELING UP AS A TECH LEAD

MANAGING TECHNICAL DEBT

The only project without tech debt is the one that hasn’t started.
Tech debt is part of building software; it’s unavoidable. In fact, in my expe-

rience, the most successful, revenue-driving systems are often the ones that
happen to accumulate the most tech debt. Why? Because they’ve grown fast to
meet demand. Because they’re actively used. And because there’s no way to build
a real-world product at speed without making some compromises along the way.

Sometimes, tech debt is intentional: you cut corners to move quickly. Maybe
you duplicate code, couple components too tightly, or skip testing. You promise
yourself you’ll fix it later, when there’s more time…but “later” rarely comes, as
it’s not properly prioritized. There’s always another feature, another deadline that
comes first.

Other times, debt creeps in even when you don’t touch the code. Third-party
libraries move forward, while your system stays still. Over time, what once
worked fine becomes outdated, buggy, or even insecure.

And tech debt isn’t just in the code. There’s also product tech debt: all those
old features nobody uses, built in hacky ways that no one fully understands
anymore. I’ve seen this kind of debt slow teams down more than any messy
codebase, because new work must still integrate with and tiptoe around those
unknowns.

So no, you can’t avoid tech debt. But you do need to manage it.
If you ignore it, it grows into a bottleneck. Every new feature takes longer.

Outages become more frequent. Engineers grow frustrated and disengaged.
Beyond the technical consequences, unmanaged tech debt chips away at

morale. When your team is constantly tripping over fragile systems and patching
problems they didn’t create, it wears them down. It becomes harder to feel proud
of the work. And over time, that erodes retention and team health.

Fortunately, there are ways to keep tech debt from spiraling. The first step is
making it visible. You can’t manage what you can’t see.

Start by identifying and listing all known tech debt items across your system.
This process alone gives clarity on the scale and impact, and it helps frame future
conversations with your team and stakeholders.

One practical way to do this is to create a “Tech Debt Wall.” This could be
a shared Confluence page, a board in Jira, or even a physical space in the office.
The idea is to make the most pressing tech debt items visible and transparent to
the entire team and relevant stakeholders. You can include context, impact, and

ADDRESSING TECHNICAL CHALLENGES | 249

links to related issues or documentation. This helps prioritize discussions and
reinforces that tech debt is an ongoing part of your product’s health.

Another effective method is using an effort-value matrix. This is a collabora-
tive tool where your team evaluates each piece of technical debt by plotting it on
a 2 × 2 grid, with “effort to resolve” on one axis and “value of resolving” on the
other.

The goal is to move away from gut feelings and create a shared, visual
representation of priorities. It helps uncover hidden quick wins (high value, low
effort) and align team discussions around what really matters.

Plus, it’s a great way to include product managers in the decision-making
process, since it translates technical trade-offs into clear business value. Tasks in
the top-left quadrant in Figure 8-3 (high value, low effort) are your low-hanging
fruit and a great way to start.

Figure 8-3. Effort-value matrix

In addition to the effort-value matrix, you can use more nuanced prioritiza-
tion frameworks that take into account not just effort and value but also risk,

250 | LEVELING UP AS A TECH LEAD

frequency of impact, and alignment with strategic goals. For example, assigning
scores to each of these dimensions, on a 1–5 scale, can help you generate a
composite priority score. This makes trade-offs easier to justify and decisions
more transparent when discussing priorities with stakeholders or leadership.
Tools like RICE (reach, impact, confidence, effort) or custom-weighted models
can be adapted for this purpose.

Use whatever framework fits your team’s decision-making style, but the
key is to move from opinion to evidence-based prioritization. Start somewhere.
Prioritize the tasks. Add them to your backlog. Work with product people in your
team to build a strategy around them.

Now that you have them prioritized, here are some strategies for how you
can start introducing these tasks in your daily team work:

The 80/20 rule
Reserve 20% of your team’s capacity each sprint to reduce tech debt.

Package tech debt work alongside relevant product initiatives
For example, if you’re touching a part of the codebase to build a new
feature, use that moment to clean up related debt in the same area.

Theme-based sprints
Focus each cycle on a particular type of technical debt, such as performance
optimizations, test coverage, or security hardening. This helps the team
dive deeper into a specific area.

Definition of done
Expand your DoD (definition of done) to include debt-related criteria (e.g.,
no new dependencies added without review).

In addition to visualization exercises, consider using tools that help you track
and monitor technical debt over time. Platforms like Code Climate, SonarQube,
and Stepsize that integrate directly into your codebase and CI pipeline, highlight-
ing hotspots, code complexity, and maintainability issues.

For backlog-level management, tools like Jira, Asana, or Linear can be struc-
tured to tag and group technical debt items by type, impact, or urgency. The key
is to choose tools your team will actually use and keep them tightly integrated
into your workflows.

This sounds like a lot, but again, I have to remind you that as a tech lead,
you need to ensure tech debt is taken care of. It’s actually a great opportunity
to delegate. In my team, we had a rotating role called the Tech Debt Champion.

ADDRESSING TECHNICAL CHALLENGES | 251

This person’s focus was to keep the list up-to-date, gather input from engineers,
and surface the most painful areas of the codebase. You can even rotate this role,
giving multiple people the chance to develop extra skills. You just have to ensure
this person is properly set up for success to deal with the task. For a detailed plan
on how to delegate effectively, check out Chapter 6.

When defining success metrics, avoid goals like “eliminate all tech debt.”
That’s not realistic, or even necessary. Some tech debt is totally tolerable. In my
team, we explicitly acknowledged certain debt we would live with, because we
understood the trade-offs and risks. The key is intentionality: manage it deliber-
ately, know why it’s there, and make sure it doesn’t silently grow into something
harmful. The goal is sustainable control.

Tech debt is not the enemy. Poorly managed tech debt is. Done right, tech
debt can actually be strategic. It lets you ship faster, validate ideas quickly, and
seize market opportunities.

The next challenge is selling tech debt work to your stakeholders.
Let’s say you’ve identified a few areas of tech debt that are slowing your team

down. Maybe your CI pipeline is unstable due to flaky tests, a common testing-
related form of tech debt that I explore in detail in the section “Continuously
Testing” on page 245.

Or maybe you’re dealing with outdated third-party libraries that are blocking
new features, or a core module that hasn’t been refactored in years and now takes
hours to onboard new team members.

These issues are clear signs of tech debt, and they highlight the kind of
day-to-day friction that creeps into development if left unchecked. You want to
address them.

There are two ways to sell it to stakeholders.
The first is tactical and immediate: speak their language. Connect tech debt

efforts to what they care most about: faster delivery, reduced risk, improved relia-
bility. Explain how resolving flaky tests or refactoring brittle code can improve
release stability, reduce hotfixes, and create space for faster feature work, fewer
production issues, and happier customers. Start small. Pick something easy to
fix that has a visible impact. Then measure and share the result: how much
time was saved, how frustration went down, how the team feels more confident.
Bring it up in retros, in sprint reviews, in casual updates. Let them see the
improvement.

The second way is strategic and long term: play the long game. Build trust
continuously. Don’t wait until you need something to engage with stakeholders.

252 | LEVELING UP AS A TECH LEAD

Keep them in the loop. Show steady progress. Invite feedback. Make them part
of the journey. When you’ve built that relationship, getting buy-in is no longer a
battle.

To navigate these conversations, use the three Rs of the stakeholder align-
ment framework:

Reframe
Translate tech debt into business value. Don’t describe it as cleanup. Show
how it leads to faster delivery, fewer incidents, and smoother onboarding.

Relate
Link the impact of tech debt to stakeholder pain points. Maybe it’s been
blocking a feature or increasing the time spent on support. Make it relevant
to their goals.

Reinforce
Regularly share outcomes and updates. Build a track record of small wins
to create confidence and momentum for larger investments.

I rarely got pushback from stakeholders as a tech lead because I put effort
into building trust over time. I didn’t talk to them only when I needed some-
thing; I kept them in the loop consistently, not just when things went wrong.
I shared progress regularly, asked for their feedback, and included them in key
moments. Over time, that steady communication built a foundation of trust that
paid off when we needed space to focus on tech debt or internal improvements.

So when my team needed to tackle tech debt, there was not much debate:
“We need to add this to the sprint. This requires us to remove this feature
from the sprint, but we’ve already reviewed the timeline, and it won’t have any
negative impact.” The response was simple and confident: “If you say it’s needed,
it’s needed. Sounds good. I trust you.”

The point of this story is to show you that there’s a different approach, one
where you collaborate with stakeholders instead of constantly pushing against
them.

This kind of working relationship doesn’t happen overnight. It requires
openness on both sides, consistent effort, and a bit of good faith. But when
you build that foundation, it changes everything. Conversations become easier.
Buy-in becomes natural.

ADDRESSING TECHNICAL CHALLENGES | 253

DEALING WITH INCIDENTS

Even in the best-engineered systems, failures happen. Servers crash. Deploys
misfire. APIs time out. A third-party system breaks unexpectedly. These
moments are stressful, but they’re also inevitable.

There is nothing you can do to prevent all incidents, but there is a lot you can
do to ensure your team is prepared to respond well when they happen.

Actually, how your team responds to an incident is a direct reflection of your
engineering culture.

Build a culture of readiness and learning

Incident response isn’t just reactive; it’s proactive.
Start by normalizing incidents as a natural part of running software. Instead

of being surprised or panicking when one happens, build a clear incident han-
dling process that helps you stay in control. The following list will help you set up
a solid, team-friendly response process:

Integrate company processes
Many companies already have incident management processes at the
organizational level. Make sure your team’s process integrates with them.
For example, some companies require different levels of stakeholder
involvement depending on the incident’s severity. Don’t reinvent the
wheel; adapt it and make sure your team knows it.

Define severity levels and classifications
Not all incidents are created equal. Your login process breaking for all
users is very different from it failing only for browser versions outside of
your supported set. The number of users impacted, the risk of business
loss: these factors matter. Your incident process should adapt based on
severity: who gets involved, which communication channels are triggered,
and how involved you need to be as a tech lead.

Make escalation paths obvious
Everyone should know how to escalate an issue and where to find critical
information like logs and metrics.

Invest in observability
Go beyond alerting; make sure your systems are instrumented and your
team can actually debug them (more on this in the section “Aim for Fast
Feedback” on page 287).

254 | LEVELING UP AS A TECH LEAD

Define clear on-call processes
You can’t respond quickly to incidents if no one knows who’s responsible.

That’s why you need a clear and reliable on-call process, even for
small teams. There should always be someone designated to keep an
eye on alerts, investigate issues quickly, and coordinate a response when
something breaks. Without this ownership, it’s easy for problems to go
unnoticed or for everyone to assume someone else is handling it.

Most tech teams solve this with an on-call rotation, where responsibil-
ity is shared across the team. Tools like PagerDuty or Opsgenie make
this process smoother by automatically rotating who’s on call, sending
alerts, and even escalating if the first person doesn’t respond. These tools
help ensure no incident goes unacknowledged, whether it happens during
working hours or in the middle of the night.

More on how to handle after-hours incidents in the section “How to
deal with issues outside of working hours” on page 260.

But regardless of timing, the on-call process should be clear, fair, and
automated.

Prepare for things going wrong
Consider running premortems: before major releases, gather your team
and ask: “If something goes wrong, what would it be?” This simple ques-
tion can reveal hidden risks, raise concerns that haven’t been voiced, and
help you stress-test your rollout plan. You’ll often catch potential issues
before they turn into real ones.

Alongside identifying risks, plan for your rollback path before you
need it. It’s not enough to hope you won’t need one; make sure you can
roll back safely and quickly. What’s the trigger for deciding to revert? Who
owns that decision? How long will it take? What’s the impact?

Prepare for postmortems
Have a simple template ready to make postmortems easy to run and les-
sons easy to document. (More details to come in the section “What to do
post-incident” on page 259.)

Train and practice
Make sure your team and stakeholders are familiar with the incident pro-
cess. Best way? Run dry runs. Host incident drills, also known as game
days, where you simulate real failure scenarios and go through the full
response flow.

ADDRESSING TECHNICAL CHALLENGES | 255

Even just one or two a quarter makes a massive difference in prepared-
ness. These exercises help everyone stay sharp, ensure responsibilities are
clear, and test the actual tools and processes you’ll rely on during a real
incident.

This kind of practice is especially valuable when things are calm.
Processes that aren’t exercised can quietly go stale, so it’s good to take
advantage of quieter times to review them.

You can also experiment with more advanced resilience practices, like
chaos engineering tools (e.g., Chaos Monkey), to intentionally inject failure
and test system and team responses.

The more familiar and practiced your team is with the process, the less
stressful incidents will be, and the more likely you are to turn a crisis into an
opportunity for learning.

What to do during the incident

Even with the best preparation, incidents will happen, and how you lead during
them matters. When an incident strikes, your role as a tech lead becomes even
more crucial.

First, make sure people are not losing it. During an incident, your team will
look to you to set the tone. If you panic, they will panic. If you stay calm and
steady, they will stay calm and steady. So take a breath, stay composed, and help
them focus on solving the problem.

Second, make sure everyone is clear on their role during the incident. Clear
roles remove chaos. You should hear things like “I’ll check the logs,” “I’ll moni-
tor alerts,” “I’ll coordinate with the PM and customer support.” Most problems
under pressure happen when people step on each other’s toes or block each other
because no one knows who’s supposed to do what. Don’t let that happen in your
team.

Next, regardless of whether you are officially the incident owner or not, you
need to protect the developers who are solving the problem. Shield them from
stakeholder noise. Very importantly, don’t put more pressure on them. Support
them. For example, if a senior leader starts pinging the developer for live updates
during an incident, step in and offer to provide updates yourself so the team
can stay focused on resolving the issue. And if you’re not the assigned owner,
jump in to help manage stakeholders if you see that the owner is struggling or
overwhelmed.

256 | LEVELING UP AS A TECH LEAD

Another key part of your role is removing blockers. If the solvers need
anything, like access to a certain system or support from another team, you step
in. Use your authority and network to speed things up so they can stay focused
on fixing the issue.

Now that we’ve covered your specific leadership role during an incident, let’s
shift into the practical side: how to manage the incident process itself:

Assign a clear owner
Every incident needs a coordinator: someone who keeps the response on
track by organizing efforts, maintaining communication, and shielding the
team from distractions. This person is responsible for sharing updates
with the team, stakeholders, external teams like SRE, and users if needed.
After the incident, the coordinator also leads the postmortem, assesses
business impact, coordinates follow-up work, and ensures documentation
is updated.

In many teams, this role naturally falls to the on-call engineer, which
keeps the process straightforward.

Tech leads often feel the urge to step in and take on this responsibility
by default. But in practice, the process runs more smoothly when others
are empowered to lead, and the tech lead supports them while focusing on
broader priorities like business impact and long-term strategy.

Define the issue and assess severity
The first step is helping the owner define the severity of the incident.
Before jumping into solution mode, they need clarity on what’s actually
happening and how serious it is.

Sometimes the impact is obvious: your system is down and users are
blocked. But other times, like in edge deployments or customer escalations,
the scope is less clear.

Support them by bringing in the right people: engineers, product man-
agers, support staff, and business stakeholders. Together, collect the facts
and answer: What exactly is happening, and how widespread is it? Are
users impacted? Is revenue, data, or reputation at risk?

If your company has a documented severity framework, this is the
time to use it. If not, add it to your post-incident list to define one. Clear
thresholds prevent noncritical issues from shortcutting regular delivery
processes and being treated as urgent unnecessarily.

ADDRESSING TECHNICAL CHALLENGES | 257

Starting with severity ensures the team responds with the right level of
urgency and keeps things proportionate, focused, and aligned.

Clearly define solvers
The people actively working to resolve the problem must be explicitly iden-
tified. Without clear roles, everyone scrambles and progress slows. Solvers
should be protected from stakeholder pressure and distractions.

It’s also worth emphasizing this: the team’s top priority during an
incident is to restore service, not to find the root cause. That can come
later. Often, a simple revert or a temporary scale-up can stabilize things
quickly. Once the system is back in a healthy state, you can take your time
identifying what went wrong.

Establish a clear communication process
Poor communication can turn a manageable incident into chaos. If there
are no regular updates, people get nervous. If solvers are constantly inter-
rupted for status checks, they can’t focus.

Agree up front how you’ll communicate: regular verbal check-ins,
updating a shared doc, or quick syncs every few hours. Personally, I prefer
quick live check-ins to make sure everyone’s aligned. Whatever you pick,
stick to it. Resist the urge to start pinging solvers; your role is to act as a
shield so they can focus on fixing the issue.

Stakeholders need updates, even when there’s no major progress yet.
If you don’t update them, anxiety rises, and they might start distracting
the team. Establish early on who communicates with them, how often, and
through which channel, whether it’s a Slack thread, email updates, or short
status meetings.

If the incident affects users, you may need to send updates through
Statuspage, email notifications, or other public channels. Even when you
don’t have all the answers yet, sharing early updates helps build trust and
shows transparency.

Track progress visibly
Log follow-ups clearly. Use Jira, Confluence, your tech debt board, what-
ever works. Just make sure it’s visible and owned.

With the right leadership and preparation, incidents don’t have to be disas-
ters; they can be the moments when your team becomes even stronger.

258 | LEVELING UP AS A TECH LEAD

What to do post-incident

Once the incident is resolved, the real work begins.
First, make sure any official documentation that needs updating is taken care

of: business impact reports, incident summaries, customer communications,
anything stakeholders need visibility on. This should be the incident owner’s
responsibility, but as a tech lead, you should make sure it happens.

Next, create runbooks for common issues. If something caused an incident,
document it. Make it easier for the team to respond faster and better next time.

Every incident is a learning opportunity, so treat it like one.
Run a blameless postmortem within 48 hours while the details are still

fresh, regardless of how “big” the incident was. Invite everyone who was
involved: the main team, supporting teams, and relevant stakeholders.

Some teams even go a step further and make their incident review meetings
open to all engineers in the company. Anyone can join, listen in, and learn.
This level of transparency isn’t required, but it might be something you want to
consider.

The purpose of a postmortem is to understand what went wrong in the
system and identify how to improve it. The key questions to answer are: What
happened? Why did it happen? What can we improve? Some of the best improve-
ments come from incidents.

Documentation is a crucial part of turning incidents into learning opportuni-
ties. A well-structured postmortem makes it easier for others to learn from the
experience and ensures transparency. A good postmortem usually includes the
information reflected in Table 8-2.

This structure ensures clarity, transparency, and shared learning across the
team and organization.

Share the documentation widely, and make sure the whole team (and even
other teams) can learn from it.

Make sure to follow up on action items. Assigning tasks isn’t enough. Set
a clear due date for each one, and check in a few weeks later to make sure
follow-ups are completed.

Add them to the team’s regular workflow, whether that’s Jira, Trello, or
your shared Kanban board, so they stay visible. Make sure they are prioritized
alongside other work and given the right level of urgency.

Without this kind of accountability, postmortem learnings stay talk instead
of action.

ADDRESSING TECHNICAL CHALLENGES | 259

Postmortems help build a culture where it’s safe to talk about problems, and
safe to get better, together.

Table 8-2. Postmortem template

Postmortem template

Date Date of the postmortem

Author(s) People documenting the postmortem

Status Assuming the incident is resolved, here, you can add
extra details about the status, like “action items in
progress”

Summary A quick overview of what happened

Impact What was affected and how

Priority The severity classification (e.g., low, medium, high)

Incident coordinator Who was responsible for managing the response

Start time When the incident began

Resolved time When the immediate issue was resolved

Closed time When all follow-ups and documentation were
completed

People involved List of everyone involved in the response

Incident communication
channels

Slack channel or comms method used for coordinating
the response

Customer communication Whether customers were affected and if
communication was needed

Root cause(s) What triggered the incident

Detection How it was discovered or missed

Response What actions were taken

Timeline Key events and timestamps

Lessons learned What went well, what didn’t

Follow-up actions Specific tasks with owners and deadlines

How to deal with issues outside of working hours

I used to be completely against the idea of on-call support. My mindset was
always “We need to build systems that don’t require people to be woken up at
night.” I thought my team was fully aligned with that too. So when the client
suggested introducing an official paid on-call process, I assumed it would be a
hard no from us.

Surprisingly, some team members were interested. Because the reality is,
no matter how good your system is, there are always things that can go wrong

260 | LEVELING UP AS A TECH LEAD

outside working hours. And the truth was, we were already covering incidents
outside of working hours, just informally, and we weren’t getting compensated
for it.

In the end, we voted as a team. We decided to stick to no official on-call
system, but we promised to work even harder to minimize after-hours issues. We
also introduced a small reward system: if you had to work at night, you could take
time off during the day, one hour for every hour worked. Looking back, I realize
now that pushing so hard against on-call might not have been the best move for
my team.

The reality is that systems will break outside working hours. Some problems
can wait until morning or Monday. Others can’t. Either way, you need to have
a clear conversation with your team and stakeholders about how you’ll handle
these situations. And most importantly, whatever system you put in place, make
sure people are properly compensated for their time and effort.

I’ve seen two common models for on-call compensation:

Per time
You get paid for simply being on call during a rotation window, whether
or not anything breaks. I’ve noticed that this model motivates teams to
improve their systems, accumulate less tech debt, and have fewer recurring
issues, because there’s a better chance of “getting paid to do nothing.”

Per incident
You get paid only if you actually have to jump in and fix something. This
can sometimes backfire; if people get paid only when things go wrong,
there’s less incentive to proactively fix root causes or invest in system
improvements.

Whatever you choose, sit down with your team and stakeholders. Define
clear on-call rotations, responsibilities, and expectations. Document the process,
make it visible, and add it to your onboarding checklist and ways of working as a
team.

A great incident response process is a team effort. It starts with preparation,
shows up in how you communicate during a crisis, and continues long after
the issue is resolved. When handled well, incidents can actually strengthen your
systems, your team, and your trust with stakeholders.

ADDRESSING TECHNICAL CHALLENGES | 261

DOCUMENTATION OR NO DOCUMENTATION?

There’s always been a long-standing divide among developers when it comes to
documentation. Some are firmly against it, while others are fully in favor.

As always, the answer is somewhere in the middle, and it depends on what
kind of documentation we’re actually talking about.

The common critique is that documentation goes stale and that the code
should be the ultimate source of truth. It’s true that some forms of documenta-
tion, like implementation notes, can become outdated quickly, and yes, in an
ideal world, code would be expressive and clear enough to speak for itself. But
let’s be honest: how often is the codebase that clean and easy to understand?

On top of that, many things simply can’t be captured in code. Team pro-
cesses, roadmaps, architectural decisions, operational runbooks: these aren’t
things you can read from a function or a class. These kinds of documents don’t
exist to explain what the code is doing but to explain why decisions were made
and how to work with the system and the team behind it.

I don’t think the right question is “Documentation or no documentation?”
It’s more about how to do documentation effectively. What should be docu-
mented, and how do we keep it useful?

Personally, I lean toward writing things down. As a tech lead, I’ve seen
how valuable even lightweight documentation can be, especially for onboarding
new team members, reducing dependencies on specific individuals, aligning the
team, and debugging issues that surface months later.

Yes, documentation takes effort, and no, it won’t always stay perfectly in
sync with reality. But even slightly outdated docs can still be useful; they give
you something to update, challenge, or validate. That’s far better than having no
starting point at all.

The value of documentation

Documentation plays a powerful role across many aspects of your work as a
tech lead. It becomes critical when tracking architecture changes (check out
the section “Visualizing a System Architecture” on page 226), managing tech
debt (check out the section “Managing Technical Debt” on page 249, and learn-
ing from incidents (check out the section “What to do post-incident” on page
259). Without clear records of why decisions were made or what trade-offs were
accepted, teams fall into confusion, repeat mistakes, or rebuild solutions to prob-
lems they already solved.

262 | LEVELING UP AS A TECH LEAD

The biggest value of documentation is alignment, with your team, stakehold-
ers, and even your future self. It keeps reasoning visible and decisions anchored,
and it gives everyone a shared reference point when things drift: “This is what we
agreed on; what changed?”

A great example is documenting your ways of working. These are rarely
written down, because everyone assumes: “We know how we do things; we do
them every day.” But that might backfire.

I once coached a tech lead who was frustrated by shifting priorities. The
CTO kept assigning engineers urgent tasks directly, bypassing the team’s sprint
planning. “She should follow our process,” he said.

So I asked, “How would the CTO even know your process? Have you walked
her through it? Is it written down anywhere?” He paused: “No…I guess I just
assumed she knew.”

So he wrote a short, high-level summary of how work enters the backlog,
how it’s refined, and how prioritization is handled. Then he shared it in the
team’s workspace and tagged the relevant managers, including the CTO.

Two days later, the PM messaged him: “I’ve added a task from the CTO into
the backlog for the team to evaluate. We can discuss in refinement.” No more
random interruptions. The process held.

This example highlights more than just a documentation gap, but the take-
away is simple: sometimes, all it takes is writing things down and making them
visible.

Also, documenting your ways of working can be incredibly valuable for
onboarding. New joiners often struggle with unspoken norms or informal pro-
cesses. Having these written down—how planning works, how priorities are set,
what “done” means—gives them something concrete to refer to.

But it’s not just new joiners who benefit. Even experienced team mem-
bers feel the impact when key knowledge is missing. Especially when systems
break—and they will—good documentation can save your team hours of confu-
sion and stress.

One client shared this story with me: her team was working with a legacy
system that had become a major source of friction. Every time something broke,
it triggered a firefight: hours lost digging through old tickets, chasing down
people who’d once worked on the system, and trying to reverse-engineer what the
code was supposed to do. Even small incidents caused big delays.

So she introduced a lightweight habit: any time someone figured something
out about how the system worked, like how services interacted, how to restart

ADDRESSING TECHNICAL CHALLENGES | 263

a flaky job, or what a mysterious config did, they wrote it down in a shared
runbook—not overly detailed, just enough for someone else to pick it up later.

Over time, that runbook became one of the team’s most valuable assets.
During one major incident, the team even used the runbook in real time to guide
their mitigation steps.

It was a great reminder that documentation doesn’t need to be big or formal
to make a big impact. It can be as simple as writing things down as you go.

The great news is that these days, the documentation process is way easier
because you have better tools. Screen recording tools like Loom, Scribe, or Tango
can capture workflows in seconds. AI-assisted notes can summarize your actions
and generate documentation as you work. Lightweight templates for runbooks,
onboarding guides, and decision logs make it faster to create useful content. And
if you update documentation alongside your pull requests and technical changes,
it becomes a natural part of development rather than a separate “documentation
day” months later.

Of course, there’s a risk with these tools too. While they make it easier
to generate documentation, they can also lead to disengagement, such as auto-
generated docs that no one reads, questions, or updates. To avoid this trap, some-
one on the team still needs to take ownership: reviewing content, validating its
usefulness, and making sure it stays relevant and integrated into your day-to-day
work.

What to document

Here are some things worth documenting and keeping up-to-date as part of your
team’s day-to-day work:

Architecture
Document the current state, desired state, stages of changes, and decisions
made along the way (more on this in the section “Architectural Strategies
and Implementation” on page 221).

Key decisions
Why they were made and what alternatives were considered. This applies
not just to architecture but also to product and team processes (more
on this in the section “Track Technical Decisions—Architecture Decision
Records” on page 281).

264 | LEVELING UP AS A TECH LEAD

Incident postmortems and learnings
Capturing what happened, why it happened, and how to prevent it in the
future (more on this in the section “Dealing with Incidents” on page 254).

Strategies
Examples include your testing strategies, your path to production (more on
this in the section “Defining Your Path to Production” on page 239), objec-
tives and key results (OKRs), and the contracts and agreements between
your team and other teams or systems.

Team processes
Onboarding guides, ways of working, and anything that helps new and
existing team members move faster and stay aligned.

Infrastructure
If you’re using infrastructure-as-code tools like Terraform, your infrastruc-
ture can become self-documenting to some degree.

The goal is to document the parts of your system, culture, and processes that
help your team move quickly and stay aligned, focusing on what’s most useful
and relevant to your daily work.

How to keep documentation alive

As mentioned before, the biggest issue with documentation is keeping it updated
and relevant. There are a couple of strategies that can help you do that.

Make updating relevant documentation part of the “definition of done” for
work items. This way, changes in architecture, processes, or systems are reflected
immediately.

Assign a rotating “doc champion” role within your team to periodically
review and flag stale documents. Fresh eyes help catch things that otherwise
get forgotten.

Include documentation reviews as part of your retrospectives or team health
checks. If something important changed recently, there’s probably a document
that needs updating too.

Continuously delete or archive old, misleading, or irrelevant documentation.
I have to say this is one of the most satisfying parts of the role: the ability to just
go and delete something that’s no longer useful. Honestly, it’s better than creat-
ing documentation. I know it can feel scary to delete things, so here’s a strategy
I use: archive before you delete. Move the document somewhere inaccessible but

ADDRESSING TECHNICAL CHALLENGES | 265

retrievable. See if anyone notices, complains, or needs it. If after a while, no one
asks for it, you can confidently delete it.

Another approach I’ve used is simply removing access; if someone actually
needs it, they’ll request it. That becomes a great signal that the document is
still in use. You can even take it one step further; when someone does ask for
access, start a quick conversation: “What do you use it for?” It might turn out
they need something more current or that they were referencing it out of habit,
not usefulness. Worst-case scenario, if you do delete it, but it turns out you need
it, you’ll rebuild it, this time actually relevant and updated.

If keeping your documentation alive isn’t part of your team’s routine, it will
rot, no matter how beautifully it started.

Documentation needs to be useful. Document for people, not for process.
Make it easy, make it actionable, and make it part of how your team works every
day.

Key Takeaway

Great technical leadership means guiding architecture, deployment, and every-
day decisions in ways that help your team move fast and build with confidence.

Throughout this chapter, we looked at the real, practical responsibilities that
shape a healthy engineering culture: evolving architecture, improving delivery
pipelines, managing tech debt, handling incidents, and making documentation
useful.

All of these are part of the same goal: making intentional technical choices
that support your team and product over time.

Technical work is never separate from people work.

266 | LEVELING UP AS A TECH LEAD

Managing Technical
Projects

No matter how strong your technical skills are, stepping into a tech lead role
means entering a new layer of complexity, one where communication, prioritiza-
tion, and expectation management matter just as much as architecture and code.

From my experience, your biggest challenges won’t be technical. They’ll
come from aligning people, managing expectations, and keeping your team on
track when things inevitably shift.

In this chapter, I’ll share practical ways to lead through that complexity. I
start with how to define a clear technical vision and shape a strategy to achieve it.
Then, I’ll cover how to help your team make thoughtful technical decisions that
align with that vision. Finally, I’ll walk through how to track key decisions over
time using tools like architecture decision records (ADRs).

Next, I focus on how to encourage technical excellence inside your team. I’ll
talk about what it means to define team standards, how to build fast feedback
loops into your delivery pipeline, how to measure what matters, and how to
ensure quality through meaningful, useful testing practices.

Finally, I’ll walk through four of the most common project management
challenges I’ve seen tech leads face: planning and keeping a project on track,
dealing with delays when the plan goes off course, balancing multiple streams of
work at once, and identifying and managing technical risks before they escalate.

This chapter is about leading with clarity. You won’t always get everything
right, but the more proactive, transparent, and collaborative you are in how you
lead projects, the more trust you’ll build, and the stronger your team’s delivery
will become.

267

| 9

Aligning Your Team on a Common Tech Strategy

Most problems in tech teams come from people not being properly aligned.
Even worse is when everyone thinks they’re aligned, but they actually aren’t.
That’s how you end up with a feature that takes a month to build and turns out
completely different from what the business expected.

I’ve seen it happen so many times.
You might be thinking, “But didn’t they talk along the way? Didn’t they

have check-ins, showcases?” Well, yes. Communication happened, but everyone
was so sure they were on the same page that they missed the red flags, until
the product was in front of stakeholders, and it was obvious it wasn’t what they
needed.

Misalignment always comes down to poor communication between the peo-
ple involved. And bad communication doesn’t just happen at the start; it follows
through the whole process. It’s usually only when the damage is clear that people
realize something went wrong.

Clear alignment means everyone knows why you’re building something, has
a shared high-level understanding of how, and has agreed on a rough timeline.
Clear, written alignment brings commitment.

This is where your role as a tech lead becomes crucial. You’re standing at
the intersection between your team and the business, responsible for keeping
everyone aligned and committed. Your team will be making a lot of decisions,
technical and not, and you’ll be right in the middle of that process, ensuring that
both sides understand each other clearly.

To do this well, you need enough technical depth to guide your team’s work,
and the communication skills to translate risks, problems, and strategies back to
your stakeholders, whether they’re deeply technical or not.

In this section, I’ll focus on the skills you need to develop and practical
strategies you can use to help your team make technical decisions smoothly,
take decision making to the next level by building a shared technical vision, and
document decisions clearly to ensure long-term commitment.

Even though the examples will focus on technical decisions, the same strate-
gies easily apply to any type of decision your team needs to make.

268 | LEVELING UP AS A TECH LEAD

BUILD A TECHNICAL VISION (AND TURN IT INTO A STRATEGY)

As a tech lead, one of your most impactful responsibilities is helping your team
define a clear technical vision, then shaping a strategy that turns that vision into
reality.

A technical vision describes what “good” looks like for your team’s technol-
ogy. It’s aspirational and directional. It defines your north star: the destination
you’re heading toward.

Example: “We want a resilient and maintainable architecture that allows any
developer to safely deploy to production in under 10 minutes.”

A technical strategy, on the other hand, is the plan for how you’ll get there.
It outlines concrete steps and trade-offs based on where you’re starting, the
resources you have, and the constraints you’re working with.

Example: “We’ll break our monolith into services starting with billing, adopt
feature flags for safer deployments, and implement observability dashboards to
surface errors faster.”

A helpful analogy here is building a house:

• The business strategy is why you’re building it. Maybe it’s to house a•
growing family, create a coworking space, or sell it as an investment. It
sets the purpose and defines success.

• The technical vision is the blueprint of the finished house: the overall•
design and feel. It shows that you want a two-story home with lots of natu-
ral light, an open kitchen, energy-efficient systems, and room to expand. It
captures what “good” looks like when it’s done.

• The technical strategy is the construction plan: how you’ll build it, in what•
order, and with what constraints. Maybe you’ll use modular construction
to speed things up, reuse the foundation of an older building, or phase the
work so you finish the essential rooms first. It reflects how you’ll get there,
given your tools, timeline, and budget.

• Tactics are the daily site decisions: what to fix today, which materials to use•
for the flooring, or how to respond when it rains and delays the roof.

MANAGING TECHNICAL PROJECTS | 269

Vision gives you the why and where. Strategy gives you the how. Both are
essential. Without vision, you risk building in circles. Without strategy, you may
never get to your destination, or go wildly over budget.

Before starting to work toward a direction, you need to assess your current
context:

Business goals
What’s the product aiming to achieve?

Team strengths and skills
What technologies are they confident in?

Cross-functional requirements
Performance, observability, security?

Team shape
What complexity can your current size and roles support?

Tech landscape
What are you already using? What’s working?

There’s a concept I find useful here: enabling constraints. Your vision and
strategy have to live within the bounds of your company’s reality, like a require-
ment to use Ruby on Rails or stick with monolithic deployment. Ignoring these
constraints leads to frustration when decisions made by the team turn out to be
impossible due to external limitations.

Instead, make these constraints visible early. Set the boundaries clearly so
the vision is grounded, realistic, and actionable.

For both vision and strategy, visualization is required as it transforms these
from an idea to something tangible you can work with.

Both can be a simple document or a visual board (e.g., a Mural board)
containing different artifacts like the following:

• Architecture diagrams; you can use the C4 model (more in the section•
“Visualizing a System Architecture” on page 226)

• Path to production (more in the section “Defining Your Path to Produc-•
tion” on page 239)

• Cross-functional requirements (more in the section “Defining and Manag-•
ing Cross-Functional Requirements” on page 232)

270 | LEVELING UP AS A TECH LEAD

• Test or quality strategy documents (more in the section “Continuously•
Testing” on page 245)

• Ways of working processes (more in the section “How to Build a Healthy•
Team Culture” on page 185)

Not every team needs all of these; start with what’s most relevant for your
context. For example, you might use architecture diagrams to illustrate both your
vision (the future state) and your strategy (the incremental stages to get there).

Tip

If you’re interested in a deeper breakdown of technical vision versus strategy, exam-

ples, and more resources on how to build them, I highly recommend the chapter

“What’s a Vision? What’s a Strategy?” in The Staff Engineer’s Path by Tanya Reilly

(O’Reilly).

When you’ve articulated both the why/where (vision) and the how (strategy),
execution becomes a lot smoother. To bring the strategy to life, you’ll want to do
the following:

Break down initiatives into clear milestones
These should represent visible progress: things you can demo, ship, or
measure.

Connect strategy to the backlog
If your vision includes improving reliability, that should translate into spe-
cific tasks: refactoring flaky tests, improving alerting, or addressing known
error patterns.

Create feedback loops
Set regular checkpoints, like weekly syncs, quarterly reviews, or retrospec-
tives, to assess whether you’re on track, what’s been learned, and what
needs to change.

Track and communicate progress
Share updates regularly. Keep stakeholders aligned, and make it easy for
the team to know what’s moving forward, what’s blocked, and where help
is needed. Don’t just focus on what’s done; highlight the impact and tie it
back to the vision.

MANAGING TECHNICAL PROJECTS | 271

https://learning.oreilly.com/library/view/the-staff-engineers/9781098118723/

Celebrate alignment in action
When a team makes a decision that reflects the technical vision, like choos-
ing a simpler solution because it aligns with the goal of maintainability, call
it out.

Conclusion: Vision gives you direction. Strategy gives you a path. Execution
turns ideas into impact.

HELP YOUR TEAM MAKE TECHNICAL DECISIONS

Once you have agreed on a plan with your team, the next challenge is making
daily technical decisions that move you toward that direction. As a tech lead,
you’ll be involved in decision making constantly.

Whether it’s choosing between libraries, deciding how to integrate a new fea-
ture, or debating between building in-house versus buying off the shelf, your role
is to support the team in making thoughtful, informed, and aligned decisions.
You’re there to guide the process, facilitate the conversations, and help the team
weigh trade-offs.

The first thing is to make sure your team is clear on how decisions are made.
Having an open conversation about your decision-making process can eliminate
wrong assumptions. Many people are surprised when I tell them I won’t make all
decisions, that I want and expect them to contribute.

There are different decision-making styles out there. The most common
ones are autocratic, consultative, democratic, and consensus (explained in
Table 9-1). Each approach has its pros and cons and works better for certain
types of decisions.

A note on consensus: consensus doesn’t mean everyone has to agree 100%
or love the decision. In practice, it often means everyone is willing to support
the outcome and move forward, even if it’s not their personal preference. This
is sometimes called consent. People may not feel strongly in favor, but they don’t
strongly object either. Clarifying this up front can help avoid endless debates and
make consensus-based decisions more effective in practice.

272 | LEVELING UP AS A TECH LEAD

Table 9-1. Decision-making styles

Style What it is When to use it Example
scenario

Autocratic Tech lead
makes the
decision alone

Small, low-risk
decisions or deadlocks
when alignment
cannot be reached and
time pressure is high

Choosing a small
library quickly

Breaking a team
deadlock near a
release deadline

Consultative Tech lead
gathers input,
then decides

Medium-sized
decisions that need
some input but where
quick resolution is
important

Choosing between
two cloud
providers

Democratic Team votes and
majority wins

Noncritical decisions
where many opinions
are equally valid

Naming a new
internal tool

Consensus Team discusses
until general
agreement is
reached

Big, strategic
decisions where buy-
in and alignment are
critical

Defining the
architecture for a
new product

MANAGING TECHNICAL PROJECTS | 273

All of these decision-making styles are valid options based on the problem at
hand. Problems start when you overuse one approach because it’s more comfort-
able. My invitation here is: notice your tendency. Are you stuck using just one
method?

Starting tech leads often fall into the trap of making all the decisions them-
selves. Maybe they feel pressure to know everything or think it’s their job because
they’re accountable. But this creates bottlenecks, slows down the team, and
reduces people’s growth, including your own.

At the other extreme, when I started leading, I tried too hard to involve
everyone. Every decision became a team discussion. I wanted to avoid being the
leader who made all decisions alone, but in doing that, I slowed us down and
frustrated my team. It took forever to reach consensus.

And then, under pressure, when I finally made a unilateral decision, people
were relieved. That taught me: the problem isn’t the decision style. The problem
is staying stuck at one extreme. Balance comes from knowing when to involve
everyone and when to make the call yourself.

The main thing that would have helped? Setting expectations up front. Let
your team know how you plan to make decisions based on the context, whether
you’ll consult, involve, or decide quickly under time pressure.

This isn’t rare. I was not the only one falling into this trap. I still see and
work with tech leads every day who struggle with finding the right balance
between making decisions themselves and involving their team. Just make sure
you’re using all the tools the role gives you. Build awareness of the options you
have.

In general, you should aim toward group-oriented decision making when-
ever possible. Involving people leads to higher commitment and better results.
And the most common way we have these days to make decisions as a group is
through meetings. The bigger the decision, the bigger the meeting (more people
involved). To make these decision-making meetings effective, you need strong
facilitation skills.

Table 9-2 is a practical guide to the most common meeting pitfalls and what
you can do about them in the role of facilitator.

274 | LEVELING UP AS A TECH LEAD

Table 9-2. Common meeting pitfalls and how to address them

Common
problem

Why it’s a problem How to address it

No clear goal • Meeting feels
pointless.

• People don’t know
what’s expected.

• Time is wasted.

• Name meetings clearly (“Define delivery
strategy for X” instead of “Talk about
X”).

• Add a description with meeting goals
and links.

• Start the meeting by stating the goal.

Meeting keeps
derailing

• Conversation goes
off-topic.

• Important
discussions are
missed.

• Meeting feels chaotic.

• Anchor the conversation: “How is this
helping us reach our goal?”, “Is this
relevant for the conversation?”

• Use whiteboarding (e.g., FigJam) to
track the discussion live.

• Split big problems into smaller pieces if
needed.

• Use RAID board to capture risks,
assumptions, issues, dependencies.

Loud voices
dominate

Only a few opinions
are heard, and valuable
ideas from quieter team
members are missed

• “Pass the microphone”: invite quieter
voices to speak.

• Use different tools to gather inputs:
besides everyone sharing their idea out
loud, you can use tools like anonymous
forms, one-on-ones, or even write it
down on Post-its.

• Remote: make considerate use of the
hands-up and chat features in your video
conferencing tool.

Constant
interruptions

• Hard to get your
point across.

• Conversations lose
focus and energy.

• People interrupted
get demotivated and
less engaged as they
don’t feel listened to.

• If you are interrupted, politely but firmly
say, “I’m not finished speaking,” “as I
was saying before.”

• If someone else is interrupted, as a
facilitator you have the power to bring
that interrupted voice back: “Maria, I
think you were saying something on this
topic before?”

• Create a rule to speak: raise your hand
and ensure all raised hands are listened
to.

MANAGING TECHNICAL PROJECTS | 275

Common
problem

Why it’s a problem How to address it

Meeting drags
on too long

Rushed decisions and
fatigue

• Assign a timekeeper.

• Split the meeting into timed sections.

• Do time checks (“15 minutes left. Do you
want to continue on this topic?”).

• Be ready to reschedule if needed.

Meeting feels
dead

• No one is engaged,
and ideas stall.

• Time wasted as the
meeting is going
nowhere.

• Pause and reassess if the meeting
should continue.

• Diagnose root causes: low energy,
unclear purpose, lack of safety?

• Adapt the format or split into smaller
problems.

Meetings turn
into fights

• Kills trust.

• Derails teamwork.

• Decision making
breaks down.

• Bring people back to the problem you
are trying to solve.

• Shift from “me versus you” to “us
versus the problem.” Find common
ground early.

• Ask for clarification openly: “Can you
explain that again?”

No clear
outcome at the
end

• Participants leave
confused.

• No clear next steps so
nothing happens.

• Assign a note-taker other than you as
facilitator.

• Summarize what was discussed and
what was agreed on, and assign next
steps and owners. Validate assumptions
live: “If I understand correctly, you
mean X.”

• Write final agreements on a shared
document live during the meeting.

Nothing
happens after
the meeting

• Wasted time
discussing.

• Erodes trust.

Have a clear process for following up: e.g.,
a quick follow-up message to the action
owners, a shared doc to track progress, or a
check-in meeting if needed.

To run effective decision-making meetings, you need more than a calendar
invite. Here are some concrete steps to help you create structure, keep discus-
sions focused, and ensure clear outcomes:

276 | LEVELING UP AS A TECH LEAD

Set up a clear goal and structure
Before the meeting, ask yourself: if there’s just one thing I want to achieve
by the end of this meeting, what would it be? Not five things, just one.

Define it clearly in the meeting invite title and description. Add links
to previous discussions or draft plans if they exist. When the meeting
starts, restate the goal clearly and walk through a brief agenda, setting
expectations for how the time will be used.

During the meeting, keep that goal top of mind. Whenever conversa-
tions start drifting, gently anchor people back by asking: “Is this relevant
for the conversation?” or “How is this helping us reach our goal?”

Sometimes, the realization hits that the original goal of the meeting
no longer makes sense. For example, maybe the discussion was built on
a flawed assumption or misalignment. In that case, don’t be afraid to
abandon the original agenda and shift gears. Just make clear the new goal
you will work toward. Letting the group flow toward what really needs to be
addressed can be the most productive outcome.

Define and timebox the meeting structure
Set expectations up front on how much time you will spend on gathering
ideas, discussing options, and making a decision.

Assign a timekeeper. It can be you as the facilitator or someone else
in the group. The timekeeper’s role is simple but important: keeping the
pace and reminding the group when time is running out so you still have
enough time to conclude properly.

That said, sometimes things don’t go according to plan. If the decision
needs more time, acknowledge it honestly. Summarize where you are,
document the partial outcome, and propose a follow-up session.

Use visual tools to ensure alignment
One of my favorite techniques is whiteboarding. Use a whiteboard or a
digital tool like FigJam or Miro so that everyone can contribute ideas, see
what’s being discussed, and track progress live. Visual tools help people
process complex topics better and spot gaps or misalignments faster.

Another great tool is a RAID board, where you track risks, assump-
tions, issues, and dependencies.

Also, having a dedicated space to park side conversations or concerns
(like a “Parking Lot” board) ensures people feel heard without derailing the
main conversation.

MANAGING TECHNICAL PROJECTS | 277

Use different tools to capture ideas
Not everyone feels comfortable sharing ideas out loud. Some people might
prefer writing them down.

So use multiple channels for input: anonymous forms, one-on-one
discussions, or Post-it notes.

Separating the idea from the person makes it easier to have objective,
less heated conversations around options and trade-offs. This creates a
safer space for honest debate.

Constantly validate assumptions
Most misalignments happen because people think they are on the same
page when they are not.

Make it a habit to regularly validate what you hear. Use simple phrases
like “If I understand correctly, you mean…” to clarify.

It might feel repetitive, but catching misunderstandings early is always
better than cleaning up miscommunications later.

Make agreements specific and document them
Before ending any meeting, take a moment to spell out the decisions made.
I always say it out loud: “Ana will work on X. John will review Y.”

I immediately write it down live in a shared document while sharing
my screen with the group. This turns the meeting into a visible, living
commitment. No more “I thought you meant…” conversations afterward.
And funnily enough, very often someone will chime in at this point: “Wait,
that’s not what I understood.” Exactly what you want to uncover before
leaving the room.

Follow up
Without proper follow-up, even the best meetings turn into wasted time.

Always define the next step: maybe it’s setting up a follow-up meeting;
maybe it’s agreeing when progress will be reviewed asynchronously.

Whatever it is, make it clear how and when the actions will be revis-
ited. Otherwise, things get lost in the chaos of daily work.

Beyond structure and logistics, facilitation is also about navigating group
dynamics, energy, and communication. These extra techniques will help you lead
smoother, more inclusive, and more productive decision-making sessions:

278 | LEVELING UP AS A TECH LEAD

Facilitation starts before (and continues after) the meeting
Sometimes, especially for complex topics, you’ll need to help people show
up ready. That might mean priming them with questions to think about
in advance, reminding them to do the reading, or even summarizing key
points in advance if you know your team doesn’t always prepare.

If half the attendees show up unprepared, you’ll have to decide
whether to adapt in the moment, perhaps by spending time reviewing the
materials together or rescheduling with clearer guidance.

Prioritize “moving forward together” over “being right”
Don’t just focus on proving your solution is the best! In fact, if you can’t get
others on board, it might be a sign your solution needs rethinking.

What matters most is finding a path the whole team is willing to com-
mit to. Alignment doesn’t mean everyone agrees 100%, but it does mean
there’s shared ownership and a collective commitment to move forward
together.

Consistency is often more valuable than the “correct” technical choice
If it’s not an approach we absolutely want to move away from—because
it’s clearly outdated or fundamentally flawed—then sticking with what we
used last time is often the better choice. This applies the most when we are
talking about technical tools, although the rule applies more generally as
well. Consistency reduces cognitive load, and having clear, consistent ways
of doing things matters far more than chasing trends or perfect solutions.

It doesn’t always have to be you facilitating
It actually makes your job way harder to be the tech lead, the facilitator,
the developer, and the team member in the same meeting. Once things are
running smoothly, I suggest training others in facilitation skills. It’s a great
growth opportunity for them and frees you up to contribute better during
meetings.

With facilitation comes power, not just responsibility
People often forget that the role of facilitator doesn’t just come with
responsibility; it comes with power. The power to shape the flow of the
conversation, to make space for quieter voices, to steer the group back
when things go off track. It’s subtle, but it’s real.

And if you’re stepping into the role of facilitator, especially as a tech
lead, it’s important that you use that power thoughtfully.

MANAGING TECHNICAL PROJECTS | 279

Use it to balance participation by asking people to raise their hands
before speaking. This allows you to guide the conversation and ensure
space for quieter voices, not just the most vocal.

Use it to create space for quieter voices, with prompts like “Would
anyone like to offer a different perspective?” You can also gently invite
someone directly—“July, what do you think?”—as long as you’ve checked
beforehand that they’re comfortable being called on.

If a conversation is getting too heated and going nowhere, don’t be
afraid to break the tension: “OK, pause! I see we all care deeply about this.
How could we move forward from here?”

Use your facilitator role to keep momentum when a discussion starts
drifting. If a new topic comes up that’s not urgent but still valuable, you
can say, “I see this is not something we can address right now, but it’s a
risk worth capturing. Maybe we can just add it on our RAID board for now
and return to our main point?”

And when things go completely off course, don’t hesitate to bring the
group back with a simple “I feel we’re derailing a bit here. Let’s recap what
we already discussed.”

Manage team energy, not just time
In longer sessions or recurring meetings, your team’s energy becomes
just as important as the agenda. Fatigue leads to disengagement, rushed
decisions, or conversations dominated by a few voices.

Be mindful of how people are doing. Plan for breaks. If you’re in
person, energizers and movement-based activities can help reset focus.

Even small gestures can set the tone. For example, I used to bring
coffee and croissants for my team every time I got the chance during our
sprint planning. It was an early morning meeting every two weeks, and this
small routine helped start things on a positive, relaxed note.

The format matters too: switching from group discussion to silent writ-
ing or pairing exercises can refresh the team and maintain engagement.

The best ideas often come when people are relaxed and recharged.

280 | LEVELING UP AS A TECH LEAD

Facilitating technical decisions well is one of the most useful and underrated
skills of a tech lead. It’s about creating the space where the best solutions can
emerge and making sure your team is aligned enough to act on them.

TRACK TECHNICAL DECISIONS—ARCHITECTURE DECISION RECORDS

All the technical decisions you are making as a team should be tracked and
made visible, to your current team and to any future team members who’ll
wonder “Why did we do it this way?” You want a record that captures how the
decision was made, what trade-offs were considered, and what consequences
were accepted.

This is where architecture decision records (ADRs) come in.
ADRs are a lightweight and effective way to capture the team’s understand-

ing at a specific point in time. They reflect the best decision made given the
information available, along with the trade-offs considered. Instead of aiming for
permanence, ADRs focus on documenting the context and reasoning behind a
choice, so your future self, or others, don’t have to guess why something was
done.

Starting with ADRs

Start simple. The best way to begin using ADRs is by writing one for your
next significant technical decision. Or even better, start by documenting a recent
decision that’s already been made. This shifts the focus to learning the process
rather than trying to capture everything perfectly in the moment.

Don’t overengineer it. Keep them lightweight and make it a habit. Encourage
the team to use them anytime you’re facing a decision that’s architecturally
significant, even if it feels small at the moment.

A simple ADR format might look like Table 9-3.
One way to make this process stick is to integrate ADRs into your workflow.

For example, make writing an ADR part of the definition of done for certain
stories. When a story includes a technical decision, require the team to capture it
in an ADR before it’s considered complete. This way, the habit becomes part of
how you build.

MANAGING TECHNICAL PROJECTS | 281

Table 9-3. Simple ADR format

file name

ADR title

Give it a clear, descriptive name. Match the file name so it’s easy to search.

Context

Describe what you knew at the time:

What constraints were you working under? or What challenges were you solving?

Stay neutral: just the facts.

List any alternatives that were explored and why they were rejected.

Decision

Clearly state what you decided. Use full sentences, in an active voice: “We will…”

Consequences

Spell out what this means, both good and bad. For example:

• This introduces tech debt we’ll address post-launch.

• This approach supports X but makes Y more difficult.

• Although option Z was preferred by some, we agreed to go with this and revisit later.

Capturing consequences is often the most valuable part. It shows the trade-offs. It
creates alignment. And it gives your future self a realistic picture of what you signed up
for.

Extra information

e.g., Date, Status, Related ADRs, ...

Use ADRs as a tool during conversations. Capture options discussed, trade-
offs considered, and concerns raised while the decision is being made, not just
after it’s done.

Example of an ADR

You can see how a simple ADR might look in practice in Table 9-4. This example
shows how to capture the context, the decision, and the consequences in a
lightweight format that’s easy to read, share, and update. The goal is to create a
shared understanding your team can refer back to.

282 | LEVELING UP AS A TECH LEAD

Table 9-4. Example of an ADR

adr-0001-use-postgresql-as-main-database.md

ADR-0001: Use PostgreSQL

Context

We need a reliable, open source relational database that works well with our tech stack
(Node.js + TypeScript).

The product roadmap involves features that require strong consistency guarantees,
transactional support, and a flexible schema.

Options considered:

PostgreSQL: Strong match for our needs. Already used in other services. Team has
solid experience. Rich ecosystem and tooling.

MySQL: Similar to PostgreSQL but lacks some advanced features we may rely on (e.g.,
JSONB support).

MongoDB: Flexible and fast to prototype with but lacks the consistency guarantees and
transactional support needed for billing-related features.

DynamoDB: Highly scalable but has a restrictive query model and would require a
significant shift in tooling and team expertise.

Decision

We will use **PostgreSQL** as our primary database for the new billing service.

Consequences

✔ Alignment with team skill set and existing infrastructure.

✔ Strong ecosystem and tooling support.

✖ Higher operational complexity than DynamoDB.

✖ Less flexible for schema-less data, which we’ll address with JSONB columns where
needed.

✔ Easy integration with our current CI/CD pipeline and monitoring stack.

Note: Option Z (MongoDB) had some strong internal support, but we agreed to revisit
if needs change.

Date: 2025-04-28

Status: Accepted

Supersedes: _None_

Related ADRs: _None_

MANAGING TECHNICAL PROJECTS | 283

ADRs challenges

There are several challenges you’re likely to encounter when it comes to ADRs.
Here they are:

Storing ADRs
Tech teams often debate whether to store ADRs in a single shared repo,
spread them across individual services, or place them in tools like Notion
or Confluence. The key is context: what problem are you solving?

A good starting point is to keep ADRs local to the service where the
decision applies, in the same repository as the code. This makes them easy
to find, keeps them versioned alongside the implementation, and allows
your team to use the same tools for editing.

Over time, you might find it useful to move some ADRs to a central-
ized repo, especially if they apply to multiple teams, you’re standardizing
practices across the org, or tooling makes service-level storage less prac-
tical. This shift often happens when architectural guidance needs to be
shared more broadly or when your company has specific guidelines for
ADR storage.

Any approach works, as long as your team knows where to find them
and follows a consistent process.

But what matters most isn’t where you store ADRs; it’s that you
actually write them and make them accessible. Don’t let the storage debate
drain your team energy. Pick something and move forward. You can always
move them later. At the end of the day, it’s just text.

Updating ADRs
Keeping ADRs in the same repo as the code also makes it easy to update
them. There are two common styles here: some teams update the original
ADR file and use Git versioning to track changes. Others prefer to create
a new ADR entirely and mark the old one as deprecated or superseded.
Either approach is fine; the key is clarity. If you’re writing a new ADR to
replace an old one, make sure to add a note in the original: “This decision
has been superseded by [ADR-0023-NewTitle].” That way, future readers
won’t be left wondering which guidance to follow.

When deciding which approach to take, consider your audience.
If your ADRs are read by people outside the engineering team, like

product managers or business analysts, it may be better to create a new
ADR and deprecate the old one. That way, the full reasoning behind each

284 | LEVELING UP AS A TECH LEAD

change is clearly visible and easy to understand without having to dig
through Git history.

On the other hand, if your readers are comfortable with Git and prefer
a compact history, updating the existing file might be the cleaner option.

Pick the approach that makes decisions easy to trace for your team.

What counts as “architecturally significant”?
Another challenge is knowing what’s worth documenting.

Don’t write an ADR for every small config tweak. Focus on architectur-
ally significant decisions: things that shape how you work, structure your
codebase, handle failure, or scale. Things like how you handle authentica-
tion, which database to use, changing from REST to GraphQL, how you
approach retries and timeouts, or where you draw service boundaries.

If you’re unsure, ask: “Would someone new on the team benefit from
knowing why we chose this approach?”

Who owns ADRs?
Ideally, ownership is shared across the team. But, as always, when every-
one is responsible, no one is, so it helps to clarify who’s responsible
for maintaining ADRs, whether it’s the person driving the decision or
a rotating role. Don’t let ADRs become stale just because no one feels
accountable.

Besides documenting decisions, ADRs also act as a kind of contract, a shared
commitment from the team to follow a chosen path, knowing the trade-offs.
They help you move forward even when there’s disagreement, by acknowledging
concerns and leaving space to revisit them later.

For example, imagine two developers arguing over which JSON library to
use. If the team already made a decision months ago and documented it in an
ADR, with the options considered, trade-offs, and rationale, it can help settle
the discussion quickly. Of course, if new context emerges, you can revisit the
decision. But in many cases, it saves time and prevents rehashing debates over
choices that were already made thoughtfully.

Used well, ADRs are a low-effort, high-impact way to preserve team knowl-
edge, align on decisions, and reduce friction as your product and team evolve.
Especially in fast-moving environments, they’re one of the simplest ways to
protect your team’s context, and one of the easiest habits to adopt that pays off in
the long run.

MANAGING TECHNICAL PROJECTS | 285

Encouraging Technical Excellence

Technical excellence doesn’t just happen. It’s the result of shared, intentional
decisions, how we build, how we review, how we test, and how we operate. As a
tech lead, your role is to create the environment where those decisions are made
deliberately and consistently.

Your job is to keep the bar high by making it visible, agreed upon, and
reflected in how your team actually works. That means setting clear expectations,
building strong engineering habits, and reinforcing the idea that quality is a
shared responsibility.

In this section, you’ll learn how to define standards that feel shared and
meaningful, ones your team actively commits to, instead of rules handed down
from above.

I’ll also cover how to build fast feedback loops through integration and
deployment, how to use measurement to guide thoughtful improvement, and
how to make testing a consistent and valuable part of everyday development
work.

DEFINE TEAM STANDARDS

As a tech lead, you play a key role in helping your team align on what “good”
looks like, technically and operationally, as well as behaviorally.

You may already have company-wide guidelines or platform-level con-
straints, but within your team, you still need to define your own local standards.
These are the agreements that help your team move fast together, without rein-
venting the wheel for every decision.

When we say “standards,” we don’t just mean linting rules or test coverage
thresholds. We’re talking about agreements at every level of how your team
operates:

• How decisions are made (see the section “Help Your Team Make Techni-•
cal Decisions” on page 272)

• How the system evolves (see the section “Build a Technical Vision (and•
Turn It into a Strategy)” on page 269 and the section “Track Technical
Decisions—Architecture Decision Records” on page 281)

• How code gets written, reviewed, and shipped (see the section “Aim for•
Fast Feedback” on page 287 and the section “Ensure Quality Through
Testing” on page 290)

286 | LEVELING UP AS A TECH LEAD

• How priorities are chosen and delivery is tracked (see the section “Plan-•
ning and Keeping a Project on Track” on page 291 and the section “Bal-
ancing Multiple Streams of Work” on page 297)

• How you work together as a team (see the section “How to Build a Healthy•
Team Culture” on page 185)

These agreements form the invisible scaffolding of your day-to-day work.
When they’re unclear or inconsistent, the team slows down. People second-guess
what “done” means. Decisions take longer. Reviews are frustrating. Quality
drops.

But when your standards are clear and shared, your team can work inde-
pendently without diverging. You don’t have to be in every conversation or review
every line of code. Because the expectations are understood, decisions can scale.

As a tech lead, don’t define these standards alone; create space for the team
to define them together. That might mean running a workshop, reflecting in
a retrospective, or revisiting old documentation that no longer reflects reality.
It’s less about writing rules and more about surfacing assumptions and creating
alignment.

One trap to watch out for: having overly aspirational standards that no one
actually follows. A great rule of thumb is this: your standards should reflect what
you’re willing to review and uphold, not just what you hope for. They should be
visible, actionable, and revisited regularly, especially as the team changes or the
product evolves.

You don’t need to solve every disagreement up front. But do agree on a
mechanism for resolving them. Standards evolve, and that’s healthy. What mat-
ters is that your team knows where to look, how to propose a change, and how to
hold each other accountable.

AIM FOR FAST FEEDBACK

In Chapter 8, I talked about the value of having great processes for continuously
delivering high-quality value to your customers, and shipping code that’s been
tested, validated, and is up to standard.

But even with the best processes, things will go wrong. That’s inevitable.
And the only way to know when they go wrong, and how fast you can react, is by
having the right observability in place. Metrics, alerts, and alarms are your early
warning system. Without them, you’re flying blind and will discover issues only
once they’ve already impacted users.

MANAGING TECHNICAL PROJECTS | 287

As a tech lead, you’re not expected to be an observability expert, but you are
expected to care—making sure the right signals are in place and that people are
paying attention to them. You’re responsible for asking the right questions: Do
we actually know when something’s broken? Are we measuring what matters?
Can the team respond quickly when things go wrong?

Your role is to guide the conversation. Help your team align on what “good
enough” observability looks like. Push for clarity over coverage. Facilitate deci-
sions about what to monitor, what can be dropped, and how to stay on top of
what matters as your system evolves. Think of yourself as the person connecting
the dots: from business impact to system behavior, from vague symptoms to root
causes, and from noisy signals to actionable alerts.

The first issue I’ve seen with observability is the most obvious one: no data.
Just not enough visibility into what’s happening in your system to make any
useful decisions.

But more often, the bigger problem isn’t too little data; it’s too much. Any
observability tool you hook up to your services will come with dozens of auto-
matic metrics. Suddenly you’ve got too many dashboards, too many graphs, and
too many alerts, many of them noisy, low-value, and constantly blinking yellow.
You stop trusting them. You ignore them. And when something really does go
wrong, it’s hard to see the signal through all the noise.

This happens because teams treat observability like a side task, something
separate from product work. Someone adds a few metrics “just in case.” Another
person adds some alerts without checking if they’re actually useful. Rarely do we
go back and clean things up. Rarely do we ask: is this data still helping us?

As a tech lead responsible for a product, I basically want to know two things:
is it available? and does it work as expected?

I remember a time when our dashboards were filled with charts no one
could explain. We had alerts firing at random times, most of which we ignored.
Then one weekend, something actually broke, and it took us hours to realize it
because the real issue was buried under noise. That was the moment I realized
we needed fewer, more meaningful signals, metrics that actually meant some-
thing to us.

If you’re dealing with observability noise, here’s my suggestion: start fresh.
Forget your current dashboards for a second. Sit down with your team and ask,
“What do we actually need to monitor? What’s a real problem? What are the
alarms we would wake up in the middle of the night for?”

288 | LEVELING UP AS A TECH LEAD

When your team defines what matters together, you create clarity around
what “good” looks like, what constitutes a real issue, and where to focus during
incidents. This shared understanding can dramatically reduce noise, speed up
incident response, and build a stronger sense of ownership across the team.

Start from there. A good rule of thumb: one dashboard per product, not
per service. All the key metrics should fit on a single screen. If you glance at it
and can’t immediately tell whether things are OK, something’s wrong. And the
metrics need to be meaningful. Metrics aren’t useful unless they tell you when
something is wrong.

This requires a mindset shift. Instead of asking “What should we measure?”
ask “When is it actually a problem?” Define your service-level indicators and
service-level objectives. Set limits. Tune/refine/iterate on thresholds. And be
courageous enough to delete what doesn’t help. If you have an alert that’s always
red but you never act on it, do you really care about it? Probably not.

Modern observability tools like Datadog and Grafana can often show you
historical data, even for metrics you didn’t pre-configure, so don’t be afraid to
remove noise. If you need something, you can add it back.

Another strong habit: make observability part of your daily development
work. Every feature, every task, should come with a conversation: “Do we need to
monitor this? What does success or failure look like?” Add that to your definition
of done.

Good observability helps your team catch problems early and turn those
problems into learning opportunities. When something breaks, a system with
the right metrics and logs gives you clues about what happened, what went
wrong, and why. This makes incident reviews more useful and less about finger-
pointing. Over time, this turns incidents into learning opportunities. You start
to see patterns, connect the dots, and use that insight to prevent future issues.
That’s when observability becomes more than a safety net.

Observability is how your code talks back to you in production. If you can’t
hear it clearly, you’re flying blind. Your goal isn’t more data; it’s faster feedback
and better decisions.

The tech lead plays a critical role in shaping observability culture. Your job is
to make sure the right metrics and dashboards are in place, that they reflect what
truly matters, and that the team is using them to inform decisions. This means
encouraging regular conversations about what signals are meaningful, keeping
dashboards focused and actionable, and helping the team build habits around
learning from data, not just collecting it.

MANAGING TECHNICAL PROJECTS | 289

ENSURE QUALITY THROUGH TESTING

Managing technical projects means driving quality throughout the entire devel-
opment process. Testing plays a key role, preventing bugs and building confi-
dence in the code, the process, and the team.

I already explored in detail how to build and evolve a healthy testing strategy
in the section “Continuously Testing” on page 245. If you haven’t read that
section yet, that’s where you’ll find actionable guidance on defining testing stand-
ards, addressing common bottlenecks like flaky tests and slow pipelines, and
building alignment with QA teams.

Here, the reminder is this: testing is a continuous investment in quality.
Make sure your tests are useful, provide meaningful feedback, are trusted by the
team, and support the pace you need to deliver with confidence.

Testing is something you continuously lead. As a tech lead, keep asking
yourself: can we release with confidence? If something breaks, will we know?
And can we fix it quickly, without blame? The answers to these questions are
signals of whether your team has a reliable, quality-focused delivery culture.

If the answer to any of these is no, that signals a broader quality and leader-
ship challenge. You have to make sure testing is a core part of the way work gets
done, not something tacked on later. If tests exist but aren’t helpful, or worse,
slow things down, question them. If flaky tests are draining trust or key areas
of your system lack test coverage, step in. And always make sure your testing
approach matches the level of risk in the business and the speed your team is
expected to deliver at.

Testing exists to support delivery. If it’s creating friction instead, that’s a
signal to pause, reflect, and adjust it with your team.

Let the detailed strategies in the section “Continuously Testing” on page 245
guide your implementation. Use this section as a reminder that how well your
team tests is a reflection of how well you lead quality.

Common Project Management Challenges

So far in this chapter, I’ve focused on aligning your team around shared strate-
gies, building a strong technical vision, and encouraging technical excellence
through quality, feedback loops, and decision-making practices. But even with all
of that in place, projects still go off track. That’s where your role as a tech lead
becomes even more critical.

290 | LEVELING UP AS A TECH LEAD

In this section, I’ll shift focus to the everyday realities of delivery: how to plan
and keep a project on track, how to react when a project starts falling behind,
how to juggle multiple streams of work without overwhelming your team, and
how to identify and mitigate the technical risks that could quietly derail your
delivery.

Strong technical leadership means leading with clarity, navigating complex-
ity, and keeping delivery moving, without burning out your team. You don’t need
to become a project manager to do that, but you do need the tools and mindset to
guide your team through uncertainty.

PLANNING AND KEEPING A PROJECT ON TRACK

Most projects derail because of bad planning. And bad planning usually comes
from a lack of proper communication at the right time between all the parties
involved or from a lack of agreement.

I truly believe the best planning happens when everyone is involved from the
beginning: product, business, stakeholders, developers, UX, QA, infrastructure—
anyone who touches the product. Maybe not everyone is equally involved at every
step, but they should all be present. I’m a big advocate for the whole team
being part of this process, not just the tech lead. I’ve seen how much better the
outcome is, how much more engaged the team feels, and how much better the
product becomes. I’ve seen entire product strategies shift for the better simply
because a developer asked a question early on.

But I also know that’s not always the case. In many teams, not even the tech
leads are brought into planning. A lot of tech leads still think planning is some-
thing product or project managers do and that business will eventually just hand
over a list of things to build. That’s how many teams still operate. Unfortunately.
And when that happens, it often leads to plans that ignore technical complexity,
result in unscalable or overly complex designs, miss important edge cases, or
underestimate effort entirely. Without the right voices in the room early, you’re
more likely to build the wrong thing, slowly and painfully.

If you’re lucky enough to be involved early, great. Take that opportunity. If
you’re not, ask why. Often the answer is something like “Oh, I didn’t know you
wanted to be involved.” And just like that, you’re in.

MANAGING TECHNICAL PROJECTS | 291

If you want to maximize the chances of success for any plan your team is
leading or involved in, there are a few key things you need to make sure are in
place:

Clear problem to solve/purpose
The best planning starts from a shared understanding of context and
purpose:

• Why are we doing this? What’s the problem or opportunity we’re•
addressing?

• Who are the stakeholders? What do they care about? Who will use•
the solution, approve it, or be affected by it?

• What’s the vision? What would success look like, not just in features•
delivered but in impact created?

From there, the team can envision the shape of the solution, whether
that’s architectural direction, key design principles, or a prototype, and only
then move toward implementation planning.

Clear owner
I once helped a startup troubleshoot why a company-level project had
missed its deadline by three months. The project involved three different
engineering teams. My first question was simple: who owned this project?
The responses revealed the core issue. The tech lead assumed the product
manager was in charge. The product manager thought it was the engineer-
ing manager’s responsibility. The EM pointed to the CTO. And the team
believed the tech lead was managing it. Everyone assumed someone else
was driving, but no one ever said it out loud.

The result? No one had a full picture of what was happening. There
was no shared timeline, no one enforcing the deadline, and each team was
planning and prioritizing independently on different boards. Nobody was
coordinating the bigger picture.

The lesson was clear: when everyone is responsible, no one is.
One of the most common reasons I’ve seen tech projects and initia-

tives fail is the absence of clear ownership. You need one single point of
contact: someone responsible for tracking progress, updating communica-
tions, following up on decisions, and reacting when things go off track.

Owners aren’t expected to do everything themselves or be present in
every meeting. Their role is to provide visibility into the plan, tracking

292 | LEVELING UP AS A TECH LEAD

progress, highlighting risks, and making sure responsibilities are clearly
understood. With the right structure in place, the team should be able to
move forward independently, without needing constant supervision.

Clear steps
Break down the work into tangible, achievable chunks. Each step should be
actionable and easy to understand. Avoid vague labels like “implement fea-
ture.” Instead, be specific: “build endpoint for X” or “create UI component
for Y.” This helps the team track progress and makes handoffs smoother.

At the high level, start with stakeholder conversations and product
goals, then shape these into large epics that reflect business priorities.

From there, work with your team to split those epics into smaller tasks
that can be executed within your sprint cycles.

Keeping this dual-layer structure, strategic (epic-level) and tactical
(task-level), helps ensure everyone from business to engineering stays
aligned on both the big picture and the next step.

Clear milestones
Define what success looks like at various points in the project. These
are your checkpoints, moments where you pause, reflect, and potentially
readjust. Milestones might signal the end of a sprint, the completion of
a critical feature, or the delivery of a first internal demo. They help track
progress, but more importantly, they create space to check alignment, sur-
face risks, and make informed adjustments. Choose milestones that show
meaningful progress, especially to stakeholders, and use them to validate
or update your delivery plans.

Clear timelines
I’ve seen tech leads hesitate to enforce timelines, worried they’ll come
across as pushy or create pressure on the team. So instead, they say noth-
ing. They go with the flow, hoping things will somehow be delivered on
time.

But the truth is there is always a timeline.
The business side always has expectations about when they want

something delivered. If it’s not clearly stated, ask for it, and don’t give
up until you get a real answer.

If you struggle to get one, propose your own. Start by giving an inten-
tionally long estimate, something you know won’t be acceptable, like “OK,
so we’ll aim to get this done in about six months.” Chances are, you’ll get

MANAGING TECHNICAL PROJECTS | 293

a reaction: “Six months?! That’s way too long.” Perfect. Now you can ask:
“What would be acceptable?” Maybe they say, “We were hoping for three.”
Great. Now you have a target and something to plan around.

If it’s not clearly stated, it becomes invisible. And when it’s invisible,
people assume they have all the time in the world. That’s when you end up
with someone refactoring a huge piece of the product in what was meant
to be a small task. Without clear boundaries, people set their own. And
everyone’s idea of a reasonable timeline is different.

I remember working with a tech lead who was anxious about an
upcoming delivery. Her team was behind schedule. Stakeholders were
checking in constantly. She felt the pressure mounting but didn’t want to
push the team. “What’s the actual deadline?” I asked. “There isn’t one,” she
said. “But everyone expects it by May 1st.”

“So there is a deadline,” I said. “It just hasn’t been made explicit.” I
suggested she share that with her team, not as a demand but as transpar-
ency. Just share that there’s an expectation, explain why it matters, and
bring the team into the strategy conversation.

She did. In our next one-on-one, she said, “That worked like magic.
Once I explained the situation, the team prioritized the work together.
We’re actually ahead of schedule now.”

This is the power of clear expectations. When people understand the
“why,” they align fast.

The key is to treat deadlines and milestones as shared goals, not
demands. “We want to finish this by May 1st because of X.” Then open
the conversation. Is that realistic? Can we shift it? What’s the impact if we
don’t? On us, on the customer, on the business? If the timeline is fixed,
can we adjust the scope? What’s the smallest version we could ship that
still brings value? Could part of it be manual for now?

Creating this plan doesn’t fall entirely on your shoulders, and usually you are
not the one that drives it. In most teams, it’s a shared effort between you and
your product owner, product manager, project manager, engineering manager,
or whoever else is involved. You all bring something different to the table. Your
role is to contribute the technical perspective: how feasible things are, where the
risks lie, how the team works in practice. Their role is to bring business context,
customer needs, and priorities. Together, you’re jointly responsible for making
sure the team has a clear, realistic path forward.

294 | LEVELING UP AS A TECH LEAD

A clear plan also enables speed. Once your team moves into execution, they
should know exactly what they’re working on and why. Nothing hurts productiv-
ity more than lack of focus.

I once joined a team full of motivated, capable engineers who were strug-
gling to deliver, not because they lacked skills but because they lacked clarity. The
backlog was messy, stories were vague, and tasks were made up as they went.
Junior developers were blocked, waiting for direction.

When I joined as a tech lead, I quickly realized this wasn’t a problem of
motivation or talent; it was a planning problem. There was a product manager,
but she was stretched thin, managing multiple teams and projects, and didn’t
have the capacity to go deep into the day-to-day planning. So instead of jumping
straight into the code, I dove into the backlog. I started working closely with
the product manager, legal department, and other teams involved, helping shape
a clear high-level strategy. I set up planning ceremonies like pre-planning and
refinement sessions and brought the team into the process.

In just a month, everything changed. The team was thriving. Work was
moving fast, confidently. No second-guessing, no confusion, just clear priorities,
a shared process, and a rhythm for getting things done. Once all of that was in
place, once we had a clear plan, a clear timeline, and full alignment, I finally went
hands-on to help deliver. Because at that point, the team had the structure and
clarity they needed to actually move fast. Planning is what made that possible.

Another thing that kills focus is trying to do too much at once. If everything
is a priority, nothing gets done. A common trap for teams is having too many
work items in progress at the same time, resulting in jumping between tasks,
starting but not finishing, and losing track of priorities. That’s why part of
effective planning is limiting WIP (work in progress).

Help your team stay focused by agreeing on how much work can be in
motion at once. Encourage finishing over starting. Before picking up a new task
from the to-do list, pause and talk about trade-offs, especially if there are still
plenty of tasks in progress. In one of my teams, we had this principle so deeply
embedded that if the board was full of in-progress tasks, no one would start
something new. Instead, anyone without a task would pair with someone else to
help finish what was already underway.

To wrap up, treat planning as a tool for collaboration. Great planning builds
shared understanding, aligns expectations, and creates space for ongoing recali-
bration. That means having regular conversations at both strategic and tactical
levels, with stakeholders, your team, and anyone whose work intersects with

MANAGING TECHNICAL PROJECTS | 295

yours. When you lead planning this way, you’ll catch risks earlier, adjust faster,
and build better things together.

Plans should be visible, dynamic, and shared.

RESPONDING TO PROJECT DELAYS

Even with the best planning, things will go wrong. An incident might hit. Some-
one gets sick. You run into a technical complexity you underestimated. Or a
third-party dependency slips.

That’s normal. What matters is how you respond.
First thing to do as a tech lead: make the risk visible. The moment you

suspect a delay or see something slipping, your first responsibility is to make the
risk apparent. Don’t wait. Share it with your team, your stakeholders, and anyone
else who might be affected. Then bring everyone together to revisit the plan. Can
you shift the timeline? Trim scope? Deliver part of the work manually for now?

In one project, we were launching a new product that had already been sold
to customers with a promised start date. Two weeks before launch, we realized
the third-party API we were relying on wouldn’t be ready in time. Postponing
wasn’t an option, so we got creative with scope.

We identified the minimum set of features that absolutely needed to work
automatically.

Then, we renegotiated with the third-party provider to deliver a smaller,
stripped-down version of the API that could support just those essentials.

For one feature, we made a conscious decision to handle it manually at first.
It wasn’t scalable long term, but with only a handful of early clients and the
feature being triggered manually, it was totally manageable. We added a flag to
indicate when the manual process was needed, and aligned with the PM on a
follow-up plan to automate it down the line.

The launch went smoothly thanks to our ability to adapt quickly, communi-
cate clearly, and make thoughtful trade-offs, even under pressure.

You’re not responsible for solving every problem alone. Your focus is on
maintaining alignment across people and priorities: keeping communication
open, translating business goals into delivery plans, and ensuring the team
understands what’s expected before it becomes a surprise.

Also, be careful with the idea of “just adding more people.” When a deadline
is at risk, stakeholders often say, “Can’t we just add more developers?” On the
surface, it sounds like a quick fix. It sounds logical: more hands, faster delivery.
But in reality, onboarding new developers slows things down. Not only do they
need to learn the codebase; they need to learn how your team works, how you

296 | LEVELING UP AS A TECH LEAD

collaborate, how you deploy. It’s like the old saying: what one developer can do in
one day, two can do in two days. Unless you’re already set up to scale with new
people, it’s rarely a quick fix.

Second thing to do as a tech lead: protect the team’s focus. As a tech lead,
part of your job is to shield the team from distractions and last-minute “urgent”
requests that pop up mid-sprint. You won’t be able to block every interruption,
but you can create clarity around what the team is working on and why.

Without this kind of buffer, teams can fall into what some call the “interrupt-
driven death spiral,” constantly reacting and context switching and never finish-
ing meaningful work. Make sure that doesn’t happen.

Make your priorities visible. Encourage your team to talk openly about prior-
ities when unexpected tasks get thrown their way, and to explore options like
saying “Not right now, because we’re focused on delivering X” or “Let’s put it in
the backlog and we’ll revisit later,” rather than jumping in automatically.

If you don’t set these boundaries, everything becomes a priority, and then
nothing gets done on time. Being the buffer between the team and the chaos is
one of the most valuable ways you support delivery.

Another thing to keep in mind during these pressure situations: checking in
on morale. When a project’s behind, stress rises. Tensions run high. In moments
like this, one-on-ones are your best friend. Use them to check how people are
feeling. Are they worried? Burned out? Feeling stuck or unsupported? This is
where you catch problems before they explode. These conversations help you
know when to push, when to shield, and when to pause and reassess.

In short, when a project slips, don’t panic. Slow down. Communicate. Reca-
librate. And support your team. That’s how you keep moving forward without
losing trust or burning out your people.

BALANCING MULTIPLE STREAMS OF WORK

If your team owns a single product with clear boundaries, the same tech stack,
familiar tooling, and consistent services, you’re in a fortunate position. Many
tech teams today aren’t that lucky. It’s increasingly common for tech teams to
be responsible for multiple products or projects spread across different systems,
services, programming languages, and infrastructure. And this comes with a
cost.

Everything takes longer than planned: onboarding, maintenance, debugging.
The biggest challenge is context switching. Jumping between tech stacks or
products drains focus and energy. It slows the team down and makes execution
more difficult.

MANAGING TECHNICAL PROJECTS | 297

I’ve been there. My team was responsible for two completely different prod-
ucts, both high-priority, both business-critical. But one lived in a legacy .NET
monolith running in a datacenter with RabbitMQ and MySQL. The other was
a modern Scala-based microservice using Kafka streams and DynamoDB and
deployed in AWS. The mental overhead of switching between these two worlds
was enormous.

And yet, we made it work, by factoring this challenge into how we worked as
a team.

We used tools to reduce context-switching friction: things like clear onboard-
ing guides, well-maintained internal wikis, and architecture diagrams that gave
fast overviews of the systems involved. This was not a setup where relying on
code for documentation alone was an option.

Our delivery process was smooth, built on continuous deployment and sup-
ported by thorough testing and strict quality standards. We explicitly accounted
for context switching in our estimates, acknowledging that jumping between
products carried a cost.

We also leaned heavily on pair programming. Any time someone had to
switch to the other product, they weren’t doing it alone; there was always some-
one else to carry the context, ease the transition, and help get up to speed.
Constant, structured communication helped keep us aligned, internally and with
stakeholders. We maintained a clear sense of strategy and focus.

I also was regularly checking in with the team to make sure this approach
was still working. Was the context switching becoming too much? Were people
feeling overwhelmed? These conversations helped us stay ahead of problems
before they grew. I knew that what worked at one point might stop working as
priorities shifted.

Even with all this, it was hard. We struggled from time to time. But we
approached it as a learning opportunity. Where else could we have explored two
completely different technology stacks, back-to-back, as part of the same team? It
stretched us, but it also grew us.

There are a few other approaches I’ve seen work well for other teams in
similar situations.

Clarify ownership boundaries up front. One of the most helpful things you
can do is explicitly define who owns what. Which team is responsible for which
product or service? What does that ownership include—feature work, support,
maintenance? Where do responsibilities stop? This removes ambiguity and helps
avoid surprises when work overlaps.

298 | LEVELING UP AS A TECH LEAD

Instead of juggling both products at the same time, you can place one
product into full maintenance mode temporarily, agreeing to handle only critical
bugs or issues, while prioritizing the other for a defined period. This would allow
deeper focus without letting anything fall through the cracks.

Proactively challenge the assumption that your team has to keep owning
everything. If the load is too high, it’s OK to hand something off. A clear, struc-
tured handover to another team, or even a temporary reallocation of ownership,
can create space to breathe. In our case, we had this conversation and decided we
wanted to keep both.

I’ve also heard of teams using rotating sub-teams or specializations to man-
age multiple projects, though I haven’t tried it myself. The idea is to split the
team temporarily—one group focuses on Product A, another on Product B—
then rotate members regularly. It’s supposed to reduce context switching while
spreading knowledge gradually. Seems like a smart way to balance focus and
flexibility.

And of course, escalate early. If your team is overwhelmed, don’t keep it to
yourself. Talk to your stakeholders. Show them the impact of divided attention:
slower delivery, more bugs, rising frustration. Bring the problem to light while
there’s still time to do something about it.

Balancing multiple streams of work will never be easy. But with clear pri-
orities, deliberate trade-offs, and a willingness to set boundaries, it becomes
manageable. If you’re in this situation now, take a moment to assess, then try
one of these adjustments. It might be just what your team needs.

MANAGING TECHNICAL RISK

Every project comes with risks. Your role as a tech lead is to ensure these risks
don’t transform into issues.

A risk is something that might happen. It’s a potential issue. For example: “A
server crash during peak hours might lead to data loss.”

An issue, on the other hand, is something that has already happened, like a
problem in production. For example: “During peak hours, the search page takes
four times longer to load.”

Issues are dealt with reactively: you fix them, work around them, or accept
them. For instance, you might increase the number of search servers temporarily
to reduce load time. For a longer-term solution, you could restructure the search
index to better match common user queries. In some cases, the best choice
might be to simply acknowledge the issue, such as showing users a message

MANAGING TECHNICAL PROJECTS | 299

when search is slow, especially if the impact is minor and the cost to fix is too
high right now.

Risks, however, must be identified, tracked, communicated, and planned for.

Identifying risks

Every project comes with risks, and no, you won’t be able to mitigate them all.
But you can make them visible and prepare for the most critical ones using
different techniques.

One useful technique is Agile threat modeling, which focuses on identifying
security risks. Some companies have a dedicated security team, but they’re often
stretched thin. That means security reviews come too late, miss key context, or
rely on noisy automated tools.

Agile threat modeling flips that: it’s done more frequently, in smaller
chunks, and involves the whole team. It becomes part of your backlog and plan-
ning. I first encountered this practice at Thoughtworks. They’ve even published a
full guide on how to run one: the Agile Threat Modelling Workshop Guide.

Another excellent tool is risk-storming. It’s a collaborative, visual exercise
where the whole team, devs, project managers, product managers, designers,
and stakeholders identify risks together. You map them out, prioritize them, and
discuss mitigation strategies. The guide at riskstorming.com is a great place to
start.

And if you’ve been maintaining a RAID board (risks, assumptions, issues,
dependencies) throughout your decision-making or solution brainstorming ses-
sions, this is a great moment to bring it up again. It can provide a clear view of
previously identified risks and ensure continuity in addressing them proactively.

Identifying risks should be a regular part of your project rhythm. A good rule
of thumb is to consider risks at the following times:

• At the start of a project, to uncover early architectural or security concerns•

• Before major milestones or deliveries, to prepare for potential blockers•

• After significant changes in direction or scope, when new risks often•
appear

• On a regular cadence, such as monthly or at the start of each sprint cycle,•
to keep the conversation alive

300 | LEVELING UP AS A TECH LEAD

https://oreil.ly/jDXcb
https://riskstorming.com

You don’t need to run a full workshop every time. Sometimes a quick review
of your existing risks and assumptions is enough.

Mitigating risks

Once you’ve identified your risks, you need to evaluate them. A common way to
do this is using a 2 × 2 matrix:

Probability
How likely is this to happen?

Impact
If it does happen, how bad is it?

Based on those two factors, you can choose a mitigation strategy (Figure 9-1).

Figure 9-1. Risk-mitigation strategies

You can choose to mitigate, avoid, accept, or transfer the risk:

Mitigate
Take steps to reduce the likelihood or impact.

Example: You rely on a third-party payment provider, and downtime
on their end would block customers from completing purchases. You miti-
gate this risk by building a lightweight fallback system: when the provider
is down, customers can still place orders, and payments are processed once
the service is restored.

You can’t eliminate the risk of the third-party service failing, but you
reduce its impact on the business. Instead of losing revenue or frustrating
users during downtime, you create a way to keep things moving while
minimizing disruption.

MANAGING TECHNICAL PROJECTS | 301

Avoid
Change your approach so the risk no longer applies.

Example: You were planning to allow users to upload and preview
arbitrary file types in your application. But this opens up a range of risks,
like malicious file uploads, virus-laden attachments, or vulnerabilities in
previewing logic.

After assessing the effort required to scan and sanitize all file types
securely, you change the approach: users can upload only PDFs, which are
stored without preview and scanned with a standard antivirus tool before
storage.

Allowing arbitrary file uploads introduces complex security concerns
that are difficult to fully mitigate. By narrowing the scope to a safer file type
and removing the preview feature, you avoid exposing your system to these
risks altogether.

Accept
You’re aware of the risk but decide not to act, at least for now.

Example: You know your CI pipeline is slower than ideal, but improv-
ing it would require infrastructure changes that aren’t a priority right now.

You’re aware this might lead to longer feedback loops for developers
and reduced iteration speed. It could eventually affect team morale or
delivery timelines. But for now, the impact is manageable, so you choose to
accept the risk, monitor it, and set a reminder to visit it in some time.

Transfer
Shift responsibility elsewhere, like outsourcing or involving another team.

Example: You’re worried about the security risks in handling user
authentication in-house. Instead of building and maintaining your own
auth system, you decide to use a third-party identity provider.

You’re aware that authentication is a critical and sensitive area; getting
it wrong could lead to security breaches and compliance issues. But instead
of carrying that risk internally, you transfer it to a provider with better
expertise, support, and security practices in this area.

Choosing how to respond to risk is just as important as identifying it.
Whether you accept, transfer, mitigate, or avoid a risk, the key is to do it inten-
tionally, with a clear understanding of the trade-offs involved.

Not every risk needs action right away, but every risk needs visibility and
ownership.

302 | LEVELING UP AS A TECH LEAD

Tracking risks

After a risk-storming or threat modeling session, you’ll have a list of prioritized
risks. But that’s just the beginning. You need to track them.

A risk log can be a Google Doc, a Jira board, or a spreadsheet; it doesn’t
matter, as long as it’s reviewed regularly. Each risk is clearly described and easy
to refer to in conversation. The mitigation plan and current status are kept visible
so that anyone on the team can quickly understand where things stand. And
each risk has a clear owner—not necessarily the person executing the work but
someone responsible for making sure it’s tracked and acted on.

For risks you’ve decided to accept, set a reminder to revisit them. Add a
review date and use a system that will surface it back into your workflow.

Don’t let this list get out of hand. Focus on the top-impact, high-likelihood
risks. Keep it lean. A living document is valuable only if it stays useful.

Communicating risks

The value of tracking risks comes from the conversations and actions that follow.
The tricky thing is that not everyone sees risks the same way. A product

owner might not care about a rare JSON parser vulnerability, but your security
lead absolutely will.

That’s why communication matters. When talking about risks, do it early,
especially with supporters and decision makers. Don’t just surface the problem;
come with a clear plan and a few alternatives. Focus on the impact: explain what
could happen and why it matters. Be empathetic. Try to see things from their
perspective: what would they worry about? And be honest. Don’t exaggerate to
make a point, but also don’t downplay something important. Focus on facts.

Managing risk is as much about alignment as it is about action. Use the tools
and conversations described here to stay ahead of problems and to help people
see clearly what’s coming.

Key Takeaway

Managing technical projects is about more than tracking tickets or hitting dead-
lines. It’s about creating clarity, reducing ambiguity, and helping your team
move forward with focus.

From aligning on a shared strategy and defining a clear technical vision
to making decisions efficiently and documenting them well, strong technical
leadership gives your team the structure it needs to deliver.

MANAGING TECHNICAL PROJECTS | 303

You won’t be able to plan for everything. But with the right habits—clear
planning, fast feedback loops, ongoing measurement, and continuous communi-
cation—you’ll be able to keep projects on track, navigate complexity, and recover
quickly when things go off course.

304 | LEVELING UP AS A TECH LEAD

Bringing It All
Together: Navigating
Technical Leadership

Technical leadership is a balancing act. It’s a role that demands clarity, empathy,
technical depth, and strategic awareness, often all at once. Throughout this chap-
ter, I’ll look at how to bring these elements together in practice as interconnected
parts of your day-to-day work.

I’ll start by exploring one of your most high-leverage responsibilities: grow-
ing the people around you. Next, I’ll shift focus to stakeholder management.
Your ability to represent your team, align across departments, and communicate
technical ideas clearly to nontechnical partners is a defining part of the role. I’ll
walk through how to identify the right stakeholders, manage those relationships
intentionally, and adapt your communication to influence effectively.

Finally, I’ll unpack some of the most common, and often unspoken, chal-
lenges in aligning tech with the business. Whether it’s getting buy-in for tech-
nical decisions, figuring out how your impact is measured, or managing the
emotional and mental load of the role, this chapter offers practical strategies for
navigating the messy, high-stakes reality of tech leadership.

This is where everything comes together: your technical voice, your people
instincts, your strategic thinking, and your ability to sustain it all without burn-
ing out.

Developing and Growing Technical Talent

Growing the people around you is an expectation that usually comes with a
senior role. As a tech lead, it’s about taking this to the next level.

305

| 10

This doesn’t necessarily mean doing more pairing or supporting more indi-
viduals directly. It’s about stepping back and thinking more strategically about
your team’s growth: leveraging team-wide opportunities for development rather
than focusing only on individuals. It also involves greater influence over things
like budgets and the types of learning support your team can access.

With that broader perspective in mind, this section will explore how to
identify your team’s learning needs, support their technical growth with the
right tools and opportunities, and help them strengthen the soft skills that turn
capable engineers into trusted collaborators and future leaders.

ASSESS AND IDENTIFY LEARNING NEEDS

As a tech lead, part of your responsibility is to make sure your team has the right
mix of technical and soft skills to deliver on what’s expected. That starts with
being intentional about understanding where your team is today and where they
need to grow.

Start by looking at your context. Are you in the middle of a migration?
Building something new? Maintaining legacy systems? Each of these requires
different strengths. Your team might be great at launching new projects but
struggle with long-term maintenance. Or the other way around.

I once led a team that got the opportunity to build a brand-new product. It
was a high-visibility project, and we were excited to take it on. But the catch was
this: it was a prototype. We had to move fast, prove the product’s viability, and
skip over things like full automation and perfect test coverage.

Our team came from a different world. We were used to working on a
revenue-generating monolith with a “do it right” mindset: TDD (test-driven
development), deep up-front clarification, robust processes. This new initiative
demanded speed, iteration, and scrappy fixes, completely the opposite of what we
were used to.

We took on the challenge, but the friction was real. Team members were
uncomfortable with the shortcuts. Stakeholders were frustrated by delays. Every-
one was out of their comfort zone. After some settling-in time, we started to
find our rhythm. But it took deliberate effort, including lots of conversations
and iteration. This taught me a valuable lesson: before you take on work that
demands a different mindset and skills, assess whether your team is equipped
for it, and if not, plan for how you’ll support them through that shift.

That’s why it’s worth doing regular checkpoints with your team, especially
before jumping into a new challenge. Here are some questions you can explore
together to assess where you are and where you want to grow next:

306 | LEVELING UP AS A TECH LEAD

• What parts of our system feel fragile or hard to change?•

• Are there areas where we rely heavily on one person’s knowledge?•

• What’s something new we’ve wanted to try but haven’t felt ready for?•

• What patterns do we notice in our recent incidents or blockers?•

• Where do we feel like we’re guessing rather than deciding with•
confidence?

• What are we curious to learn more about?•

• What skills would make our day-to-day work smoother?•

• How do we currently share knowledge, and what’s missing?•

• What would help us grow more effectively as a team?•

Once you’ve gathered this input, look for patterns. Are there recurring chal-
lenges? Common frustrations?

All of these give you clues about where the learning gaps are.
Don’t forget to balance team-wide patterns with individual needs. Every

developer is on a different growth path. Some may be ready to step into mentor-
ing roles or lead initiatives. Others may need support just getting comfortable
with basic technical tasks. Hold both levels in mind: what the team needs as a
whole and what each person needs to thrive.

Next, align those learning needs with what’s coming. What features are on
the roadmap? Is there a big migration planned? Are you moving to the cloud
or adopting a new architecture? You want to invest in skills that help the team
deliver value, not just what’s technically interesting. For example, if the business
is focusing on an upcoming cloud migration, it might not make sense to invest
time in exploring a new web framework right now.

Once you’ve identified the most important learning areas, make a plan. You
don’t have to fix everything at once. Pick one or two priorities, set a goal, and
define how you’ll track progress. For example, if you want to build a stronger
feedback culture, measure how often feedback conversations are happening.
Make it visible, and revisit it often.

Continuously upskilling your team is a team effort. Involve your team in
assessing needs and shaping priorities. Partner with your product manager or
engineering manager to align growth with delivery needs. Use one-on-ones to
validate direction, get personal insight, and ensure that growth goals reflect both
individual aspirations and the evolving needs of the business.

BRINGING IT ALL TOGETHER: NAVIGATING TECHNICAL LEADERSHIP | 307

By consistently assessing and addressing your team’s learning needs, you
increase the team’s ability to deliver and adapt to any context.

TOOLS FOR UPSKILLING THE WHOLE TEAM

Once you’ve identified the growth areas for your team, it’s time to act. There are
many ways to upskill your team, but not every method fits every context. Your job
as a tech lead is to be intentional about which tools to use, when to use them, and
how to integrate them into the team’s daily work.

If your entire team needs to build technical strength in a particular area—
say, a new framework, architectural pattern, or development practice—focus on
collective learning. Here are a few tools you can use:

Dedicated learning time
Talk to your manager or stakeholders to secure protected time for learning.
This could be a learning day each sprint or a short-term drop in delivery
expectations.

One simple strategy is to integrate learning time directly into your
estimations. Just like you’d account for code reviews or testing, learning
has an impact on delivery. Making it explicit in planning helps set the right
expectations and prevents it from being pushed aside when deadlines get
tight.

Knowledge-sharing sessions
Run short talks, lightning rounds, or brown-bag lunches. These are great
for spreading expertise across the team. These internal talks are ideal when
the budget is tight and your team already has internal experts.

I remember this time when my team had to learn Scala. Our tech lead
at the time planned a full week of Scala training, bringing in a Scala trainer
from another office to help us. It was a great way to get us started.

I also find daily tech huddles to be useful for encouraging others to
share important learnings in a more informal way. These short check-ins
after standup give people space to mention discoveries, surface blockers, or
discuss small implementation decisions that others might benefit from.

Pair programming or mob programming
These work particularly well when knowledge levels vary across the team.

Pair programming is one of the most effective tools for growth. I’ve
seen it again and again in the teams I’ve worked with. The strongest

308 | LEVELING UP AS A TECH LEAD

learning happens when people sit together and work through real prob-
lems, live in the code, sharing context and solutions as they go.

Mob programming extends this concept further, where the entire team
works together at the same time, on the same task, using a single com-
puter. While it might seem inefficient at first glance, it can be incredibly
powerful for surfacing hidden knowledge and building collective owner-
ship of the codebase, especially in areas where no one has much context.

That said, mob programming tends to work best in very specific
situations, like exploring unfamiliar parts of the system or onboarding
new team members. It also requires a skilled facilitator to keep everyone
engaged and ensure the session stays productive. When done poorly, it
can leave people feeling like they’re not learning much or that they’re
not contributing. Like many collaborative practices, its effectiveness comes
down to how intentionally it’s run.

Hackathons or innovation days
Use these to experiment with new tools or build quick prototypes. I’ve seen
lots of great features come out of hackathon ideas; some even made it to
production. As a plus, they boost creativity and are a great team-building
exercise.

To make them successful, keep the structure simple: set aside a
focused time window (a day or two), let teams self-organize around ideas,
and create a low-pressure, playful atmosphere. Encourage demos at the end
as a chance to share and celebrate learning.

Post-incident reviews
Postmortems are a great learning opportunity for the team, if you run them
right. I dive into how to make the most out of these sessions in the section
“Dealing with Incidents” on page 254.

Pairing with other teams
If another team already has experience in a tech you’re picking up, ask
to shadow or pair with them. You can also explore the option of inviting
someone from that team to run a couple of sessions for your group or be
available to answer questions. In one case, we even brought a developer
into our team temporarily to teach us how to use a specific tool, something
none of us had experience with, and it really helped.

BRINGING IT ALL TOGETHER: NAVIGATING TECHNICAL LEADERSHIP | 309

When it comes to soft skills, like communication, collaboration, giving and
receiving feedback, or even basic Slack etiquette, these are often assumed rather
than explicitly taught.

But, just like with tech skills, you can run targeted sessions focused on
improving them. I’ve seen teams benefit from short workshops or informal
discussions around things like how to write helpful code reviews, how to have
difficult conversations, or how to ask for help effectively. These can be facilitated
internally or by bringing in external coaches.

They’re a great way to introduce useful concepts and trigger reflection, but
real growth doesn’t happen in a single session. Soft skills take time, repetition,
and consistent practice to build.

That’s where process comes in. Processes shape behavior. If your team’s
routines don’t require interaction, interaction won’t happen. I’ve worked with
teams where developers barely spoke to each other—no standups, no retros, no
shared planning—so no wonder collaboration fell short.

To build soft skills, bake collaboration into your team’s day-to-day operations:

• Hold daily standups, weekly planning, and regular retros to create•
moments for alignment and feedback.

• Encourage shared problem solving through pair programming, white-•
boarding sessions, and tech huddles.

• Rotate service ownership to break down silos and build shared•
responsibility.

• Run regular team rituals that include space for feedback, self-reflection,•
and improving how the team works together, not just what they build.

• Organize hackathons or “Lunch and Learn” sessions.•

You’ll find more techniques in the section “Enabling Collaboration Inside
the Team” on page 209.

These shared routines help normalize healthy communication habits and
give everyone practice in the soft skills they need to grow.

Upskilling a team is about choosing the right tools for your context and
making learning part of how your team works every day. Whether it’s technical
skills or soft skills, the most impactful growth happens when learning is integra-
ted into your team’s routines and shaped by what your team actually needs. Be
intentional: pick what fits, adapt as you go, and create an environment where
people can build new skills through practice, reflection, and shared experience.

310 | LEVELING UP AS A TECH LEAD

TOOLS FOR UPSKILLING INDIVIDUALS

Combine your team-wide efforts with individual growth plans.
Use your one-on-ones to explore each person’s aspirations and knowledge

gaps, help them build a growth plan (you can help them apply the steps from
the section “Developing a Personal Growth Plan” on page 38), track how they’re
progressing, and help them connect their growth with upcoming work.

Feedback is one of the most powerful tools we have for growth. It shows us
what we’re doing well, where we need to improve, and how others experience our
work.

Here is how you can use it to help individuals develop their technical skills:

Getting feedback on pull requests
One common example is through PR reviews. Developers can track their
improvement by the kind of feedback they receive: Are the comments
mostly about syntax and formatting, or are they shifting toward deeper
questions about design and performance? Are PRs getting approved faster
over time, with fewer revisions? These signals can reveal a lot about a
developer’s growth and confidence in their work.

Getting feedback on technical solutions
Another great opportunity for technical feedback is during solution design.

If someone wants to improve their architectural thinking, they can
take the lead on proposing a solution for a new feature. Many teams
use shared documents for this; sometimes called TDs (technical designs),
RFCs (requests for comments), or architecture proposals. The idea is to
write down the plan and share it with relevant stakeholders: team mem-
bers, other teams, architects, senior engineers.

The feedback that follows is incredibly valuable. It can reveal edge
cases they hadn’t considered, surface technical risks, or even validate their
thinking. Either way, it’s a learning moment, and a clear signal of how
their current skills are perceived by others.

Once you’ve supported your team in growing their technical expertise, it’s
time to focus on the other side of the equation: soft skills. These are the skills
that turn strong developers into great collaborators, mentors, and future leaders.

I’ve been helping techies develop their soft skills for years. I’m an engineer
at heart, so I approach soft-skill development just like any technical growth prob-
lem: define what to improve, identify the steps to improve it, test something new,

BRINGING IT ALL TOGETHER: NAVIGATING TECHNICAL LEADERSHIP | 311

reflect on what worked and what didn’t, and adapt your process and behavior to
include the things that worked.

I’ve used this process time and again, both as a coach and as a tech lead,
to help engineers grow. And it’s a process you can apply too, for your own
development or to support your team as they build their soft skills.

In the upcoming sections, I break it down, step by step.

Start

You don’t need a perfect starting point, just a real one. Look around your team
or your current collaboration challenges and pick one thing that’s not working as
well as you’d like. Maybe you’re struggling to give constructive feedback. Maybe
you’re often misunderstood in meetings.

Pick one problem. Then define a small win. For example, if you want to
become better at giving feedback, make a commitment like “This week, I’ll give
one piece of constructive feedback to a team member.” If your goal is to improve
meeting facilitation, try “In the next planning session, I’ll have a clear structure
and keep people on track.”

Define what success looks like by defining your “why.”
You might think the why is obvious, but after coaching hundreds of tech

professionals, I can tell you it’s not always that straightforward. We all have
different motivations. And your motivation, the why behind your goal, will shape
how you define success.

Let’s take the example “I want to become better at giving feedback.”
Now ask yourself, why? Is it because your manager told you to? Is it because

people don’t seem to take your feedback seriously? Is it because you’ve noticed
things you want to bring up but don’t know how? Is it because giving feedback is
part of your job expectations?

Each of these whys points to a different version of success:

• If your manager told you, success might mean getting a “meets expecta-•
tions” rating on feedback in your next review.

• If people don’t take your feedback seriously, success could be having•
someone act on your input or ask follow-up questions.

312 | LEVELING UP AS A TECH LEAD

• If you want to speak up more, success might be delivering one clear,•
constructive piece of feedback to a team member next week.

• If it’s part of your role, success could be getting input from your team•
about how they perceive your feedback skills.

As you can see, your why determines what progress looks like, and that
clarity will guide your next step: taking action.

Apply one change

This is the uncomfortable part. Get out of your comfort zone and try something
new to address the problem.

If you usually avoid speaking in meetings, maybe your one change is prepar-
ing a point ahead of time and saying it early.

If you struggle with giving feedback, you might try using a framework like
SBI and drafting your message in advance.

Not sure what change to make? Here is how you can get some ideas:

Explore resources on the topic of interest
Read a book, take a course, or search online for how others have tackled
similar challenges. Even a short article or video can give you a helpful idea.

Use what’s available
If your company offers a development budget, make use of it, for conferen-
ces, external training, or coaching.

Talk to someone
Reach out to a trusted mentor or coach. They can help you think through
the challenge, spot patterns you may not see, and suggest approaches that
fit your style.

Observe others
Look around. Who’s great at the skill you’re working on? What do they do
differently? Try borrowing one of their habits or approaches and see how it
fits your style.

Progress often comes from small, repeated steps.

BRINGING IT ALL TOGETHER: NAVIGATING TECHNICAL LEADERSHIP | 313

Reflect

What worked? What didn’t?
This is a key step that often gets skipped in the process of growth. People

get caught up in the doing, rushing from one challenge to the next, often
repeating the same patterns without realizing it. Reflection makes the growth
process intentional. It’s how you avoid running in circles, repeating mistakes,
and missing out on key insights. It helps you spot what worked and double down
on it, amplifying growth far more effectively than focusing only on fixing what
went wrong.

To actually understand what worked and what didn’t, self-reflection alone
isn’t enough. You need external input. Soft skills are about human interaction, so
the most accurate way to assess them is through feedback: how others experience
the change. Any behavior shift will affect the people around you, and their
perspective is the most valuable data you can get.

Ask for feedback consistently, especially after moments where soft skills are
in play. For example, if you’re working on speaking up more in meetings and
you share an idea, follow up with a colleague: “How clear was I in that point I
made earlier?” The best time to ask is right after the moment happens, when the
experience is still fresh and the insight is sharp.

Adapt

Integrate what worked into your habits. Let go of what didn’t.
Of course, this is easier said than done. Really incorporating a new behavior

takes effort. When we’re under stress, we tend to fall back on familiar habits,
even if they’re not helpful. That’s why it requires intentional repetition, prepara-
tion ahead of time, and a steady commitment to making the new behavior stick.

Tracking your progress is what keeps the motivation alive. Noticing small
wins along the way helps you see that you’re moving forward. Mark every step,
big or small. Even discovering what doesn’t work gives you direction. That
insight alone is valuable because it tells you what to avoid and where to focus
next. Reflection is about identifying what’s working so you can do more of it.
In fact, doubling down on what works can have a bigger impact on your growth
than focusing only on fixing what’s broken. And, as a plus, you’re also creating
a list of accomplishments and learnings, helpful both when you’re feeling stuck
and for future reference, like proving growth during performance reviews.

It’s easy to get caught in the loop of constant improvement without recogniz-
ing progress. If you focus only on what you haven’t mastered yet, you risk losing

314 | LEVELING UP AS A TECH LEAD

motivation. Instead, regularly recognize what is working. That’s what helps you
stay energized and engaged, instead of burning out or giving up midway through
the journey.

The process of growth is continuous and cyclical. Once the steps—start,
apply, reflect, adapt—have been completed, it’s time to go through them again.
The same situation can be revisited with a new strategy, or a completely different
challenge can be tackled.

The great thing about improving a soft skill is that the benefits ripple across
everything else you do. You can’t isolate one behavior; working on something
like listening, for example, inevitably improves how you give feedback, how you
build trust, and how you support your team members. As people grow in one
area, their overall ability to collaborate, lead, and communicate improves too.

And the impact isn’t just individual. When more people on your team level
up their soft skills, the entire team dynamic shifts. Communication becomes
clearer, misunderstandings happen less often, and conflict becomes easier to
manage, or avoided entirely. It’s not just about being “nicer” or more “professio-
nal.” Strong soft skills lead to stronger collaboration and better results.

Some strategies are universally useful, whether someone is deepening their
technical expertise or working on communication, leadership, or collaboration.
These are great tools to have in your tech lead toolbox:

Encourage people to make use of their development budget, if one is available
You’d be surprised how often this budget goes unused. Many engineers
avoid it either because the process seems too complicated or they’re unsure
how best to spend it.

Help demystify it: walk them through the steps, show them how to get
approvals, and advocate for carving time out of work to use it.

Suggest learning options based on their current goals. Conferences,
online courses, books, or hands-on learning platforms can all be relevant.
Don’t limit this to technical domains; make space for things like public
speaking, influencing, or writing as well.

Encourage them to work with a coach that can help them reflect, han-
dle feedback better, improve conflict resolution, and work through complex
interpersonal situations. It’s especially valuable when someone is stepping
into a bigger role or facing a major challenge.

Make sure these learning activities are considered part of work time.
If they’re not, advocate for it: negotiate both the budget and the time off
needed to attend events or complete learning programs.

BRINGING IT ALL TOGETHER: NAVIGATING TECHNICAL LEADERSHIP | 315

Make learning a shared activity
Amplify growth by turning individual learning into team momentum.
Book clubs, Slack channels for sharing course notes, or even show-and-tell
sessions during retros or team meetings can help normalize learning in
your team culture.

Delegate for development
Delegation is a great growth tool. Chapter 6 explores how to use it effec-
tively. For example, if you always handle a specific design review or infra
setup, consider pairing with a team member and handing it off, guiding
them while they learn.

Encourage peer or external mentorship
If someone wants to grow in a specific technical or leadership area, help
them find a mentor. This could be someone within your company or
through a professional mentoring platform.

Helping someone grow means offering direction, tools, and support while
creating space for learning to take root. Your job isn’t to do the learning for
them but to make it easier for them to move forward with clarity and confidence.
Encourage ownership and initiative while also removing friction where you can.
With the right structure, your team can take charge of their development and
keep making progress.

LEARNING TRAPS TO HELP YOUR TEAM AVOID

Growth, whether technical or interpersonal, is rarely linear. Even with the right
intentions, people often run into common traps that slow or derail progress. As a
tech lead, your role is to help people recognize these pitfalls and navigate around
them:

Trap: “There’s no time to learn”
We’re all busy all the time; the real question is this: are we busy with the
right things? Learning won’t happen unless you make space for it. That
means reprioritizing. Some things might need to drop. But if growth is
truly important—and it is—there’s always a way.

Trap: Consuming without applying
Sometimes, we find ourselves doing things but not progressing. You can
read all the books and take all the courses in the world, but if you don’t

316 | LEVELING UP AS A TECH LEAD

apply what you’ve learned, it doesn’t stick. I’ve seen this loop many times.
Encourage your team to turn learning into practice.

For example, if someone is learning about systems design, give them
ownership of a relevant architectural discussion or RFC.

Or, if someone wants to improve their facilitation or communication
skills, they could lead a team initiative, facilitate a sprint retro, or represent
the team in a cross-functional meeting.

Trap: Learning in isolation from business needs
Learning topics can be disconnected from the team’s or business’s priori-
ties. Growth should be intentional and useful. Help your team connect
what they’re learning with what the business actually needs. Encourage
your team to ask, “How will this skill contribute to the team/product?”
Help connect learning efforts to real outcomes.

Trap: Goals that are too big or too many
People often try to fix everything at once. The problem with this trap is that
when goals are too big or too numerous, they become overwhelming and
demotivating. People either burn out trying to tackle everything at once or
fail to start altogether because it feels unmanageable.

Encourage them to start small and focus on tangible outcomes. For
example, instead of aiming for “All my team members give me a lot of
useful constructive feedback in the next month,” help them redefine it to
“One team member gives me one piece of constructive feedback in the next
two weeks.”

Or if the challenge is around decision making, help them go from
“Everyone agrees and is happy with the solution” to “We agree on the
problem we’re trying to solve” or “We move forward even if not everyone
agrees, but we have a shared commitment to the decision.”

Small wins build momentum and confidence.

Trap: Skipping reflection altogether or relying just on gut feeling to know if they’re
improving

This is one of the most common traps, and it’s easy to fall into, especially
when you’re busy or focused on outcomes. People keep trying new things
but without taking a moment to step back and ask, Did that actually work?
What impact did it have? Without reflection, there’s no clarity, no momen-
tum, and no intentional learning.

BRINGING IT ALL TOGETHER: NAVIGATING TECHNICAL LEADERSHIP | 317

Instead, help your team build a habit of regular reflection and feed-
back.

For example, since soft skills are all about how we affect others, the
best way to understand progress is to ask for input. Encourage your team
to request feedback after key moments like meetings, presentations, and
decisions, especially when they’ve tried something new.

Trap: No accountability
Growth takes time and consistency. Without a system of accountability,
progress often fades. That’s where you come in. Be their accountability
partner, or help them find one, whether it’s a mentor, a peer, or even a
coach. Regular check-ins make learning stick.

Growth takes intention. Help your team stay focused, avoid common pitfalls,
and keep learning as part of the everyday workflow. Small nudges, regular check-
ins, and space to reflect can make all the difference.

Managing Stakeholders

As a tech lead, your impact doesn’t stop at the edge of your team. You also have
to manage the relationships that surround your team, the people who influence
what gets built, how work gets prioritized, and whether your team’s work is truly
understood and supported. That’s where stakeholder management comes in.

In this section, I’ll explore why managing stakeholders is a core part of your
role.

You’ll learn how to identify the right stakeholders, understand what they care
about, and build relationships that protect your team and amplify your work.
From mapping influence to navigating difficult conversations, I’ll walk through
practical techniques that help you manage these relationships with clarity, empa-
thy, and intent.

WHY YOU NEED TO MANAGE YOUR STAKEHOLDERS

As a tech lead, you are the bridge between your team and the rest of the business
(Figure 10-1).

Stakeholders rely on you. You’re their connection to what’s happening day-
to-day. When things are going well, it’s on you to make that visible. When there
are risks, blockers, or changes in delivery, you’re expected to surface those early

318 | LEVELING UP AS A TECH LEAD

and clearly explain the impact. This is where your role goes beyond planning and
execution; you’re also shaping the narrative between what your team is doing and
what the business expects.

Figure 10-1. Tech lead as a bridge

This part of the role doesn’t happen automatically. You can’t wait for
stakeholders to come to you. Managing stakeholders well takes intention and
consistent effort. It starts with building strong relationships, through regular
one-on-ones, ongoing updates, and shared systems that make the team’s work
visible. These relationships should be about building trust, aligning context, and
helping stakeholders feel confident in the work being done.

Start with your product manager. While both tech leads and product manag-
ers engage with stakeholders, their focus differs. PMs typically lead on defining
the “what,” the product vision, requirements, and prioritization, while tech leads
focus on the “how,” translating those requirements into feasible plans and iden-
tifying technical trade-offs. But this division works only when the partnership
is strong. Together, you form the team’s core leadership, and how well you
collaborate shapes everything from delivery speed to team morale.

BRINGING IT ALL TOGETHER: NAVIGATING TECHNICAL LEADERSHIP | 319

So set up recurring one-on-ones. Align early on how you’ll communicate,
make trade-offs, and resolve disagreements. When the relationship is healthy,
your collaboration brings clarity, consistency, and stability. When it’s weak, the
team feels the tension, in the form of mixed messages, shifting priorities, or
unresolved conflict. Like any partnership, this one takes care and intention.
Invest in it.

And the same goes for your other stakeholders. When these relationships
aren’t prioritized, misalignment becomes almost inevitable. And when align-
ment breaks down, execution suffers, no matter how technically solid the
work is.

Almost every month, I hear from a tech lead who’s frustrated that their
stakeholders are disappointed. Delivery came late, the solution missed the mark,
or it wasn’t what was expected. And the pattern is often the same: the tech
lead focused on execution, assumed alignment, and only brought stakeholders
in late, when it was too late to course-correct. These conversations were seen
as a distraction from “actual work,” when in reality, those conversations are
part of the actual work. If you skip early alignment, you might build something
technically perfect and still fail.

I’ll dive into techniques for avoiding this scenario in the upcoming section
“Stakeholder Management Techniques” on page 323. But it starts with a mindset
shift: managing stakeholder relationships is not separate from your work. It is
your work.

At the same time, your team needs you to bring information back to them.
Stakeholders might change timelines, priorities, or expectations. You need to
translate those shifts into clear, actionable guidance. Sometimes that means
shielding your team from noise or unrealistic demands. Other times, it means
helping them see the bigger picture.

Let’s say you’ve just learned that a company-wide strategy shift is coming.
Your team is mid-way through a six-month plan, but priorities are changing
because a key third-party service is increasing prices. The business no longer
wants to pay for it and is requesting a migration to a cheaper provider within two
months. You now need to go back to the team and develop a plan.

They won’t like the news, and how you deliver it will determine how they
respond. If you can explain why the change is happening, share the reason
behind the tight timeline, propose an alternative provider, and secure stakeholder
buy-in to adjust the scope up front, your team is more likely to get on board.

320 | LEVELING UP AS A TECH LEAD

Anticipating their questions—Why this change? Why now? Will this mean extra
hours?—allows you to lead with clarity and empathy.

You don’t need to have all the answers before talking to your team. You’ll
make the plan together. But the more context you gather ahead of time, the
smoother that conversation will be. Go in with the attitude of “I know this isn’t
ideal, and I need your help to figure it out,” rather than “This is what we’re
doing.”

Finding that balance—being the translator, the advocate, and the filter—is
what makes this part of the role so critical.

It’s also important to continuously keep in mind that relationships are
always two-way. Just as stakeholders are essential to your team’s success, your
team is essential to theirs, and they know it. This means you shouldn’t view
stakeholders only as people in charge or gatekeepers but as allies who share a
common goal. Ask for their help when you need it. If there’s a blocker, ask them
to use their influence to help clear the way. If a decision needs broader buy-in,
ask them to support you in championing your proposal. They’re not just there
to be managed; they’re there to help, too. It’s in both your interests to succeed.
Frame the relationship as a partnership rather than a hierarchy.

I know it can be frustrating, but success isn’t just about what you deliver;
it’s about what’s recognized. You could build the most technically impressive
product in the company, but if no one knows about it, it doesn’t move the needle.
Like it or not, marketing matters. It’s your job to make your team’s impact visible
by tying outcomes to business value and communicating in ways stakeholders
will hear and understand.

Managing stakeholders is one of the core ways you create impact as a tech
lead. Do it well, and your team will have the clarity, trust, and support it needs to
thrive.

IDENTIFYING YOUR STAKEHOLDERS

As the tech lead, you are the voice and shield of your team. You’re the one with
the full context of what the team is building, how they’re working, and what
challenges they face. It’s your job to represent the team’s needs and interests
with clarity and accuracy, to shield the team from distractions or misaligned
external pressures.

BRINGING IT ALL TOGETHER: NAVIGATING TECHNICAL LEADERSHIP | 321

To effectively represent your team, you need a clear view of the larger
organizational context. You need to understand how the company is structured,
who holds decision-making power, who controls resources, and who might be
unexpectedly relevant.

A great way to begin this process is by reviewing any available documen-
tation on your company’s organizational structure. Many companies maintain
visible org charts outlining roles and hierarchies.

If this structure doesn’t exist, create your own. Start by listing everyone
who might influence your team’s work. Stakeholders exist at multiple levels, not
just senior leader or formal roles. Consider collaborators from across the organi-
zation, such as product managers, designers, QA, infrastructure, and security
teams, as well as adjacent product teams with shared dependencies.

Also be aware of informal influence. Influence isn’t always tied to job titles.
Some people shape direction through relationships, expertise, or institutional
knowledge. Think of long-tenured engineers, well-connected peers, or customer-
facing staff who engage regularly with users. For example, there is often a
developer who’s been with the company for a long time—maybe even from the
beginning—or someone who built a core part of the product. Even without a
formal leadership title, people look to these people for guidance and opinions.
That’s definitely someone to add to your stakeholder list.

Pay attention to who others defer to in meetings, who helps resolve cross-
team issues, or who consistently brings hidden context to light. These individuals
may not appear on an org chart as decision makers, but their impact is real
and often significant. Including them in your stakeholder strategy can make the
difference between reactive firefighting and proactive alignment.

As you build this list, consider the following questions:

• Who can significantly affect my team’s ability to succeed?•

• Who could amplify our success if I had a stronger relationship with them?•

• Who is currently making decisions that affect my team, even indirectly?•

• Who holds information, context, or resources that could help us succeed?•

• Who might block our work, intentionally or not, if we don’t engage them•
early?

• Who has a vested interest in the outcomes we are working toward?•

322 | LEVELING UP AS A TECH LEAD

These questions will help you identify which relationships to invest in and
guide your strategy for building and managing stakeholder connections.

If you’re uncertain about who truly holds influence or how decisions are
made, talk to people. Short, informal one-on-one conversations can be incredibly
revealing. Ask questions like “Who else should I be talking to?” or “Who influ-
ences decisions around this area?”

As you uncover more about your stakeholders, consider documenting these
insights. Keep a lightweight, private record that captures who your key players
are, what they care about, how they prefer to communicate, and any notable
context or risks. Such a resource becomes especially valuable when onboarding
new leads, sharing knowledge with peers, or navigating shifting team dynamics.

One common tool for visualizing your stakeholders is the Mendelow Power-
Interest Matrix, which helps you map stakeholders based on how much power
they hold and how much interest they have in your team’s work. It’s a simple way
to guide your engagement strategy—who to involve closely, who to keep satisfied,
and who just needs occasional updates.

Another useful tool, and the one I’ll explore in the next section, is the stake-
holders map. It uses a straightforward two-axis framework: one axis for influence
(meaning how much they can impact your team) and one for commitment or
alignment (whether they are a supporter or a detractor).

Intent also exists on a spectrum. Supporters believe in your goals and work
with you to achieve them. They are your partners in success. Detractors may
not yet believe in your work or might even oppose it. Often, this opposition is
not personal; it may come from broader organizational dynamics or differing
priorities.

STAKEHOLDER MANAGEMENT TECHNIQUES

Now that you have your stakeholders mapped out, it’s time to put that map to
use. The goal here is to tailor your engagement strategy based on where each
stakeholder sits in terms of their influence and commitment.

The map (Figure 10-2) gives you a clear picture of where to focus your
attention.

BRINGING IT ALL TOGETHER: NAVIGATING TECHNICAL LEADERSHIP | 323

Figure 10-2. Stakeholders map

Stakeholders generally fall into four categories:

• High-influence detractors are critical to manage closely. These individuals•
can block or derail progress if not engaged carefully. Understanding their
concerns and working to build alignment is essential.

• High-influence supporters are your champions. Keep them happy,•
informed, aligned, and engaged. Their advocacy is powerful.

• Low-influence detractors should be monitored. They don’t require heavy•
investment unless their influence grows.

• Low-influence supporters should be kept in the loop. They may grow in•
influence or help provide useful context and feedback.

Empathy is key

Empathy is key, especially when working with detractors. What’s driving their
perspective? Are they under pressure themselves? What do they want to see
happen?

For example, while working in a consultancy, we were preparing to roll off
a client project and needed to hand over our work to their internal team. We pro-
posed pairing on tasks, a method we believed would transfer knowledge quickly
while still delivering value. But an engineering leader on the client side was

324 | LEVELING UP AS A TECH LEAD

strongly against it. Despite offering every rationale—speed, quality, continuity—
he wouldn’t budge.

So I teamed up with the account manager and scheduled a call with him. We
didn’t try to convince him again. Instead, we listened. He shared concerns based
on past experiences: handovers had taken too long, the team lacked experience,
and remote collaboration tools weren’t ideal. He was also nervous about how the
change would land with his team.

Only after fully hearing him out did we respond. At this point he seemed
way more open to conversation. We explained how we planned to address those
concerns: checking in with his engineers to ensure they were also on board,
building a lightweight plan with clear support, and committing to a short trial
period to see how it went. He agreed to those actions.

The team got on board, and the pairing experiment worked surprisingly well.
We kept him in the loop at every stage, shared updates, and encouraged feedback
from the engineers on the ground. By the end of two weeks, he was all in for
pairing as a handover approach.

That experience taught me that when resistance shows up, your first job is
to understand. Behind most pushback is a story: a past experience, a pressure,
a concern that hasn’t been voiced yet. Once we acknowledged his concerns,
reflected them back, and offered a low-risk way to move forward, trust started to
build.

Sometimes, people just need to feel heard before they can move forward.
Other times, they need help navigating internal optics, such as how a decision
might reflect on them within their own team. Being mindful of that, and helping
them look good in front of their peers, can make all the difference.

And sometimes, the most powerful thing you can do is remind them that
you’re on the same side. Reassure them that you care about finding a solution
that works for everyone. Simple phrases like “I want to make this work for all of
us” or “I need your help to figure this out” can lower defensiveness and invite
collaboration.

In the end, empathy turned that blocker into a collaborator. That’s the power
of showing up curious instead of defensive. And it’s one of the most valuable
tools you have in stakeholder management.

Adapt your communication style

A big part of stakeholder alignment comes down to communication. One help-
ful framework for adapting your style to theirs is the DISC model, originally

BRINGING IT ALL TOGETHER: NAVIGATING TECHNICAL LEADERSHIP | 325

developed by psychologist William Moulton Marston, which classifies behavior
into four primary styles (Figure 10-3):

Dominance (D)
Results-focused, assertive, challenge-driven

Influence (I)
People-oriented, enthusiastic, social

Steadiness (S)
Calm, consistent, team-oriented

Conscientiousness (C)
Precise, analytical, data-driven

Figure 10-3. DISC model

Understanding where your stakeholder falls on this spectrum helps you
communicate more effectively:

• For D styles, be direct and focus on solutions. Let them make decisions.•

• For I styles, engage with enthusiasm, share stories, and allow them to ask•
questions.

326 | LEVELING UP AS A TECH LEAD

• For S styles, be personal and friendly, give them time to process, and avoid•
confrontation.

• For C styles, stick to facts, reduce emotional language, and allow time for•
them to process the information before giving a response.

It’s equally important to understand your own default communication ten-
dencies and how they might clash with others. DISC styles that sit opposite each
other on the spectrum tend to experience the most friction.

For example, I naturally fall into the C (conscientiousness) style; I like
structure, precision, and thoughtful communication. But I’ve struggled at times
when working with I (influence) stakeholders. Their fast pace, high energy, and
preference for informal, emotional connection can feel overwhelming or vague to
me. Meanwhile, they may find my style too rigid or cautious.

Recognizing these gaps has helped me adjust. With I styles, I’ve learned to
loosen up, speak more casually, and share more personal context. That small
shift in tone often opens the door to stronger connection and trust.

Adjusting your style means being intentional about how you show up so you
can be heard instead of ignored.

Build trust over time

Adapting your style is one way to build trust, but nothing beats the kind that
comes from time and consistency. That’s why my favorite strategy for stake-
holder management is building trust over time. It’s not always possible; some
environments move too fast or change too often for deep relationships to form.
It requires continuity and time spent working closely with the same stakeholders.
But if you do get that opportunity, take it. The payoff is worth every bit of effort.

I was lucky to be in environments where this kind of consistency was
possible—same team, same stakeholders over a long stretch of time. That sta-
bility made it easier to invest in strong relationships and see the benefits. I
encountered relatively little resistance because trust was already there. When my
team had to make a tough technical call that delayed delivery, the stakeholder’s
response was simply “If you say it’s needed, it’s needed. I trust you.” That kind of
response is earned through how you consistently show up.

If you’re in a stable context, I highly recommend applying the principles
from the section “How to Build Strong Relationships” on page 62. Focus on
consistent and transparent communication: hold recurring one-on-ones with
stakeholders, go beyond just sharing updates, communicate risks early, seek and

BRINGING IT ALL TOGETHER: NAVIGATING TECHNICAL LEADERSHIP | 327

incorporate feedback, and most importantly, follow through on your promises.
Delivering consistently builds credibility.

Strong collaboration comes from trust, consistency, and shared ownership.
So when you do get the chance to invest in long-term relationships, make it

count. They’ll pay off far beyond any single project.
A powerful but often overlooked tip: involve your team in the process of

building stakeholder relationships. Teach your team members why these rela-
tionships matter and how to build them. For example, if you have a feature
lead running an initiative that depends on close collaboration with another team,
encourage them to set up recurring one-on-ones with the lead on the other team,
create shared communication rituals, and celebrate wins together. When more
people on your team build strong relationships across the organization, your
collective impact grows, and so does yours, by extension.

Bringing it all together: A lightweight framework

To make these strategies easier to remember and apply, I use a lightweight
framework I call the 3Rs of stakeholder alignment:

Reframe
Translate technical needs into business value.

Relate
Connect the work to stakeholder goals and priorities.

Reinforce
Share progress and outcomes consistently to build confidence.

This lightweight mental model can serve as a quick checkpoint anytime you
prepare to engage stakeholders about a decision.

Stakeholder alignment is about building trust, finding common ground, and
creating momentum together. Like any leadership skill, it gets stronger with
practice, reflection, and consistency. The more you invest in these relationships,
the easier it becomes to navigate complexity.

Common Challenges in Navigating Technical Leadership

Even experienced tech leads can struggle with the realities of the role as it
requires navigating an environment full of competing priorities, shifting expecta-
tions, and limited time. This section explores some of the most common (and
often unspoken) challenges you’ll face in the day-to-day of technical leadership.

328 | LEVELING UP AS A TECH LEAD

I’ll look at how to secure stakeholder buy-in for technical initiatives, espe-
cially when the value isn’t immediately visible. I’ll also explore how to measure
your own success in a role that often lacks clear metrics. And finally, I’ll confront
the emotional and mental toll of trying to do it all, and what it really takes to lead
without burning out.

GETTING STAKEHOLDER BUY-IN ON TECHNICAL TOPICS

Securing time from stakeholders to focus on technical topics often proves chal-
lenging for tech leads. Whether it’s addressing tech debt, resolving deep system
issues like memory leaks, or improving internal tools for better development
workflows, advocating for technical work can often feel like an uphill battle.

The core problem is that many tech leads approach these conversations like
a confrontation. They brace for resistance and forget a crucial truth: stakeholders
and engineers are on the same side. They all want the same outcome: successful
delivery and sustainable progress.

Often, when stakeholders don’t give their buy-in, it’s not because they’re
against the work; it’s because they don’t fully understand the value, urgency, or
impact. The misalignment in priorities and language can make technical work
seem abstract, low priority, or disconnected from business goals. The key is
finding that common ground, and that’s where the 3Rs of stakeholder alignment
comes in (described in the section “Stakeholder Management Techniques” on
page 323).

Here’s the framework applied to some of the most common technical topics
tech leads need to advocate for:

Addressing an underlying system issue
One memorable example for me was a persistent memory leak in one of
our most critical services, built on .NET. Initially, the problem appeared
minor: the service would occasionally stop responding. Restarting the
servers fixed it temporarily, so that became our short-term workaround.

We were busy launching a new project, and this recurring issue kept
getting pushed aside. Eventually, a new team member joined and asked the
hard question “Why is this happening again and again?,” so we could no
longer ignore it.

We proposed a one-day spike to investigate, which quickly uncovered
a serious memory leak. Fixing it wasn’t going to be fast, and it wasn’t
something we could afford to ignore either. I needed product buy-in to
dedicate the time.

BRINGING IT ALL TOGETHER: NAVIGATING TECHNICAL LEADERSHIP | 329

I got that buy-in by applying the 3Rs of stakeholder alignment
framework:

Reframe
I explained what the memory leak meant, not just for the business:
increased infrastructure costs, service downtime, and poor user
experience.

Relate
I tied the issue to broader stakeholder concerns, including customer
impact and potential long-term delays.

Reinforce
I committed to providing regular updates via standups and sprint
reviews, which helped maintain transparency and confidence.

Once the issue was fixed, the job wasn’t over. We measured and shared
the impact: how much time was saved, how reliability improved, and how
morale lifted. Mentioning these results in retros and sprint reviews helped
stakeholders see the return on their investment.

Advocating for a major refactoring
A common situation many tech leads face is advocating for a major refac-
toring of a legacy system. From the outside, the system may appear stable,
but internally it’s brittle, difficult to maintain, and slows down the team’s
ability to ship new features with confidence.

To secure stakeholder buy-in for a large refactor, you can apply the 3Rs
of stakeholder alignment:

Reframe
Explain that while the system is still functional, it’s causing delivery
slowdowns and increasing the likelihood of bugs. Position the refac-
toring not as internal cleanup but as an investment to speed up
feature development and reduce long-term risk.

Relate
Connect the challenges your team is facing with recent stakeholder
pain, like missed deadlines, escalating QA time, or inability to capi-
talize on new business opportunities. Be explicit about timelines and
impact: propose a clear plan that outlines how the refactor affects the
current roadmap and how you’re mitigating disruption.

330 | LEVELING UP AS A TECH LEAD

A piece of advice here: steer clear of proposing a months-long
“let’s stop everything and rewrite the whole thing” plan. The cost
and business risk are too high, and your stakeholders will rightfully
push back on pausing product progress for months. Instead, look for
ways to break down the work, tackle it incrementally, and continue
delivering value throughout.

Reinforce
Commit to visibility. Share progress through sprint reviews or status
updates, and highlight the gains with before-and-after comparisons.

Dealing with tech debt
You can find the 3Rs of stakeholder alignment framework applied to advo-
cating for tech debt in the section “Managing Technical Debt” on page 249.

Getting stakeholder buy-in on technical topics doesn’t have to be a battle.
When you apply the 3 Rs—reframe, relate, and reinforce—you shift the conversa-
tion from resistance to collaboration.

Of course, buy-in doesn’t always mean getting everything you ask for. Some-
times it involves negotiation, compromise, or finding middle ground, perhaps
reducing the scope, tying the work to a business milestone, or deferring part of it.
These trade-offs are a normal and necessary part of the process. Just as important
is knowing when to push and when to let go.

For example, you might propose rebuilding a fragile internal tool, but your
stakeholders push back due to an upcoming product launch. Rather than insist-
ing on doing it all at once, you apply a negotiation mindset and look for mutual
gain. You agree to reduce the scope and focus on just the most unstable part of
the tool now, which helps avoid potential outages during the launch, and defer
the rest to a quieter release window.

Even if you do everything right, sometimes it just doesn’t go your way. You
might communicate clearly, align goals, and build trust, and still hear “no.” For
example, you might propose introducing automated performance testing to catch
regressions early. But stakeholders decline because they don’t see an immediate
need, especially with a major product launch approaching. Rather than walking
away frustrated, you follow up to understand the reasoning. You learn their
concern is about adding complexity during a high-stakes window.

Instead of forcing the issue, you agree to revisit the proposal after the
launch. In the meantime, you begin collecting examples where performance
regressions slipped through unnoticed, helping to build a stronger case for the

BRINGING IT ALL TOGETHER: NAVIGATING TECHNICAL LEADERSHIP | 331

future. This approach keeps the relationship intact, demonstrates patience and
strategic thinking, and lays the groundwork for future buy-in.

With these strategies in place, you can advocate effectively for your team’s
needs while keeping stakeholders engaged and supportive.

As a next step, reflect on this: what’s one technical priority your team needs
stakeholder support for right now? How could you reframe it in terms of busi-
ness value? Who do you need to start building a relationship with today to make
that conversation easier tomorrow?

MEASURING SUCCESS IN TECHNICAL LEADERSHIP

Success in technical leadership isn’t as clear-cut as shipping features or fixing
bugs. It’s about influence, alignment, and long-term impact: things that don’t
show up in commit histories or sprint velocity charts. And that makes it incredi-
bly hard to measure.

As a tech lead, your role sits in a blurry middle ground: not quite man-
agement, not purely an individual contributor. You guide architecture, support
delivery, grow team members, and bridge communication between technical and
nontechnical teams. But there’s often no formal rubric that tells you how well
you’re doing.

That’s what makes this so tricky: you’re expected to lead but rarely told how
success will be judged. And when there’s no clear feedback loop, many tech
leads start to second-guess themselves. They wonder if they’re doing enough. Or
worse, if their contributions even count.

The ambiguity leads to a lot of quiet frustration. Performance evaluations
may still rely on outdated metrics like lines of code, Jira tickets closed, or how
“busy” you appear. These don’t reflect the real, valuable work of unblocking
others, maintaining technical quality under pressure, or shaping a healthy engi-
neering culture.

Meanwhile, your most impactful contributions, like preventing system fail-
ures or scaling team processes, might go completely unnoticed unless you sur-
face them intentionally.

The simplest way to assess your progress as a tech lead is by measuring
yourself against the goals you’ve set. These goals act as your compass; they help
define what success looks like in the short term and give you something concrete
to aim for.

Setting these goals should be part of your broader growth plan. You can read
all about how to develop one in the section “Developing a Personal Growth Plan”
on page 38.

332 | LEVELING UP AS A TECH LEAD

Set one or two focused goals each quarter based on what your team or
organization needs most. For example:

• Improve team visibility by launching a monthly showcase for stakeholders.•

• Strengthen cross-team communication by setting up a recurring sync with•
adjacent product teams.

• Expand our impact by taking ownership of the internal authentication•
service and driving its roadmap.

These goals should connect back to your team. After all, your success as a
tech lead is inseparable from how well your team is doing. Set goals that reflect
their growth, unblock their challenges, and support their performance. The clear-
est signal that you’re on the right path? A thriving, confident, high-performing
team. These goals may feel outside your control at first, but that’s part of step-
ping into leadership. The good news is: you have more influence than you think.

Revisit these goals regularly. Ask yourself: Have I made visible progress?
Have I unblocked or accelerated anything as a result? What feedback have I
received that supports or challenges this progress?

Anchoring your growth to these clearly defined goals not only helps you
reflect and course-correct along the way; it also gives you a practical, proactive
way to demonstrate your value as a tech lead: with measurable progress rather
than abstract qualities.

Another useful way to assess your impact as a leader is to pay attention to
your gut feeling. Are you consistently hearing positive feedback, or are there
recurring concerns about certain aspects of your leadership? Do people come
to you for guidance and decision making? If not, what might be preventing
that? These are powerful indicators of how you’re perceived and whether your
leadership is being felt.

Your gut instinct can offer valuable signals, but it’s just one input. To vali-
date it, you need to seek out direct feedback. To get a more complete picture,
gather feedback from all directions, for both yourself and your team. This means
team members, stakeholders, partner teams, cross-functional collaborators, even
clients or users.

You can start small. Sometimes all it takes is a casual check-in: “Hey, I’ve
been thinking about how we’ve been working together lately. Is there anything I
could do to make collaboration easier?”

BRINGING IT ALL TOGETHER: NAVIGATING TECHNICAL LEADERSHIP | 333

Or you can take a more structured approach in the form of a longer conver-
sation. Use open-ended questions that encourage honest input and help surface
where your impact is most visible. Here are some examples:

• What kind of impact do you think I’ve had on the team as a tech lead?•

• How well do you think that impact aligns with what you expect from•
someone in this role?

• What are the areas where you feel I didn’t contribute as much as I could•
have?

• What would you suggest I focus on to improve?•

• What should I start doing differently?•

• How would you describe your experience working alongside me?•

• What should I be focusing on right now that I may be overlooking?•

Whenever possible, tie these questions back to the goals you’ve set. For
example, if your focus is on improving collaboration, you might ask: “How
effective do you think I’ve been in bringing people together to solve problems?”

The key step is to track this feedback. Make it a habit to write down what
you hear, including who said it, when, and in what context (e.g., during a critical
incident, a big release, or a high-stakes delivery). Keeping this kind of record
helps you identify patterns, document impact, and, most importantly, prove your
value as a tech lead. When it comes time for performance discussions, this
evidence will help you clearly articulate the influence you’ve had—not just what
you did but the outcomes your leadership helped create.

Another powerful metric to assess your effectiveness as a tech lead is overall
team performance. When the team is performing well, shipping high-quality
work, collaborating effectively, and growing in confidence, it’s a clear sign of
strong leadership. On the other hand, if the team is struggling, it’s often a
reflection of gaps in leadership, support, or clarity. That’s why it’s essential to
continuously assess not just your individual impact but your team’s performance
as a whole. There are structured ways to evaluate how well your team is function-
ing. You can explore those in the section “How to Evaluate If Your Team Is
High-Performing” on page 195.

Whether sprint demos or milestone reviews, your showcase rituals are sim-
ple, visible signals of team effectiveness. These sessions are more than routine
ceremonies; they provide a track record of your team’s results and outcomes.

334 | LEVELING UP AS A TECH LEAD

Are you consistently demonstrating progress? Is the work tied clearly to business
value? Regular, high-quality showcases reflect alignment, focus, and momentum,
all of which point back to strong technical leadership.

Another great question to ask yourself is this: how is your team doing when
you are not there? It’s actually a sign of great leadership if your team is properly
functioning even in your absence. A team that can operate effectively without
your constant presence is a strong indicator that you’ve empowered them well.

Understanding your own impact, and helping others understand it too,
allows you to focus your energy where it matters, advocate for the recognition
you deserve, and grow with confidence in your leadership journey.

BALANCING THE DEMANDS OF TECH LEADERSHIP TO AVOID BURNOUT

A common trap tech leads fall into is trying to manage it all at the same time.
We think we can do it all: write code, lead people, align stakeholders, and handle
operations. But without clear boundaries or balance, this can quickly lead to
burnout. You may find yourself working late to catch up on what didn’t get done
during the day or constantly switching contexts, never fully present in one mode
or the other.

I often hear tech leads say, “All my real work happens outside of working
hours because I’m always trapped in meetings.” But those meetings are real
work, and they are often harder than any technical task. They’re where alignment
happens, risks get surfaced, and relationships are built.

Still, it’s an antipattern for tech leads to spend all their time in meetings. Not
every meeting needs you. Protecting time for deep work, team connection, and
strategic thinking is essential. Delegate when you can. Push back on meetings
where your presence isn’t adding value. Block focus time, and treat it like you
would any other critical commitment.

Constantly trying to be everywhere is how that pressure builds, and it slowly
leads to exhaustion. Some people notice the signs early. I didn’t.

Just five weeks into my first tech lead role, I experienced facial paralysis. I
basically couldn’t move the right side of my face. I felt bad for my team and for
myself. And yet, I took only a couple of days off, even though recovery typically
takes months.

I came back to work taking strong medication and wearing sunglasses for
weeks so people wouldn’t see I couldn’t fully close my eye. I even joked about it.

At the time, I thought I was doing the right thing, pushing through, showing
strength. But in truth, I was afraid. Afraid of disappointing people, of being seen

BRINGING IT ALL TOGETHER: NAVIGATING TECHNICAL LEADERSHIP | 335

as weak, of not rising to the challenge. I also realized I saw myself as a bottleneck
for my team; I didn’t trust them to handle things alone.

I’ve thought a lot about the message that was sent. I told myself I was being
committed, but what I really modeled was self-neglect. I normalized working
through serious health issues, and I made it harder for others to feel safe priori-
tizing their own well-being. That’s not the kind of leader I want to be.

Despite ignoring the doctor’s advice, I was lucky to recover quickly. But that
doesn’t mean the impact wasn’t real. The stress lingered, and I lost trust in
my ability to set healthy boundaries. It took me months to start integrating the
lessons from that experience into how I lead.

This is one of the reasons I wrote this book: to help others recognize these
patterns earlier. No deadline, sprint, or meeting is more important than your
health. Your team needs a leader who’s well and who makes it safe for them to be
human too.

Since then, I’ve been more intentional about how I work and lead. Here are
some strategies that have helped me and that might help you too:

Keep yourself in check. Constantly.
How are you feeling? How are you managing it all? What do you need?

Ask people around you too. Sometimes we’re so trapped in our own
heads we miss the signs, but others notice. I remember when I wasn’t
feeling OK, I started getting more “How are you doing?” or “How’s every-
thing?” from people around me. It was like they could sense something.
One time, a team member said in a one-on-one, “I feel like you’re stressed.
What’s happening?” It caught me completely off guard; I thought I was
hiding it well. Trust those cues.

Ask for help. Early.
The tech lead role can feel lonely, but you are not alone. Admitting you
need support and accepting it is essential.

Here’s who I’ve leaned on: my manager, someone I could turn to for
advice, direction, or just to listen; other tech leads, through internal groups
or one-on-one chats that helped normalize challenges; a coach, someone
objective to help me think things through; a mentor inside the company I
met with regularly; and my team.

When I admitted I was overwhelmed and showed them my to-do list,
they volunteered to help. We found things they were interested in. That act
empowered them and was a relief for me.

336 | LEVELING UP AS A TECH LEAD

There is support around you. Sometimes, you just have to reach out.

Take some time off.
Many tech leads feel they can’t take a vacation, that their team can’t func-
tion without them. But if that’s true, your team is too dependent on you.
Great leadership means your team can perform even when you’re not
there.

Plan more living, not less working.
I saved my favorite strategy for last because it completely changed how I
think about balance.

For a long time, I thought the key to avoiding burnout was working
less. So I tried things like starting work later, shutting the laptop at 6 PM,
or adding more breaks to my day. But the problem wasn’t just the amount
of work; it was what I wasn’t doing outside of it.

When I stopped working, I found myself wondering: now what? I had
no hobbies, no post-work plans, no clear way to transition out of work
mode. That emptiness made it easier to just keep working, and harder to
disconnect.

Eventually, I realized I needed to plan life the same way I plan work.
So I started doing more life. I began booking activities after work that I
paid for in advance, giving myself skin in the game so I’d actually follow
through. I made plans with friends, creating social commitments I didn’t
want to cancel. I picked up small personal projects, like building Lego
sets or solving puzzles, that gave me the same sense of progress and
momentum I enjoy at work. And I got a dog, which naturally forced me to
take breaks and spend more time outside.

This is about making space for life to grow around it. If you want
to sustain your energy and protect your well-being, schedule living with
intention.

Prioritizing your self-care means prioritizing your team’s health too. They
look to you for cues. If you overwork, they overwork. If you’re stressed, they get
stressed.

If you’re not well, you can’t help anyone.

Key Takeaway

Technical leadership is rarely about having all the answers; really, it’s about
creating the conditions for your team to thrive. In this chapter, you’ve seen how

BRINGING IT ALL TOGETHER: NAVIGATING TECHNICAL LEADERSHIP | 337

that comes to life across the areas that matter most: developing talent, managing
stakeholders, and bridging the gap between tech and business.

Your job as a tech lead is part translator, part strategist, part coach. You
guide technical direction, support the people around you, and navigate relation-
ships that extend far beyond your team. Each decision you make—how you
spend your time, how you communicate, how you support growth—sends a
signal and shapes your team’s culture.

Sustainable, effective leadership doesn’t come from doing more. It comes
from doing the right things, with clarity and intention. Start where you are. Pay
attention to what’s working. Ask for help when you need it.

The most impactful tech leads aren’t perfect; they’re thoughtful, adaptable,
and always learning.

338 | LEVELING UP AS A TECH LEAD

Beyond Tech Lead:
Charting Your Career
Path

If you’ve been in the tech lead role for a while and you’re ready to grow into your
next stage, or even if you’re just curious about what’s possible, this chapter will
help you explore your options.

There’s no single direction you’re supposed to go from here.
Some people choose to stay in the tech lead role a bit longer, perhaps taking

on a new challenge: leading a different team, working in a new domain, scaling
up to a larger group, or trying it at another company.

Others transition fully into people management, dive deeper into technical
leadership, or explore entirely different ways of leading, through programs, strat-
egy, or consulting.

Before you make any big decisions, this chapter invites you to reflect on your
experience so far, get honest about what you’ve loved (and what you haven’t), and
evaluate your strengths and areas for growth. From there, I’ll explore the most
common career paths after tech lead and how to approach the transition in a
thoughtful, low-pressure way.

Your next step doesn’t need to be permanent. It doesn’t even need to be
perfect. It just needs to move you closer to the kind of work, and the kind of
impact, that feels right for you.

Let’s dive right in.

Reflecting on Your Experience as a Tech Lead

Before you can figure out where to go next, it’s worth pausing to take stock of
where you’ve been.

339

| 11

The tech lead role is rich with learning, about systems, about people, and,
often, about yourself. Maybe you stepped into it with curiosity. Maybe it was
handed to you without much preparation. However you got here, now’s your
chance to look back and ask, What has this role taught me? What have I enjoyed
most? What has felt draining?

This section is not about evaluation in the performance review sense but
about self-awareness. The kind that helps you understand what kind of work
brings out your best, what kind of impact you want to have, and what kind of
roles might be a better fit going forward.

You don’t need perfect answers, just honest ones.

UNDERSTAND WHAT YOU ENJOY (AND DON’T) ABOUT THE ROLE

Before you decide what’s next in your career, it’s important to pause and reflect:
what has this role actually felt like for you?

Stepping into technical leadership is a big shift. You probably entered the
role with some expectations, maybe even excitement, about the opportunity to
lead, guide, and create impact beyond just the code.

But expectations and reality often don’t align. This section is your chance
to make sense of that gap. What surprised you? What challenged you? What
inspired you?

To begin this reflection, it helps to break it down into a few key areas:

What you’ve enjoyed most
Start by thinking about what you’ve genuinely enjoyed. Which parts of the
role gave you energy? Maybe it was delegating a task to a team member
and watching them grow. Maybe it was working across functions to align
on a complex project. Maybe it was having more visibility into business
decisions and helping translate them into technical action.

Try to remember the full picture, not just the highlights. It’s easy to
forget the frustrating parts, like long meetings, messy handovers, endless
alignment. Sometimes it’s not the task we miss but the outcome. You
might think you miss coding, but what you’re really chasing is the dopa-
mine hit of completing a task and shipping something real to users. That
kind of quick feedback loop is much harder to come by in leadership work,
where progress is slower and impact unfolds over time.

Focus on the difference between the work you enjoy and the results
that motivate you. Most meaningful work comes with some grind; the key
is knowing which trade-offs you’re OK with.

340 | LEVELING UP AS A TECH LEAD

Ask yourself: “What outcomes feel most rewarding?,” “What parts of
the process am I willing to tolerate?,” and “What stays energizing, even
when it’s hard?” If you had a day full of just one kind of task, which
type would leave you feeling accomplished and motivated? Pay attention
to those moments; they’re pointing you toward the kind of work you may
want more of in the future.

What felt most draining
Just as important is identifying what drained you. What parts of the role
made you feel stuck, frustrated, or depleted?

For some tech leads, it’s endless context switching. For others, it’s
people challenges that never seem to resolve. Maybe you found stakeholder
alignment exhausting or struggled with the lack of deep technical focus.
The point is to notice patterns.

Ask yourself: was it draining because I lacked the skills, or because the
task itself didn’t suit me? That distinction matters because if it’s a skill gap,
you can grow. But if it’s a values mismatch or a persistent energy drain, it
might signal the kind of work you don’t want to prioritize going forward.

How the role has changed you
Being a tech lead changes how you think. It forces you to zoom out,
make trade-offs, and weigh people and delivery with equal weight. You
likely developed new muscles: influence without authority, coaching under
pressure, managing complexity across people and systems.

How has your view of leadership evolved? How do you show up differ-
ently now than when you first started? What would your past self find
surprising about how you operate today?

Signs of growth
It’s easy to overlook your own growth, especially in a fast-paced environ-
ment. Take a moment to recognize how far you’ve come.

What felt hard or intimidating at first that now feels manageable or
even easy? Maybe it was having tough conversations. Maybe it was leading
architecture reviews. Maybe it was just knowing how to spend your time
each day without a task list.

What feedback have you received, even informally, that points to
your growth? Sometimes a team member saying “Thanks, I felt really
supported” is more telling than a formal review.

BEYOND TECH LEAD: CHARTING YOUR CAREER PATH | 341

Try this: write down three specific examples of things that used to feel
difficult but no longer do. Include what changed, such as skills you built,
confidence you gained, or support systems you leaned on. These stories
are powerful evidence of growth, and they’ll be helpful when building your
development plan or preparing for performance reviews.

What you’re curious about next
Finally, let your curiosity guide you. What do you want more of? Less
of? Are there parts of this role that sparked interest in something else—
product, engineering management, staff engineering?

You don’t need all the answers right now. But you do need to start asking the
right questions and paying attention to the patterns.

Some people prefer consistent tracking over a single big reflection moment.
Daily journaling or regular check-ins can give you a clearer picture by capturing
what’s true in the moment, rather than relying on memory or standout experien-
ces. It’s a more accurate way to spot patterns, like what energizes you, what
drains you, and how those shifts show up day-to-day, but it does require more
consistent effort.

Whatever approach you choose, the goal is the same: to gather the raw mate-
rial for better career decisions and to honor the journey you’ve already taken.

IDENTIFY YOUR STRENGTHS AND AREAS FOR IMPROVEMENT AS A LEADER

Once you’ve taken time to reflect on what you enjoy and don’t enjoy about the
tech lead role, the next step is to translate that reflection into clarity about your
strengths and areas for growth.

The better you understand your current shape as a leader, the better equip-
ped you’ll be to make thoughtful career choices and design your growth path.

This clarity ensures that you choose a next role that plays to your strengths. It
allows you to focus your learning and development time more effectively. It helps
you have more informed and confident career conversations. And it gives you the
foundation to advocate for yourself and track your own progress over time.

A simple way to start is by using tools like VIA Character Strengths, Clifton-
Strengths/StrengthsFinder, or a Work Styles Assessment. While many people are
understandably skeptical of these tools, as they’re not scientifically rigorous, they
can still offer real value when used thoughtfully. At the very least, they prompt
useful self-reflection and can surface patterns or themes you might not have
noticed on your own.

342 | LEVELING UP AS A TECH LEAD

https://www.viacharacter.org
https://oreil.ly/4lVWa
https://oreil.ly/4lVWa
https://oreil.ly/fcoQf

Just be mindful not to treat them as fixed truths or personality labels. These
tests don’t define you; the outcome is only as helpful as the insight it triggers.
Focus on what resonates, discard what doesn’t, and remember that context
always matters: the same strength can show up very differently depending on
your role, team, or environment.

Even disagreeing with the results can be eye-opening. It can help clarify
how you see yourself or the kind of leader you want to become. These tools
aren’t definitive, but they can trigger meaningful conversations, especially with
yourself.

Use a combination of self-reflection and external input to map your
strengths and gaps. Building on the insights from reflective tools and feedback,
this step allows you to connect what you’re learning about yourself with how
others experience your impact. It bridges internal awareness with external per-
ception, giving you a more accurate, well-rounded picture of where you currently
stand and where you can grow next.

What have you consistently done well? Think about the moments when
others turned to you. What were you doing? Were you mentoring, solving hard
tech problems, calming things during an incident, facilitating cross-functional
planning? What do people often thank you for? What do team members and
stakeholders rely on you for? What types of challenges do you handle with ease?

What feedback have you received? Review feedback from multiple sources,
such as performance reviews, retrospectives, one-on-one check-ins, informal
praise, or constructive notes from peers. Look for patterns. One comment might
be an outlier, but repeated themes are signals. If you don’t have feedback handy,
ask. Reach out to a few trusted peers or collaborators and say, “I’m reflecting on
my leadership journey. Is there anything you’ve noticed that I tend to do well or
could do better?”

What challenges have you struggled with? What drained your energy, felt
consistently difficult, or led to less-than-ideal outcomes? Sometimes these are
skill gaps. Other times, they signal misalignment with your natural strengths
or interests. What situations leave you second-guessing yourself? Where do you
often need to ask for help? What have you avoided doing, even though you knew
it mattered? This isn’t a moment to be self-critical; it’s a moment to be curious.
Why do these things feel hard? Is it something you want to get better at? Or
something you want to do less of in the future?

Whatever you discover in this reflection process, take a moment to celebrate.
What’s easier now than it was six months ago? What used to feel hard that now

BEYOND TECH LEAD: CHARTING YOUR CAREER PATH | 343

feels natural? Maybe you finally feel comfortable leading architecture reviews.
Maybe you ran a retro that shifted how your team works. Maybe you gave feed-
back that landed well.

Those are signs of growth. Write them down. They’re proof of your evolu-
tion, and they’ll be useful when it’s time to build your growth plan for your next
move. (More on building a growth plan in the section “Developing a Personal
Growth Plan” on page 38.)

Possible Career Paths After Tech Lead

Once you’ve taken the time to reflect on your experience as a tech lead—what
energizes you, what challenges you, and where your strengths lie—the next
natural question is: where do I go from here?

The good news is, there’s no single path forward. The tech lead role sits
at a unique crossroads between technical depth, people leadership, and organiza-
tional influence, and from here, your next step can take many forms.

Some tech leads transition into engineering manager roles and focus more
on people and team development. Others lean into technical mastery by stepping
into Staff+ or architect roles. Some shift toward coordination and execution as
technical program managers, and a few even branch out into consulting or
advisory work, bringing their experience to a broader set of teams.

In this section, I’ll explore these options: what each path looks like, what
types of people tend to thrive in them, and how to recognize which might be
right for you.

ADVANCING TO ENGINEERING MANAGER

If you found yourself enjoying the people side of the role while reflecting on
your experience as a tech lead, then a transition to the EM role might feel like
a natural next step. In fact, it’s one of the most common career moves after
being a tech lead. The EM path is especially suited for those who are energized
by growing people, shaping team culture, and influencing broader organizational
direction.

Before I go into describing what the EM role is and how it’s different from
the tech lead role, it’s important to mention: just as there is a lot of confusion
around the tech lead role in the industry, the same is true, though perhaps less
talked about, for the EM role. While EMs typically sit one level higher in the
organizational hierarchy, the debates that surround the tech lead role also show
up here: How technical should an EM be? How hands-on? How involved should
they be in day-to-day team operations?

344 | LEVELING UP AS A TECH LEAD

The answers vary widely. The definition of the EM role depends heavily on
how many teams they manage, whether those teams already have tech leads, and
the broader structure of the organization. When teams are missing strong tech
leads, the EM often ends up pulled into more technical or operational detail than
is ideal.

My personal take is similar to how I view the tech lead role: the EM role
should be a highly people-focused one. But that view usually works better under
a specific setup, one I’ve seen succeed repeatedly in my experience. In this
setup, each team has a strong tech lead, and the EM works closely with them,
focusing on the broader organizational view, people development, and long-term
team health. Ideally, an EM supports multiple teams, allowing a clear separation
between the responsibilities of EMs and tech leads.

In my experience, any extreme, whether it’s having no tech leads at all, only
EMs managing multiple teams, or having every tech lead report directly to the
head of engineering, can quickly become overwhelming and unsustainable. I
once consulted for a startup that had no tech leads, just EMs overseeing several
teams. One EM was responsible for three different teams and was constantly
pulled between technical decisions and people management. She was excellent
at her job but visibly overworked. It was clear the absence of tech leads was
creating unnecessary strain, both for her and for the teams that lacked day-to-day
technical leadership.

Of course, there are many functioning org structures out there with different
formats. That doesn’t make one model better than another, just different.

It’s also worth noting a current trend in the industry. At the time of writing,
particularly with the AI boom, more and more EMs are expected to be close to
the code and even to be contributing regularly. Personally, I disagree with this
expectation. I don’t believe EMs should be required to write production code.
In fact, I think an EM coding outside of a team’s regular process can do more
harm than good. There are better ways for an EM to use their technical expertise:
participating in high-level architectural decisions, helping with planning and
expectation management, supporting tech leads, and ensuring long-term techni-
cal sustainability.

That said, I’m open to being proven wrong. Each company and team oper-
ates differently, and sometimes experimentation leads to surprising results. But
as a default, I advocate for a hands-off EM model, one rooted in trust, strategic
thinking, and team enablement.

So, what does the EM role actually look like in practice?

BEYOND TECH LEAD: CHARTING YOUR CAREER PATH | 345

Based on the points I outlined earlier, the key differences between the tech
lead and EM roles fall into a few major categories.

First, the level of influence. EMs typically sit one level higher in the organi-
zational hierarchy, which gives them access to more upper leadership, broader
visibility, and earlier awareness of company-wide changes. They’re often included
in planning conversations that shape future direction months in advance—things
tech leads may learn about only once they begin impacting delivery.

In addition, the nature of stakeholder relationships shifts. While tech leads
primarily collaborate with their immediate team and cross-functional partners
like product, design, and their EM, engineering managers engage with a broader
and more senior set of stakeholders, including HR, finance, other EMs, and
senior leadership. The stakes are also higher: conversations often center on
resourcing, organizational design, business risk, and long-term strategy. As a
result, EMs must adopt an even more business-oriented communication style,
framing decisions in terms of impact, return on investment, and alignment with
company objectives.

Second, the scope of involvement. A tech lead should focus deeply on a
single team, working closely with engineers in the day-to-day, guiding technical
decisions, and unblocking delivery. An EM, by contrast, may support multiple
teams. That broader scope means they’re less embedded in any one team’s daily
challenges and more focused on patterns, people dynamics, and long-term team
health across the board.

Third, decision-making power. While tech leads often provide input on
things like performance reviews, compensation, and growth opportunities, EMs
usually make the final calls. They’re the ones responsible for promotions, salary
changes, budget allocation, and sometimes having tough conversations around
underperformance. A strong tech lead will guide and support their team mem-
bers closely, but it’s often the EM who formalizes and delivers the outcomes.

Finally, there’s a difference in relationship dynamics. Tech leads are in fre-
quent one-on-ones with their team members; those conversations are core to the
role. With EMs, one-on-ones with individual engineers might be less frequent,
especially when teams have active tech leads. Instead, EMs are likely to have
more regular syncs with tech leads themselves, supporting them in supporting
the team.

So the real question is: are you ready to move even further away from the
code?

346 | LEVELING UP AS A TECH LEAD

If yes, the EM path might be a great fit. But if you feel more fulfilled working
through complex technical challenges yourself and staying closer to the code, you
may want to explore staff engineer or architect paths instead, which I’ll cover
next.

SPECIALIZING AS A STAFF+ OR ARCHITECT

If the EM role doesn’t sound like a fit—maybe you’re not drawn to managing
people’s development, handling performance reviews, or distributing budgets—
and you’d prefer to remain on the technical track, then a Staff+ role, such as staff
engineer or architect, might be a better path moving forward. These roles allow
you to stay close to the technology, focus on complex engineering challenges
(driving major infrastructure migrations, solving critical reliability issues), and
lead through technical expertise rather than through direct management.

Note that when I refer to Staff+, I’m talking about the family of senior
individual contributor roles that typically include titles like staff engineer, senior
staff, principal engineer, and distinguished engineer. While the naming and
levels vary across companies, what they share is a common idea: as you progress
through these levels, your influence grows from the team level, to multiple
teams, and eventually to the organization as a whole. With each step, the expect-
ation is that your impact increases accordingly—not just through individual
contributions but through broader technical leadership.

Just like with the tech lead role, there are varying opinions and definitions
out there for what these roles entail. To explain the range of perspectives, I’ll
reference a few voices that have articulated them clearly.

There are a few defining traits that the Staff+ and architect roles have in
common, starting with “You’re not a manager, but you are a leader.” This is
one of the key takeaways from Tanya Reilly’s The Staff Engineer’s Path, and it
applies just as much to architects as it does to staff engineers. Even without direct
reports or formal managerial authority, these roles come with expectations of
high impact, maturity, and influence.

Reilly puts it clearly: “Staff engineers lead differently than managers…. Their
impact happens in other ways.” Staff engineers are expected to be the grown-ups
in the room: calm in a crisis, grounded in judgment, and trusted to lead without
needing authority. Their leadership shows up not in performance reviews or
approving time off but in how they shape systems, mentor team members, make
technical calls, and guide the team through complexity.

At this level, technical expertise is just the foundation. You’re also expected
to influence cross-team decisions, align with business needs, and communicate

BEYOND TECH LEAD: CHARTING YOUR CAREER PATH | 347

https://learning.oreilly.com/library/view/the-staff-engineers/9781098118723/

clearly with diverse audiences. Besides deep technical skills, these roles demand
collaboration, teaching, and strategic thinking.

This aligns with the view of leadership described by Will Larson in his
article “Staff Archetypes”: leadership can look like mentoring, shaping patterns,
influencing without authority, and raising the quality bar across the board.

The main differences between staff engineer and architect roles tend to
center on scope, visibility, and approach.

Staff engineers are typically embedded within one or a small number of
teams, where they focus on high-impact technical work. They’re deeply involved
in day-to-day engineering challenges, reviewing designs, writing code, mentoring
peers, and unblocking complexity as it arises. They’re often seen as domain
owners: the go-to experts for a specific technical area.

In smaller or less mature organizations, these responsibilities can overlap
with those of a senior engineer. The key difference often comes down to scope,
influence, and consistency of impact. While a senior engineer might lead a
project within the team’s scope, a staff engineer is expected to lead across bound-
aries, influencing technical direction beyond their immediate team and operating
with a broader, more strategic lens.

Architects, on the other hand, tend to operate across multiple teams or
even entire departments. They define system boundaries, maintain architectural
consistency, and guide long-term evolution across projects. They focus more on
big-picture design, scalability, and aligning technology strategy with business
goals.

Will Larson describes the architect role as an archetype of the staff engineer
role. In his view, architects are responsible for the success of a particular techni-
cal domain, such as cloud infrastructure or API design, and that domain must
be complex and central enough to justify this kind of specialized ownership. He
also counters the negative stereotype of architects working in isolation. Effective
architects, he says, are embedded in the business context and earn influence
through judgment and collaboration.

Another key difference is how hands-on the role remains. Staff engineers
are expected to be close to the codebase, while architect expectations vary by orga-
nization. Some companies expect architects to write code regularly; others want
them focused on design and alignment. Both models can work; what matters is
clarity on the expectations and a good match between the role and your strengths.

348 | LEVELING UP AS A TECH LEAD

https://oreil.ly/K-ksY

So how are these roles different from the tech lead role? Think of the tech
lead as sitting somewhere between the people-focused EM and the technically
deep staff engineer or architect. Tech leads are often responsible for delivery
within a single team, balancing both technical guidance and day-to-day coordi-
nation. In contrast, Staff+ and architect roles lean much more deeply into the
technical end of the spectrum. They’re expected to drive technical direction
across teams, lead through influence, and solve large-scale engineering problems
without managing people directly.

So if you want to go even deeper into technology, and you enjoy leading
through influence, design, and problem-solving more than through people man-
agement, Staff+ or architect paths might be a strong fit. For many, it’s an ideal
way to stay rooted in technical work while continuing to grow their impact across
the organization.

TRANSITIONING TO A TECHNICAL PROGRAM MANAGER ROLE

If, as a tech lead, you found yourself energized by driving alignment across
teams, navigating complex project scopes, or orchestrating delivery plans but
felt less attached to deep technical ownership or hands-on coding, the technical
program manager (TPM) path might be a natural evolution.

TPMs are responsible for managing large-scale, cross-functional initiatives
that require coordination across engineering, product, design, and business
teams. Their superpower is anticipating risk, aligning stakeholders, managing
dependencies, and keeping delivery on track, especially in fast-moving or high-
complexity environments.

While they’re not expected to code, TPMs typically have strong technical
backgrounds. This technical fluency helps them understand trade-offs, ask the
right questions, and connect the dots between engineering decisions and busi-
ness goals. In many ways, a former tech lead stepping into a TPM role already
has a head start: you’re used to operating at the intersection of technology,
product, and execution.

TPMs shine in situations where the scope spans multiple teams or systems,
where aligning various stakeholders on timing and outcomes is critical, where
coordination costs are high or timelines are long, and where product and engi-
neering teams need structured delivery support.

One important distinction: while TPMs often collaborate closely with engi-
neering managers and tech leads, their focus is more on program execution
than people development or system architecture. That said, strong TPMs bring

BEYOND TECH LEAD: CHARTING YOUR CAREER PATH | 349

leadership, clarity, and calm to situations where ambiguity is high and stakes are
even higher.

If you enjoy steering planning sessions, solving organizational blockers, and
being the glue across teams but don’t feel the pull to manage people or deepen
your technical specialization, the TPM role can offer high impact and visibility,
without requiring a move into traditional management or staying deep in the
code.

GETTING INTO CONSULTING OR ADVISORY ROLES

If you’ve developed strong expertise as a tech lead and enjoy solving complex
problems across a variety of contexts, a move into consulting or advisory work
could be a compelling next step. These roles let you apply your knowledge more
broadly, often across multiple teams, organizations, or industries, without being
tied to a single delivery team or company structure.

Consultants are typically brought in to provide clarity, solve thorny prob-
lems, or accelerate transformation. You might be asked to evaluate architecture,
improve delivery practices, or help a struggling team level up its ways of working.
Advisory roles are similar but often longer-term and more strategic, and some-
times at the executive level, helping organizations make high-impact technical or
organizational decisions.

This path is a great fit if you enjoy stepping into messy situations, quickly
making sense of unfamiliar systems, and having a bird’s-eye view of how differ-
ent parts of a business connect. It’s also a good option if you want more flexibility
or autonomy in your work, as many consultants and advisors work independently
or in smaller specialized firms.

But it’s not for everyone. Consulting requires high adaptability, strong com-
munication skills, and a certain level of emotional intelligence. You’ll often be
an outsider, so building trust quickly is critical. You also need to be comfortable
with ambiguity and able to deliver value without always having full control over
execution.

Still, for experienced tech leads who want variety, influence, and the chance
to work across broader scopes, consulting or advisory roles can offer rich and
meaningful ways to grow their careers.

Take my own journey as an example. After working as a tech lead at
Thoughtworks, I transitioned into being a full-time consultant, trainer, and
career coach. I realized that the skills I had built over the years, from mentoring
and stakeholder management to systems thinking and communication, could
bring value in different forms beyond a single team or company.

350 | LEVELING UP AS A TECH LEAD

Over the past four years, I’ve coached more than 500 professionals across
levels and disciplines, trained over 300 tech leads on building high-performing
teams, and worked with a number of companies to improve engineering practi-
ces and leadership culture. I’ve also built a community of nearly 30,000 people
by sharing stories and lessons learned on LinkedIn and through my newsletter.

I share this not to position my path as the path but to highlight that the
tech lead role often prepares you for more than you realize. It can be a powerful
springboard into a wide variety of roles or even portfolio careers that align better
with your goals and values over time.

The key takeaway: the skills you’re developing now—solving problems,
growing people, aligning stakeholders, communicating clearly—are valuable well
beyond your current title. You may be closer than you think to your next career
move.

Planning Your Transition

Once you’ve identified a direction that feels aligned with your strengths and
interests, the next step is turning that vision into action. Career growth doesn’t
happen all at once; it happens through intentional choices, small experiments,
and clear preparation.

Whether you’re aiming to become an engineering manager, a Staff+ engi-
neer, a TPM, or something else entirely, the way you approach the transition
matters. This section is about helping you bridge the gap between where you are
and where you want to be.

I’ll talk about how to choose your next step with intention, how to prepare
yourself for the shift (mentally, emotionally, and practically), and why it’s OK if
your path isn’t linear. Most importantly, I’ll remind you that you’re not locked in,
and you have more flexibility than you think.

CHOOSE YOUR NEXT STEP WITH INTENTION

Now that you’ve reflected on what energizes you, where you thrive, and the
kind of impact you want to have, it’s time to make a conscious choice. Whether
you feel drawn to people leadership, technical depth, strategic coordination, or
advisory work, what matters most is that your next step aligns with your values
and aspirations.

You don’t need to have everything figured out. What’s important is that
you’re moving forward with self-awareness and curiosity, not just following the
default path. Your time as a tech lead has given you insight into what you

BEYOND TECH LEAD: CHARTING YOUR CAREER PATH | 351

enjoy, where you make the biggest impact, and where you want to grow. Let that
learning guide your next move.

That reflection sets the foundation. Now it’s time to prepare for the shift.

PREPARE FOR THE SHIFT

No transition happens overnight. Once you’ve gained clarity about the role you
want next, the real work begins: identifying the skills, experiences, or relation-
ships you need to develop and starting to take intentional steps toward them.

Sometimes, that means changing what you prioritize. I was once coaching
a tech lead who wanted to become an engineering manager. She had a clear long-
term goal, but her day-to-day choices didn’t reflect it. She was deeply focused
on her own team, spending most of her time coding and supporting them
directly, and rarely engaging beyond that. In her words, she would “default to
contributing to a feature over joining a cross-team conversation.”

When she realized that her current behavior wasn’t aligned with her future
aspirations, she shifted her approach. She made a plan: reach out to other engi-
neering managers, build relationships, and get involved in cross-team initiatives.
This meant stepping back from some coding and resisting the urge to jump into
execution mode every time the team hit a bump.

It was hard at first. She struggled with guilt about “not being helpful” or
“not contributing enough.” But the more we revisited her goal, reviewed how she
spent her time, and talked through why this shift mattered, the easier it became
to stay on track. Over time, her habits aligned more closely with her ambitions,
and she started to see real progress.

If you’re preparing for a transition, here are a few ways to start:

Start by auditing your own calendar
Inspired by the preceding story, take a look at how you’ve spent your time
over the last one or two weeks. What types of activities are taking up most
of your energy? Are they aligned with the role you’re aiming for?

This kind of audit can help you spot where your time and attention are
going and whether your current behavior supports your long-term goals. If
not, it’s a good starting point for change.

Make a growth plan toward the role you want
Start writing down the steps you need to take to reach your next role.
Define the skills that qualify someone for that position, and reflect on
which of those you already have and which you might need to develop.
Identify people around you who can help you get there and start building

352 | LEVELING UP AS A TECH LEAD

those relationships. The section “Developing a Personal Growth Plan” on
page 38 covers more on how to do this effectively for the tech lead role, but
the principles can be applied to any role.

Start having conversations
One simple thing that’s often overlooked: if you have clarity about where
you want to go, don’t keep it to yourself. Tell the people who can support or
influence your next step.

Start with your manager. Many people feel like it’s not OK to speak up,
but great managers are usually relieved and grateful when you do. It makes
their job easier: no need to dig, guess, or push. They can focus on helping
you grow in the direction you actually want.

Talk to people who are already in the role you’re aiming for. Ask
about their day-to-day work, their biggest challenges, and the skills they rely
on most. Try questions like “What surprised you most about the role?,”
“What do you wish you’d known before stepping into it?,” “What should
someone focus on when preparing for this kind of work?” Pay attention
to the patterns that emerge, especially around what strengths you already
have and where you might want to grow.

And finally: tell anyone who’s asking. If someone opens the door, even
casually, take the opportunity to share what you’re aiming for. You never
know who might help open the next one.

Shadow or partner
Find opportunities to work with people in the role you’re aiming for. This
can mean joining a project they’re leading, sitting in on their planning
sessions, or even just grabbing coffee to hear about their experiences. If
possible, try to build a relationship with a mentor who already holds the
role you’re interested in. Having someone inside the company who under-
stands the expectations, challenges, and opportunities can be incredibly
valuable. They can help you gain visibility, recommend you for stretch
opportunities, and offer feedback that accelerates your growth. Don’t just
look for someone to share tips; seek out someone who can champion your
growth and help create real opportunities for you.

Say yes to an initiative that aligns with your next step
This could mean leading a cross-functional project, mentoring someone
outside your team, or taking the lead in planning discussions that span
teams.

BEYOND TECH LEAD: CHARTING YOUR CAREER PATH | 353

If you want to move toward a more technical role, look for opportu-
nities where you can demonstrate architectural thinking or contribute to
system design. If you’re more interested in a people leadership path like
engineering management, seek coordination roles, mentor more junior
engineers, or cofacilitate team rituals.

And if you’re intrigued by the TPM path, use your tech lead day-to-day
responsibilities as a springboard, and maybe work more closely with your
project manager. Take on more ownership in planning work, offer to man-
age timelines or dependencies across teams, and step into conversations
that require navigating ambiguity.

Look around your current responsibilities. Chances are, there are
already ways to explore these shifts within your existing role.

These are all ways to stretch into the new role before formally stepping
into it.

Expand your horizon
Get outside of your current environment and company. Learn what other
companies are doing, and explore different definitions and formats of the
roles you’re interested in. Keep in mind that there are opportunities to
grow beyond your current company. I know tech leads who were told
they’d have to wait years for a transition internally but moved into new
roles almost immediately elsewhere. And as I’ve kept repeating throughout
this book, roles mean different things in different companies, so find the
environment that defines the role in a way that matches what you actually
want to do.

Give yourself a confidence boost
Shifting toward a new role can trigger uncertainty, especially when you’re
stepping into something less familiar. It’s normal to doubt yourself or feel
like you don’t measure up yet. Confidence, though, isn’t something you
either have or don’t; it’s something you can actively build.

When I work with tech leads in transition, I often recommend build-
ing small, repeatable habits that reinforce your strengths. That could be
reviewing positive feedback you’ve received, keeping a running “done list”
to remind yourself of what you’ve already achieved, or writing down recent
wins—even small ones—at the end of the week. Some people record voice
notes to talk themselves through tough days; others visualize how they’d
show up in the new role and use that to shape their actions now. The key

354 | LEVELING UP AS A TECH LEAD

is not to wait for confidence to appear but to practice the behaviors that
build it.

If you want more concrete strategies to try, I’ve written a guide that
collects several of these.

This transition is an evolving process. Keep checking in with yourself, stay
flexible, and remember that career paths are built step-by-step.

REMEMBER: YOU’RE NOT LOCKED IN

People are often afraid of making the wrong move. But when you don’t know
exactly what’s right for you, any choice that moves you forward is the right one.

For example, some tech leads decide to go back to being senior developers
after trying the role. They often ask me: “Is this a step back in my career?” My
answer is always the same: there are no steps back from here. Careers aren’t
linear; they’re made up of experiences that help you learn what fits and what
doesn’t. Even trying something and realizing it’s not for you is a step forward in
understanding what you truly want.

It’s OK if your next step doesn’t go exactly as planned. What matters is that
you keep learning, stay honest with yourself, and remain open to new possibili-
ties. No single role defines your career. Each one is just a chapter in a much
longer story.

And remember, no decision is forever. We are lucky that in the tech indus-
try, we can more easily move back and forth between roles. There’s room to
explore, adapt, and reframe our path based on evolving interests and needs. I
know tech leads who returned to full-time development because they preferred it.
I also know others who moved into EM, TPM, or even product roles with ease.

The most powerful thing you can do for your career is keep moving forward
with intention, curiosity, and self-awareness.

Key Takeaway

If there’s one thing to take away from this chapter, it’s that there is no single
“right” next step after being a tech lead, only the one that’s right for you.

Whether you choose to stay in the middle—continuing to grow in the tech
lead role—lean further into people leadership, deepen your technical influence,
or explore something entirely different, the reflections you’ve done in this chap-
ter are your best guide forward.

The real win is choosing with intention: based on what energizes you, where
you want to grow, and the kind of impact you want to make.

BEYOND TECH LEAD: CHARTING YOUR CAREER PATH | 355

https://oreil.ly/Vwve6

Careers are long. Paths are flexible. And you’re allowed to evolve. So wher-
ever you head next, stay curious, stay grounded in what matters to you, and trust
that every step forward is part of building a career that truly fits.

Wrap-Up

If you’ve made it this far, thank you. Writing this book was my way of distilling
years of questions, hard lessons, and cherished victories, and my hope is that it
helped you feel a little less lost in your tech leadership journey.

We’ve covered a lot, from the messy middle of transitioning into the tech
lead role, to managing people, projects, and stakeholders, to figuring out what
comes next. But if there’s one message I want to leave you with, it’s this:

Leadership isn’t a destination. It’s a series of decisions.

Decisions about how you show up for your team. How you grow. Where you
invest your energy. And eventually, what you want your career to look like beyond
the role you’re in today.

Your path won’t look like anyone else’s. And it shouldn’t.
There is beauty in ambiguity and complexity. When the role isn’t clearly

defined, it means you have a chance to shape it, to make it your own. That
freedom can feel daunting, but it also means you get to build something that fits
you and serves your team in the best way possible.

This may be the end of this book, but it’s not the end of your journey. In fact,
it might just be the beginning.

I continue learning every day about this role, through experience, conversa-
tions, and every tech lead I meet. I’ll keep sharing what I learn through my news-
letter. Follow along if you’d like more templates, tools, stories, and reflections on
these topics.

And if you ever have a question, want to share your perspective, or just want
to connect, don’t hesitate to reach out. I’m always open to new ways of think-
ing—and who knows, maybe you’ll even change my mind about something. ;)

Good luck!

356 | LEVELING UP AS A TECH LEAD

https://oreil.ly/ckH8U
https://oreil.ly/ckH8U
https://oreil.ly/GNqCi

Index

A
Accelerate framework, 196

accountability

delegation, 155

responsibility versus, 156

active listening

conversations, 78

mentoring and coaching, 89

strategies for, 63

ADRs (see architecture decision records)

Agile threat modeling, 300

Agile Threat Modelling Workshop

Guide online, 300

AI (artificial intelligence)

about use of term, 28

constructive criticism assistance, 125

integration into team, 28-30

architect as career path, 347-349

architecture, 221-236

balancing innovation and stability,

234-236

cross-functional requirements, 232-234

cost as, 234

SLOs and SLIs, 232

defining from scratch, 222

designs that support change, 226

improving an existing system, 223-226

example, 224-226

visualizing a system architecture,

226-231

C4 model approach, 227-229

C4 model information online, 229

architecture decision records (ADRs),

281-285

beginning with, 281

challenges, 284

ownership, 285

storing, 284

updating, 284

what to record, 285

example, 282

artificial intelligence (see AI)

asking for help

avoiding burnout, 336

building relationships, 76, 78

normalizing, 214

author contact link, 356

autocratic style of decision making, 272

autonomy of team, 72

B
Beck, Kent, 246

becoming a tech lead, 15-20

brand new team, 19-20

357

one-on-ones, 85

common challenges, 45-57

balancing building and leading, 56

fixing others’ problems, 51-54, 105

micromanaging, 54-56

time management, 45-51

current team, 15-18

different team, 18

foundation for growth, 33-38

assessing starting point, 37

clarifying expectations, 36

growth mindset, 34

personal growth plan, 38-42

implementing, 42-45

Becoming a Technical Leader (Weinberg),

v

beyond tech lead in your career

planning your transition, 351-355

decisions are adaptable, 355

moving with intention, 351

preparing for a new role, 352-355

possible career paths, 344-351

consulting or advisory roles, 350

engineering manager, 344-347, 349

Staff+ or architect, 347-349

technical program manager, 349

reflecting on tech lead experience, 339

strengths and areas for improve-

ment, 342-344

what you liked and didn’t, 340-342

biases and discrimination, 194

Böckeler, Birgitta, 28, 30

book author contact link, 356

book web page, xii

brag document for performance reviews,

199

bringing it all together (see technical lead-

ership)

Brown, Simon, 227

building a team (see team-building role)

Building Evolutionary Architectures (2e;

Ford, Parsons, Kua, and Sadalage), 226

Bungay Stanier, Michael, 89

burnout

balancing demands to avoid, 335-337

setting an example for the team, 337

managing tasks others should own, 51

micromanagement leading to, 54

more living not less working, 337

one-on-ones with large team, 91

C
career development

beyond tech lead

planning your transition, 351-355

possible career paths, 344-351

preparing for a new role, 352-355

reflecting on tech lead experience,

339

performance reviews of team members,

201-205

career development by tech leads, 5

feedback from tech lead, 202

promoting from within, 170

celebrating as a team, 213

Center for Nonviolent Communication, 65

CFRs (see cross-functional requirements)

challenges (see common challenges; tech-

nical challenges)

CI/CD (continuous integration/continuous

delivery), 237-239

continuously testing, 245-248

defining proper testing, 245-248

358 | INDEX

path to production, 239-245

visualizing, 240-244

CliftonStrengths/StrengthsFinder assess-

ment, 342

cloud costs as cross-functional require-

ments, 234

coaching

introductory book, 89

mentoring versus, 88

one-on-ones with team members, 88

others finding own solutions, 105

The Coaching Habit (Bungay Stanier), 89

coding

C4 model approach, 227-229

C4 model information online, 229

day-to-day responsibilities, 10

description of a tech lead, 2, 4

documentation, 262-266

Documentation Champion, 265

keeping updated, 265

value of documentation, 262-264

what to document, 264

effective software engineering teams,

181-185

new hires, 179

pair programming, 142

collaboration via, 210

multiple streams of work, 298

production pipeline, 239-245

visualizing, 240-244

software development lifecycle, 21-24

technical leadership, 6

collaboration

enabling collaboration, 209-216

could take some time, 215

safe space required, 215

pair programming for, 210

planning as tool for, 295

problem solving as a team, 212

psychological safety from, 194

stakeholder collaboration, 253

testing-improvement collaboration, 248

common challenges

becoming a tech lead, 45-57

balancing building and leading, 56

fixing others’ problems, 51-54, 105

micromanaging, 54-56

time management, 45-51

building a high-performing team,

208-219

building onboarding process, 209

enabling collaboration, 209-216

underperformance on team, 216-219

feedback, 129-136

building a culture of feedback,

132-136

getting constructive feedback,

130-132

no feedback to give, 129

one-on-ones, 102-106

disengagement and lacking open-

ness, 102

ground rules not respected, 103-105

nothing to talk about, 102

pressure to solve all problems, 105

project management, 290-303

multiple streams of work, 297-299

planning and keeping project on

track, 291-296

project delays, 296-297

technical risk, 299-303

relationships, 78-83

creating new relationships, 78

INDEX | 359

introverts building relationships,

82-83

keeping relationships strong, 79

not on the same page, 80

starting conversations, 78, 94

technical challenges, 248-266

documentation, 262-266

incidents, 254-261

tech debt, 249-253

technical leadership, 328-337

avoiding burnout, 335-337

measuring success, 332-335

stakeholder buy-in, 329-332

communication

active listening

conversations, 78

mentoring and coaching, 89

strategies for, 63

asking for help

avoiding burnout, 336

building relationships, 76, 78

normalizing, 214

career goals, 353

DISC behavior model, 325-327

feedback culture on team, 132-136

(see also feedback)

fixing others’ problems, 51-54, 105

incident communication process, 258

post-incident, 259

meetings, 10

(see also one-on-ones)

overcommunication, 192

building trust, 193

psychological safety, 133

(see also safe space)

relationships

building strong relationships, 62-70

common challenges, 78-83

communicating constantly, 65

communicating effectively, 63-65

delegating relationship building, 61

example of successful team, 59

following through on commitments,

70

keeping relationships strong, 79

Nonviolent Communication system,

65

starting conversations, 78

transparency in communication,

67-69

risk management, 303

safe space, 61

(see also safe space)

stakeholders

3 Rs of stakeholder alignment, 253,

328, 329-331

adapting to their style, 325-327

example of successful team, 59

relationships, 60, 76, 253

tech debt discussions, 252

transparency in communication,

67-69

team progress toward goals, 6

bridging tech and business, 7, 318

transparency in communication

building strong relationships, 67-69

building trust, 193

collaboration and ownership via, 215

information that should never be

shared, 68

information transparency, 215

confidence boosting strategies, 354

strategies guide online, 355

conflict

360 | INDEX

choosing battles, 80

diverse perspectives, 192

empathy, 324

giving constructive feedback, 124-129

feedback culture on team, 132-136

consensus style of decision making, 272

constructive feedback, 124-129

follow-up, 127-129

SBI framework, 125-127

consultative style of decision making, 272

consulting as career path, 350

Continuous Deployment (Servile), 239

continuous integration/continuous deliv-

ery (see CI/CD)

cost as cross-functional requirement, 234

cross-functional requirements (CFRs),

232-234

cost as, 234

SLOs and SLIs, 232

culture building

culture of feedback, 132-136

healthy team culture, 185-188

safe space, 188-194

Ways of Working sessions, 186, 263

incident readiness and learning,

254-256

normalizing team learning, 316

observability culture, 289

D
decision making, 272-281

leadership as series of decisions, 356

meetings for decision making, 274-281

achieving clear outcomes, 276-281

coffee and croissants, 280

pitfalls, 274-276

tracking decisions, 281-285

styles of decision making, 272

team or solo decision making, 272

definition of done (DoD), 251

documentation update, 265

delegation

accountability versus responsibility, 155

autonomy via, 72

benefits of, 138-142

additional time, 138

fresh perspectives, 140

growth via, 89, 139, 142, 316

team performance boost, 140-142

description of, 137

effective leadership via, 25

meeting attendance, 144, 335

one-on-ones for, 87, 89, 145

problem solving, 105

process of delegation, 143-157

accountability, 155

clear expectations, 151-153

delegation strategy, 148-150

delegation strategy adjustments, 151

follow-up, 155

what to delegate, 143-145

who to delegate to, 145-148

relationship building, 61

SMARTT goals for alignment, 152-153

struggling to delegate, 157-165

easier not to, 161

losing control, 157-160

losing credit, 163-165

outcome worries, 160-161

technical expertise, 6

testing improvements, 248

delivery versus deployment, 238

democratic style of decision making, 272

INDEX | 361

dependability of high-performing teams,

182

deployment, 236-248

continuous deployment, 237-239

continuously testing, 245-248

defining proper testing, 245-248

delivery versus, 238

path to production, 239-245

visualizing, 240-244

DevOps Research and Assessment

(DORA), 195

disagreements (see conflict)

DISC (Dominance, Influence, Steadiness,

Conscientiousness) behavior model,

325-327

discrimination and biases, 194

diverse perspectives encouraged, 191

documentation

architecture decision records, 281-285

company organizational structure, 322

effective documentation, 262-266

Documentation Champion, 265

keeping updated, 265

value of documentation, 262-264

what to document, 264

high-performing teams, 183

Ways of Working sessions, 186, 263

incidents, 259

postmortems, 259

onboarding recruits, 178, 187

new recruit building documenta-

tion, 209

project management team alignment,

268

risk log, 303

stakeholders and influencers, 323

DoD (definition of done), 251

documentation update, 265

Dominance, Influence, Steadiness, Consci-

entiousness (DISC) behavior model,

325-327

DORA (DevOps Research and Assess-

ment), 195

Dunning-Kruger effect, 35

Dweck, Carol, 36

E
Eisenhower Matrix, 46, 144

The Engineering Executive’s Primer (Lar-

son), vi

engineering managers (EMs), 9

owning one-on-ones, 85

possible career path, 344-347, 349

role of, 344

evaluation

performance reviews

prep as continuous process,

206-208

team members, 203-204

your own, 198-201

self-evaluation of abilities, 37

personal strengths, 342-344

reflection, 42, 314

team performance, 195-197

frameworks and tools for, 195

Evans, Julia, 199

expectations

cross-functional requirements, 232-234

delegation, 151-153

one-on-one meetings, 92-94

stakeholder expectations, 4, 7

AI adoption, 30

team technical skills, 20

underperformance on team, 216

362 | INDEX

what is a tech lead, 2-3

assessing starting point, 37

role as tech lead, 12-15

role expectations clarified, 36

F
failure

incidents, 254-261

culture of readiness and learning,

254-256

drills, 255

on-call compensation, 261

on-call outside working hours, 260

on-call processes, 255

postmortems, 255, 259

what to do during, 256-258

what to do post-incident, 259

normalizing, 188-190

planning for, 190

feedback

about “positive” versus “constructive”,

107

building a culture of feedback, 132-136

colleagues rating your abilities, 37

updating to reflect growth, 43

common challenges, 129-136

building a culture of feedback,

132-136

getting constructive feedback,

130-132

no feedback to give, 129

fast feedback, 287-289

feedback as growth tool, 25, 311, 314

five principles of good feedback, 117-121

positive feedback example, 121-123

getting useful feedback from team,

109-116, 191

acting on received feedback, 114-116

how to ask for, 110

how to receive, 111-114

leadership performance feedback,

333

team performance feedback, 196

giving useful feedback to team, 116-129

acting quickly, 216

constructive feedback, 124-129

five principles of good feedback,

117-121

positive feedback, 121-124

SBI framework, 125-127

leadership skills, 333

normalizing for honest responses, 43

daily improvement tool, 60

team member relationships, 71

onboarding, 180

one-on-ones for, 86, 90, 95

performance reviews

team members, 202

your own, 200

power of feedback, 107-109

recruitment, 174

role a good fit or not, 15

SBI framework, 125-127

team performance feedback, 196

Ford, Neal, 226

Fournier, Camille, vi, 3

G
goals

measuring leadership success, 332-335

one-on-ones with team members, 89,

95

personal growth plan, 38-42

INDEX | 363

SMARTT goals for delegation align-

ment, 152-153

too big or too many, 317

Google Project Aristotle, 181

growth mindset, 34-36

clarifying expectations, 36

delegation promoting growth, 139, 142,

316

one-on-ones for, 89

feedback as tool for growth, 25, 311, 314

“I don’t know...yet”, 35

team member relationships, 72

one-on-ones supporting growth, 88-90,

95

delegation, 89

feedback, 311

supporting growth as part of job, 90

pairing people on initiatives, 212

performance review outcomes, 205

personal growth plan, 38-42

career goals, 352

encouraged in one-on-one, 88

implementing, 42-45

setting goals to track progress, 332

spending your development budget,

315

tools for upskilling individuals,

311-316

planning for failure, 190

reflection tool, 42, 314

supporting growth when performance

falling short, 217-219

team involved in recruit interviews, 174

tracking progress, 43, 314

personal strengths and struggles,

344

H
health balanced with work, 335

setting an example for team, 337

strategies for, 336

I
“I don’t know...yet”

growth mindset, 35

team member relationships, 72

incidents, 254-261

culture of readiness and learning,

254-256

drills, 255

on-call processes, 255

compensation, 261

outside working hours, 260

postmortems, 259

documentation, 259

preparing for, 255

what to do during, 256-258

communication process, 258

shielding fixers, 256

what to do post-incident, 259

documentation, 259

information transparency, 215

information that should never be

shared, 68

initiatives

career goals, 353

distributing clumped responsibilities,

211

pairing people on, 212

supporting other teams’, 77

innovation balanced with stability, 234-236

integration and deployment, 236-248

continuous, 237-239

continuously testing, 245-248

364 | INDEX

defining proper testing, 245-248

path to production, 239-245

visualizing, 240-244

interviewing recruits

improving as interviewer, 174

improving the process, 172

introverts building relationships, 82-83

J
job description, 13-14

clarifying expectations, 36

description of tech lead, 2-12

contrasted with other titles, 8-10

core definition, 4, 9

recruiting, 172

underperformance on team, 216

K
knowledge-sharing sessions, 210

Kua, Patrick, v, 4, 226

L
Larson, Will, vi, 3, 348

lead developers, 9

leadership as series of decisions, 356

(see also technical leadership)

legacy code challenges, 245

documentation, 263

listening, 97-99

(see also active listening)

M
managers

relationships, 74-76

stakeholders, 74

The Manager’s Path (Fournier), vi, 3

managing technical projects (see project

management)

Marston, William Moulton, 325

meaningful work, 183-185

meetings

day-to-day responsibilities, 10

decision-making meetings, 274-281

achieving clear outcomes, 276-281

coffee and croissants, 280

pitfalls, 274-276

tracking decisions, 281-285

delegating someone to attend, 144, 335

one-on-ones (see one-on-ones)

Mendelow Power-Interest Matrix, 323

mentoring

benefits to mentors, 169

coaching versus, 88

team member growth, 316

tech lead being mentored, 4

relationship with manager, 75

tech lead mentoring others, 5

coding, 11

leadership skills, 25

one-on-ones, 88

micromanagement, 54-56

delegation to avoid, 139

mindset shifts, 26-27

building a feedback culture, 136

dashboard metrics, 289

growth mindset, 34-36

“I don’t know...yet”, 35, 72

performance review preparation, 202

stakeholder relationships, 320

you are as successful as your team, 27,

333

Mindset: The New Psychology of Success

(Dweck), 36

INDEX | 365

N
networking (see relationships)

newsletter online, 356

Nonviolent Communication (Rosenberg),

65, 125

O
observability, 287-289

on-call processes, 255

compensation, 261

outside working hours, 260

onboarding, 175-180

AI assistance, 29

buddy system, 144, 177, 209

clear plan with actionable steps, 177-179

documentation, 178, 187

collaboration via, 211

continuously improving, 179

documentation, 178, 187

new recruit building documenta-

tion, 209

Ways of Working document, 187,

263

feedback, 180

process built from scratch, 209

starting when offer accepted, 176

team involvement, 176

tracking progress, 179

Ways of Working sessions, 186

one-on-ones

common challenges, 102-106

ground rules not respected, 103-105

lacking openness and engagement,

102

nothing to talk about, 102

pressure to solve all problems, 51-54,

105

delegation opportunity, 87, 89, 145

first one-on-one, 93

introverts building relationships, 82

keeping relationships strong, 80, 87

frequency of meetings, 92

running one-on-ones

becoming tech lead to new team, 85

engineering managers or tech leads,

85

successful one-on-ones, 90-101

safe space, 93, 97-100, 193

feedback, 90

frustration vented, 99

hesitating to voice concerns, 104

issues raised, 86, 99

listening, 97-99

stakeholder relationships, 74

successful one-on-ones, 90-101

agreement on agenda and expecta-

tions, 92-94, 100

consistent scheduling, 80, 91

follow-up, 100

pitfalls to avoid, 101

safe space, 97-100

supporting growth as part of job, 90

topics to cover, 94

tracking conversations, 100, 103

team member relationships, 71

value of one-on-ones, 86-90

making life easier, 86

strengthening relationships, 80, 87

supporting growth, 88-90, 95

online resources (see resources online)

overcommunication, 192

building trust, 193

366 | INDEX

P
pair programming, 142

collaboration via, 210

multiple streams of work, 298

pairing people on initiatives, 212

Parsons, Rebecca, 226

people management role, 8, 12

leadership skills, 24

performance reviews, 197-208

outcomes, 205

prep as continuous process, 206-208

team members, 201-205

feedback from tech lead, 202

team-building role of tech leads, 5

your own, 198-201

brag document, 199

feedback, 200

making work visible, 201

planning

as collaboration tool, 295

onboarding recruits, 177-179

personal growth plan, 38-42

implementing, 42-45

planning for failure, 190

project management, 291-296

software development lifecycle, 21

time management for the week, 50

transition beyond tech lead, 351-355

positive feedback, 121-124

five principles of good feedback, 121-123

postmortems, 259

documentation, 259

preparing for, 255

problem solving as a team, 212

production pipeline, 239-245

continuously testing, 245-248

defining proper testing, 245-248

visualizing, 240-244

Project Aristotle (Google), 181

project management

aligning team on common strategy,

268-285

building technical vision then strat-

egy, 269-272

constraints, 270

constraints visualized, 270

decision making, 272-281

tracking decisions, 281-285

common challenges, 290-303

multiple streams of work, 297-299

planning and keeping project on

track, 291-296

project delays, 296-297

technical risk, 299-303

technical excellence, 286-290

defining team standards, 286

ensuring quality via testing, 290

fast feedback, 287-289

Psychological Safety Ladder Canvas, 194

psychological safety of team, 188-194

(see also safe space)

putting it all together (see technical leader-

ship)

Q
questions

asked by team in one-on-ones, 87

asking for help to build relationships,

76, 78

career goals, 38, 39

eliciting constructive feedback, 132

evaluating personal strengths, 343

expectations of job role, 13

first one-on-one, 94

INDEX | 367

incident postmortem, 259

leadership skill feedback, 334

open-ended, 63, 334

one-on-ones, 96, 99

overcommunication, 192

stakeholder identification, 322

successes to celebrate, 96

transparency in communication, 69

R
RAID (risks, assumptions, issues, depen-

dencies) board, 300

recruiting developers, 167-175

effective strategies, 171-175

feedback, 174, 180

identifying team needs, 168-171

balancing junior and senior engi-

neers, 168-171

inclusive process, 172

interviewing recruits

improving as interviewer, 174

improving the process, 172

onboarding, 175-180

AI assistance, 29

buddy system, 144, 177, 209

clear plan with actionable steps,

177-179

collaboration via, 211

continuously improving, 179

documentation, 178, 187

documentation built by new recruit,

209

feedback, 180

process built from scratch, 209

starting when offer accepted, 176

team involvement, 176

tracking progress, 179

Ways of Working document, 187,

263

Ways of Working sessions, 186

team involvement, 174

growth opportunity, 174

reflecting back what you heard, 98

reflection tool, 42

experience as tech lead, 339

listening skills, 99

one-on-ones, 101

team member growth, 314, 317

Reilly, Tanya, vi, 271, 347

relationships

bridging tech and business, 7, 318

building strong relationships, 62-70

communicating constantly, 65

communicating effectively, 63-65

following through on commitments,

70

introverts building relationships,

82-83

transparency in communication,

67-69

common challenges, 78-83

creating new relationships, 78

introverts building relationships,

82-83

keeping relationships strong, 79

not on the same page, 80

starting conversations, 78, 94

leadership skills, 25

one-on-ones keeping strong, 80, 87

frequency of meetings, 92

sourcing recruitment candidates, 175

stakeholders, 60, 76

example of successful team, 59

team involved in building, 328

368 | INDEX

transparency in communication,

67-69

trust, 253, 327

support network for personal growth

plan, 40

value of building strong relationships,

59-62

building relationships is your job, 61

delegating the job, 61

example of successful team, 59

who to build relationships with, 71-78

managers, 74-76

other stakeholders, 76

people working in desired role, 353

team members, 71-73

reliability

following through on commitments, 70

high-performing teams, 182

speed and reliability in software deliv-

ery, 237-239

reputation as leadership tool, 70

resources

Becoming a Technical Leader (Wein-

berg), v

The Coaching Habit (Bungay Stanier),

89

The Engineering Executive’s Primer

(Larson), vi

The Manager’s Path (Fournier), vi, 3

Mindset: The New Psychology of Suc-

cess (Dweck), 36

Staff Engineer (Larson), 3

The Staff Engineer’s Path (Reilly), vi

Talking with Tech Leads (Kua), v, 4

resources online

Agile Threat Modelling Workshop

Guide, 300

author contact link, 356

book web page, xii

C4 model information, 229

confidence boosting strategies, 355

newsletter, 356

risk-storming guide, 300

skill strength assessment tools, 342

responsibilities

accountability versus responsibility, 156

day to day, 10-12

coding, 10

meetings, 10

safe space for relationships, 61

thinking time, 11

distributing clumped responsibilities,

211

team learning needs, 306

retrospectives as safe space, 193

risk management, 299-303

communicating risks, 303

evaluating risks, 301

identifying risks, 300

responding to risks, 301-302

tracking risks, 303

risk log, 303

risk-storming, 300

guide online, 300

risks, assumptions, issues, dependencies

(RAID) board, 300

role of a tech lead, 1-30

balancing building and leading, 56

bridging tech and business, 7, 318

confusion about, ix, 1-3

description of tech leads, 2-12

contrasted with other titles, 8-10

core definition, 4, 9

evolution of role, v

INDEX | 369

expectations of, 12-15

job description, 13-14

good fit or not, 14

people management, 8, 12

leadership skills, 24

supporting growth, 90

planning, 21

responsibilities day to day, 10-12

coding, 10

meetings, 10

safe space for relationships, 61

thinking time, 11

scope of role, 3-8

team building, 5

technical leadership, 6, 10

Rosenberg, Marshall B., 65, 125

S
Sadalage, Pramod, 226

safe space

collaboration requiring, 215

feedback, 133

one-on-ones, 90

high-performing teams, 181

one-on-ones, 93, 97-100, 193

feedback, 90

frustration vented, 99

hesitating to voice concerns, 104

issues raised, 86, 99

listening, 97-99

relationship building, 61

team psychological safety, 188-194

Psychological Safety Ladder Canvas,

194

safe space easily lost, 194

SBI (Situation–Behavior–Impact) frame-

work for feedback, 125-127

service-level indicators (SLIs) and CFRs,

232

service-level objectives (SLOs) and CFRs,

232

Servile, Valentina, 239

silence embraced, 98

one-on-one pitfalls to avoid, 101

site reliability engineering (SRE), 244

Situation–Behavior–Impact (SBI) frame-

work for feedback, 125-127

skills required, 20-30

AI integration into team, 28-30

leadership skills, 24

mindset shifts, 26-27

technical skills, 20-24

delegating technical expertise, 6

technical leadership, 6, 10

SLIs (service-level indicators) and CFRs,

232

SLOs (service-level objectives) and CFRs,

232

SMARTT goals for delegation alignment,

152-153

software development lifecycle, 21-24

SPACE framework, 196

SRE (site reliability engineering), 244

“Staff Archetypes” (Larson), 348

Staff Engineer (Larson), 3

The Staff Engineer’s Path (Reilly), vi, 347

“What’s a Vision? What’s a Strategy?”

chapter, 271

Staff+ as career path, 347-349

stakeholders

managers as, 74

relationships, 74-76

managing stakeholders, 318-328

communication, 325-327

370 | INDEX

identifying stakeholders, 321-323

techniques for managing, 323-328

visualizing stakeholders, 323-324

why manage, 318-321

relationships, 60, 76

3 Rs of stakeholder alignment, 253,

328, 329-331

example of successful team, 59

team involved in building, 328

transparency in communication,

67-69

trust, 253, 327

team performance feedback, 196

tech debt discussions, 252

technical issue buy-in, 329-332

testing-improvement support, 248

successes celebrated in one-on-ones, 96

support network for personal growth plan,

40

T
Talking with Tech Leads (Kua), v, 4

TDD (test-driven development), 246

TDD mindset on prototype, 306

team leads, 9

team-building role, 5

AI integration into team, 28-30

avoiding burnout, 337

building a high-performing team,

180-197

collaboration enabled, 209-216

common challenges, 208-219

evaluating team performance,

195-197

healthy team culture, 185-188

onboarding process built from

scratch, 209

performance reviews, 197-208

performance reviews: outcomes, 205

performance reviews: prep as con-

tinuous process, 206-208

performance reviews: team mem-

bers’, 201-205

performance reviews: your own,

198-201

Psychological Safety Ladder Canvas,

194

safe space, 188-194

safe space easily lost, 194

traits of high-performing teams,

181-185

underperformance on team, 216-219

Ways of Working sessions, 186, 263

career growth of team members, 5

celebrating as a team, 213

communication for achieving results, 6

bridging tech and business, 7, 318

feedback

acting on received feedback, 114-116

feedback culture on team, 132-136

five principles of good feedback,

117-121

getting feedback from team, 109-116

giving constructive feedback,

124-129

giving feedback to team, 116-129

giving positive feedback, 121-124

how to ask for, 110

how to receive, 111-114

SBI framework, 125-127

ideal team size, 91

impact of team made visible, 321

leadership skills, 24

one-on-ones (see one-on-ones)

INDEX | 371

performance boost via delegation,

140-142

fresh perspectives, 140

new processes, 141

problem solving as a team, 212

recruiting developers, 167-175

balancing junior and senior engi-

neers, 168-171

effective strategies, 171-175

feedback, 174, 180

identifying team needs, 168-171

inclusive process, 172

interviewing, 172, 174

onboarding, 175-180

team involvement, 144, 174, 176, 177

relationships, 60, 71-73

autonomy of team, 72

example of successful team, 59

stakeholder relationships, 328

software development lifecycle, 21-24

technical excellence, 286-290

defining team standards, 286

ensuring quality via testing, 290

fast feedback, 287-289

technical talent development, 305-318

avoiding pitfalls of learning, 316

team learning needs, 306-308

tools for upskilling individuals,

311-316

tools for upskilling whole team,

308-310

Tuckman’s stages of group develop-

ment, 19

you are as successful as your team, 27,

333

tech debt, 60

managing, 249-253

visualizing tech debt, 249-251

stakeholder discussions, 252

Tech Debt Champion, 251

tech leads

becoming a tech lead, 15-20

assessing starting point, 37

balancing building and leading, 56

clarifying expectations, 36

common challenges, 45-57

current team, 15-18

different team, 18

fixing others’ problems, 51-54, 105

foundation for growth, 33-38

growth mindset, 34

micromanaging, 54-56

new team, 19-20, 85

personal growth plan, 38-42

personal growth plan implemented,

42-45

time management, 45-51

beyond tech lead

planning your transition, 351-355

possible career paths, 344-351

preparing for a new role, 352-355

reflecting on experience, 339

description of, 2-12

contrasted with other titles, 8-10

core definition, 4, 9

responsibilities day to day, 10-12

coding, 10

meetings, 10

safe space for relationships, 61

thinking time, 11

role, 1-30

balancing building and leading, 56

bridging tech and business, 7, 318

confusion about, ix, 1-3

372 | INDEX

core definition, 4, 9

evolution of, v

expectations of, 12-15

good fit or not, 14

people management, 8, 12, 24

people’s growth, 90

planning, 21

scope of role, 3-8

team building, 5

technical leadership, 6, 10

skills and mindset required, 20-30

AI integration into team, 28-30

leadership skills, 24

mindset shifts, 26-27

technical skills, 20-24

technical challenges

architecture, 221-236

balancing innovation and stability,

234-236

C4 model approach, 227-229

C4 model information online, 229

cross-functional requirements,

232-234

defining from scratch, 222

designs that support change, 226

improving an existing system,

223-226

visualizing a system architecture,

226-231

common challenges, 248-266

documentation, 262-266

incidents, 254-261

tech debt, 249-253

integration and deployment, 236-248

continuous, 237-239

continuously testing, 245-248

path to production, 239-245

stakeholder buy-in, 329-332

technical excellence, 286-290

defining team standards, 286

ensuring quality via testing, 290

fast feedback, 287-289

technical leadership

coding, 6

common challenges, 328-337

avoiding burnout, 335-337

measuring success, 332-335

stakeholder buy-in, 329-332

innovation versus stability, 235

leadership as series of decisions, 356

stakeholder management, 318-328

3 Rs of stakeholder alignment, 253,

328, 329-331

communication, 325-327

identifying stakeholders, 321-323

techniques for managing, 323-328

visualizing stakeholders, 323-324

why manage, 318-321

technical talent development, 305-318

avoiding pitfalls of learning, 316

team learning needs, 306-308

tools for upskilling individuals,

311-316

tools for upskilling whole team,

308-310

technical program managers (TPMs), 349

technical project management (see project

management)

test-driven development (see TDD)

Test-Driven Development: By Example

(Beck), 246

testing

continuously testing, 245-248

defining proper testing, 245-248

INDEX | 373

ensuring quality via testing, 290

software development lifecycle, 22

thinking time, 11

time management

becoming a tech lead, 45-51

analyzing task distribution, 47-50

planning the week, 50

reviewing and adjusting, 50

visualizing workload, 46

career goals, 351

delegation for additional time, 138

thinking time, 11

tips, 50

“yes” into “let me think about it”, 51

TPMs (technical program managers), 349

transparency in communication

building strong relationships, 67-69

building trust, 193

collaboration and ownership via, 215

information that should never be

shared, 68

information transparency, 215

trust, 193

easily lost, 194

stakeholder relationships, 253, 327

Tuckman’s stages of group development,

19

U
underperformance on team, 216-219

V
VIA Character Strengths assessment, 342

visualization

delivery pipeline, 240-244

DISC behavior model, 325-327

project constraints, 270

risk evaluation, 301

stakeholders, 323-324

system architecture, 226-231

C4 model approach, 227-229

C4 model information online, 229

tech debt, 249-251

workload, 46

analyzing task distribution, 47-50

Eisenhower Matrix, 46, 144

W
web page for book, xii

Weinberg, Gerald, v

Work Styles Assessment, 342

workload visualized, 46

analyzing task distribution, 47-50

Eisenhower Matrix, 46, 144

374 | INDEX

About the Author
Anemari Fiser is a tech leadership trainer and coach who helps engineers grow
into confident and effective tech leads. With over a decade of experience in the
tech industry, she has held roles ranging from software engineer and consultant
to tech lead and engineering leader before dedicating her career to developing
others.

Over the past four years, as an independent professional, Anemari has coached
more than 500 engineers and partnered with companies to train nearly 400
tech leads on building high-performing teams, improving communication, and
leading with confidence.

She is the creator of O’Reilly’s Soft Skills for Tech Leads course and the Level Up
as a Tech Lead newsletter, read by 7,000+ tech professionals worldwide. Anemari
also shares practical leadership insights with a community of over 30,000 engi-
neers on LinkedIn, where she writes about the real challenges of leading in tech.

Her practical, people-centered approach helps technical leaders navigate the chal-
lenges of leadership while keeping their authenticity—and their sanity—intact.

Colophon
The cover illustration is by Susan Thompson. The cover fonts are Gilroy Semi-
bold and Guardian Sans. The text fonts are Adobe Myriad Pro, Adobe Minion
Pro, and Scala Pro, and the heading font is Benton Sans.

https://learning.oreilly.com/course/soft-skills-for/0642572043995/
https://level-up-as-a-tech-lead.anemarifiser.com
https://level-up-as-a-tech-lead.anemarifiser.com

©2025 O’Reilly Media, Inc. O’Reilly is a registered trademark of O’Reilly Media, Inc. 718900_6x9

Learn from experts.
Become one yourself.
60,000+ titles | Live events with experts
Role-based courses | Interactive learning
Certification preparation

Try the O’Reilly learning platform
free for 10 days.

	Copyright
	Table of Contents
	Foreword
	Preface
	Why I Wrote This Book
	How to Effectively Use This Book
	Conventions Used in This Book
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. The Role of a Tech Lead
	What Is a Tech Lead?
	Defining the Scope
	Tech Lead Versus Team Lead Versus Lead Developer Versus Engineering Manager
	Day-to-day Responsibilities

	Understanding the Expectations of Your Role
	Read the Job Description
	Reflect on What Applies to You and How
	What If There Is No Job Description?
	Is This Role a Good Fit for Me?

	Common Pathways to Becoming a Tech Lead
	Taking Over the Role on Your Current Team
	Taking Over the Role on Another Team
	Building and Leading a Brand-New Team

	Required Skills and Mindset Shifts
	Technical Skills
	Leadership Skills
	Mindset Changes
	Integrating AI into Your Team

	Key Takeaway

	Chapter 2. How to Become a Tech Lead
	Setting the Foundation for Growth
	Build a Growth Mindset
	Clarify Expectations
	Assess Your Starting Point

	Developing a Personal Growth Plan
	Step 1: Define a Clear Goal
	Step 2: Define the Steps to Get There
	Step 3: Build a Timeline
	Step 4: Build a Support Network
	Step 5: Identify Opportunities and Resources

	Implementing the Growth Plan
	Reflect
	Track Your Progress
	Adjust

	Overcoming Common Initial Challenges
	Time Management
	Avoiding the “Therapist” Trap
	Avoiding Micromanaging
	Balancing Building and Leading

	Key Takeaway

	Chapter 3. Building Relationships
	The Value of Building Strong Relationships
	How to Build Strong Relationships
	Communicate Effectively
	Communicate Constantly
	Be Transparent in Your Communication
	Follow Through on Commitments

	Who to Build Relationships With
	Team Members
	Managers
	Other Stakeholders

	Common Challenges and How to Overcome Them
	It Feels Awkward to Start Conversations
	How Do I Keep Relationships Strong over Time?
	We Just Don’t Speak the Same Language
	Building Relationships as an Introvert

	Key Takeaway

	Chapter 4. Running One-on-Ones with Your Team
	The Value of One-on-Ones
	Make Your Life Easier
	Strengthen Individual Relationships
	Support People’s Growth

	Set Up Your One-on-Ones for Success
	Stick to a Regular Cadence
	Agree on Agenda and Expectations
	Know What Topics to Cover
	Create a Safe Space
	Track Conversations
	Avoid Common One-on-One Pitfalls

	Overcoming Common Challenges
	Nothing to Talk About
	Ground Rules Are Not Respected
	Feeling Pressure to Solve Problems

	Key Takeaway

	Chapter 5. Unlocking the Power of Feedback
	How to Get Useful Feedback from Your Team
	How to Ask for Feedback
	How to Receive Feedback
	What to Do with the Received Feedback

	How to Give Useful Feedback to Your Team
	Understanding the Five Principles of Good Feedback
	How to Give Positive Feedback
	How to Give Constructive Feedback

	Overcoming Common Challenges
	“I have no feedback to give”
	“I cannot get my team to give me constructive feedback”
	Building a Feedback Culture on Your Team

	Key Takeaway

	Chapter 6. Delegating
	Benefits of Delegation
	Gaining Time for You
	Helping Your Team (and Yourself) Grow
	Boosting Team Performance

	Delegation Process: Step-by-Step
	What to Delegate
	Who to Delegate To
	Choose the Right Delegation Strategy
	Set Clear Expectations
	Follow Up
	Stay Accountable

	Why Tech Leads Struggle to Delegate and How to Overcome It
	Afraid of Losing Control
	Worried About the Outcome
	“It’s quicker and easier to just do it myself”
	Afraid of Losing the Credit

	Key Takeaway

	Chapter 7. Building and Scaling Tech Teams
	Recruiting and Onboarding Developers
	Identifying Team Needs
	Effective Recruiting and Interviewing Strategies
	Onboarding Effectively

	Building a High-Performing Team
	Understand the Five Dynamics of a High-Performing Team
	How to Build a Healthy Team Culture
	How to Create Psychological Safety on Your Team
	What Happens When Psychological Safety Is Lost
	How to Evaluate If Your Team Is High-Performing

	How to Approach Performance Reviews
	How to Prepare for Your Own Performance Review
	How to Help Your Team Prepare for Their Reviews
	What to Do After the Review Conversation
	Make Performance Reviews a Continuous Process

	Common Challenges and How to Overcome Them
	Building an Onboarding Process from Scratch
	Enabling Collaboration Inside the Team
	Dealing with Underperformance on the Team

	Key Takeaway

	Chapter 8. Addressing Technical Challenges
	Architectural Strategies and Implementation
	Defining a System Architecture from Scratch
	Improving an Existing System Architecture
	Visualizing a System Architecture
	Defining and Managing Cross-Functional Requirements
	Balancing Innovation and Stability

	Integration and Deployment
	Delivering Value Continuously
	Defining Your Path to Production
	Continuously Testing

	Common Technical Challenges and How to Overcome Them
	Managing Technical Debt
	Dealing with Incidents
	Documentation or No Documentation?

	Key Takeaway

	Chapter 9. Managing Technical Projects
	Aligning Your Team on a Common Tech Strategy
	Build a Technical Vision (and Turn It into a Strategy)
	Help Your Team Make Technical Decisions
	Track Technical Decisions—Architecture Decision Records

	Encouraging Technical Excellence
	Define Team Standards
	Aim for Fast Feedback
	Ensure Quality Through Testing

	Common Project Management Challenges
	Planning and Keeping a Project on Track
	Responding to Project Delays
	Balancing Multiple Streams of Work
	Managing Technical Risk

	Key Takeaway

	Chapter 10. Bringing It All Together: Navigating Technical Leadership
	Developing and Growing Technical Talent
	Assess and Identify Learning Needs
	Tools for Upskilling the Whole Team
	Tools for Upskilling Individuals
	Learning Traps to Help Your Team Avoid

	Managing Stakeholders
	Why You Need to Manage Your Stakeholders
	Identifying Your Stakeholders
	Stakeholder Management Techniques

	Common Challenges in Navigating Technical Leadership
	Getting Stakeholder Buy-In on Technical Topics
	Measuring Success in Technical Leadership
	Balancing the Demands of Tech Leadership to Avoid Burnout

	Key Takeaway

	Chapter 11. Beyond Tech Lead: Charting Your Career Path
	Reflecting on Your Experience as a Tech Lead
	Understand What You Enjoy (and Don’t) About the Role
	Identify Your Strengths and Areas for Improvement as a Leader

	Possible Career Paths After Tech Lead
	Advancing to Engineering Manager
	Specializing as a Staff+ or Architect
	Transitioning to a Technical Program Manager Role
	Getting into Consulting or Advisory Roles

	Planning Your Transition
	Choose Your Next Step with Intention
	Prepare for the Shift
	Remember: You’re Not Locked In

	Key Takeaway
	Wrap-Up

	Index
	About the Author

