$ kubectl get pod jump-pod -o yaml
apiVersion: vl
kind: Pod
metadata:
name: jump-pod
namespace: default
spec:
containers: s,
- image: nigelpoulton/curl:1.0 d =
imagePullPolicy: IfNotPresent &
name: jump-ctr
stdin: true 5
eV ErUe e
volumeMounts:
- mountPath: /var/run/secrets/kubernetes.io/serviceaccount
name: default-token-2g29h
readOnly: true
dnsPolicy: ClusterFirst

THE ;
KUBERNETES
BOOK

2024 Edition Nigel Poult®n

& Pushkar Joglekar

E

B

The Kubernetes Book

Nigel Poulton

This book is for sale at http://leanpub.com/thekubernetesbook
This version was published on 2024-02-03

ISBN 9781916585195

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook using
lightweight tools and many iterations to get reader feedback, pivot until you have the
right book and build traction once you do.

© 2017 - 2024 Nigel Poulton

Tweet This Book!

Please help Nigel Poulton by spreading the word about this book on Twitter!

The suggested tweet for this book is:

[just bought The Kubernetes Book from @nigelpoulton and can’t wait to get into this!
The suggested hashtag for this book is #kubernetes.

Find out what other people are saying about the book by clicking on this link to search
for this hashtag on Twitter:

#kubernetes

Education is about inspiring and creating opportunities. I hope this book, and my video training
courses, inspire you and create lots of opportunities!

A huge thanks to my family for putting up with me. I'm a geek who thinks he’s software running
on midrange biological hardware. I know it’s not easy living with me.

Thanks to everyone who watches my Pluralsight and A Cloud Guru training videos. I love
connecting with you and appreciate all the feedback I've had over the years. This feedback is what
inspired me to write this book. I think you'll love it, and I hope it helps drive your career forward.

@nigelpoulton

Contents

O:Preface 1
Editions Paperbacks, hardbacks, eBooks, audio, and translations 1
The sample app and GitHubrepo 1
WiIindows Users e 2
Responsible language 2

1: Kubernetes primer 3
Important Kubernetes background, 3
Kubernetes: the operating system of thecloud 8
Chapter SUMMAryttt e e e e e e e e 9

2: Kubernetes principlesof operation 10
Kubernetes from 40K feet 10
Control plane and workernodes 12
Packaging apps for Kubernetes 18
The declarative model and desired state 20
Pods. 21
Deployments 25
Service objects and stable networking o oL 25
Chapter SUMMATrY ot ittt e e e e e e e 26

3: Getting Kubernetes 28
Create a Kubernetes clusteronyourlaptop 28
Create a hosted Kubernetes clusterinthecloud 30
Working with kubectl L 33
Chapter summary 35

4:WorkingwithPods 36
Podtheory 36
Multi-container Pods L 45
Hands-onwithPods 47
Cleanup ot e 60

Chapter SUMMATrY it 61

CONTENTS

5: Virtual clusters with Namespaces 62
Introto Namespaces 62
Namespace use caseso v vttt 63
Default Namespaces oo v vttt 64
Creating and managing Namespaces 65
Deploying objects to Namespaces 67
Cleanup oo 68
Chapter Summary 69

6: Kubernetes Deployments 70
Deployment theory 70
CreateaDeployment 79
Manually scaletheapp. e 83
Performarollingupdate 84
Performarollback 89
Cleanup oo 92
Chapter SUMMATIYo o ittt e e e 92

7:Kubernetes Services 94
Service Theory 94
Hands-onwith Services 101
Cleanup o ot e 107
Chapter SUMMATrY it e 107

8:Ingress e 108
Setting the Scene forIngress 108
Ingress architecture 109
Hands-onwith Ingress 110
Cleanup oo 121
Chapter sSUummaryttt e 122

9: WebAssembly on Kubernetes 123
Wasm Primer 124
Understanding Wasm on Kubernetes 126
Hands-on with Wasm on Kubernetes 130
Chapter SUMMATrY i 141

10: Service discovery deepdive 143
Settingthescene 143
The service re@istry o ot i 145
Service registration 147
Service discovery 148
Service discovery and Namespaces 151

Troubleshooting service discovery 157

CONTENTS

Cleanup o o 159
Chapter summaryottt 159
11: Kubernetes storage 160
Thebigpicture e 160
Storage Providers 162
The Container Storage Interface (CSI) 163
The Kubernetes persistent volume subsystem 163
Dynamic provisioning with Storage Classes 164
Hands-on e 168
Cleanupo 174
Chapter Summary 175
12: ConfigMapsand Secrets 176
Thebigpicture 177
ConfigMaptheory 178
Hands-on with ConfigMaps 181
Hands-onwith Secrets 191
Cleanup o o 196
Chapter Summary 196
13: StatefulSets e 197
StatefulSettheory 197
Hands-on with StatefulSets 202
Cleanup 212
Chapter SUMMATrY it e 213
14: APIsecurityand RBAC 214
APl security bigpicture 214
Authentication e 215
Authorization (RBAQC) 217
Admission control 225
Chapter summaryottt 226
15: The Kubernetes API e 228
Kubernetes API bigpicture 228
The APIserver e 232
The APL e 238
Cleanup o o e 248
Chapter SUMMArYt ittt e e e e e e 249
16: Threat modeling Kubernetes 251
Threat modeling 251

Spoofing 251

CONTENTS

Tampering oL 254
Repudiation 256
Information Disclosure 258
Denial of Service 259
Elevationof privilege 262
Chapter SUMMArY ot ittt it e e e e e 273
17: Real-world Kubernetes security 274
Security in the software delivery pipeline 274
Workload isolation 280
Identity and access management (IAM) 285
Security monitoringand auditingo oL 286
Real-worldexample 290
Chapter sSUMMArYt ittt e e e e e 290
Terminology 291
Outro. e 298
About the frontcover 298
A word on the book’s diagrams 298
Connectwithme 299
Feedback andreviews 299

0: Preface

Kubernetes is developing fast, so I update the book every year. And when I say update,
[mean real updates — I review every word and every concept, and test every example
against the latest versions of Kubernetes. I'm 100% committed to making this the best
Kubernetes book in the world.

As an author, I'd love to write a book and never touch it again for five years. Unfortu-
nately, a two-year-old book on Kubernetes could be dangerously out of date.

Editions Paperbacks, hardbacks, eBooks, audio, and
translations

The following editions of the book are available:

« Paperback: English, Simplified Chinese, Spanish, Portuguese
+ Hardback: English
+ eBook: English, Russian, Spanish, Portuguese

eBook copies are available on Kindle and from Leanpub.
The following collector’s editions are available. Each has a themed front cover, but the
content is exactly the same as the regular English-language edition.

+ Klingon paperback

+ Borg hardback

+ Sterfleet paperback

The sample app and GitHub repo

There’s a GitHub repo with all the YAML and code used throughout the book.

You can clone it with the following command. You'll need git installed. This will create
anew folder in your current working directory called Thek8sBook with all the files you
need to follow the examples.

0: Preface 2

$ git clone https://github.com/nigelpoulton/TheK8sBook.git

Don'’t stress if you've never used git. The book walks you through everything you need
to do.

Windows users

Almost all of the commands in the hands-on sections work on Linux, Mac, and Win-
dows. However, a small number require slight changes to work on Windows. Whenever
this is the case, I explain what you need to do to make them work on Windows.

However, to prevent myself from repeating the same thing too often, I don’t always tell
Windows users to replace backslashes with backticks for linebreaks. With this in mind,
Windows users should do one of the following every time the book splits a command
over multiple lines using backslashes:

» Remove the backslash and run the command on a single line
+ Replace the backslash with a backtick

All other changes are explained in full every time.

Responsible language

The book follows Inclusive Naming Initiative (inclusivenaming.org) guidelines, which
attempt to avoid harmful terms and promote responsible language.

1: Kubernetes primer

This chapter gets you up-to-speed with the basics and background of Kubernetes and is
divided as follows:

+ Important Kubernetes background

+ Kubernetes: the Operating System of the cloud

Important Kubernetes background

Kubernetes is an orchestrator of containerized cloud-native microservices apps.

That’s a lot of jargon, so let’s explain things.

Orchestration

An orchestrator is a system or platform that deploys applications and dynamically
responds to changes. For example, Kubernetes can:

+ Deploy applications

+ Scale them up and down based on demand

+ Self-heal them when things break

+ Perform zero-downtime rolling updates and rollbacks

+ Lots more
The best part is that it does all of this without you having to get involved. You need to

configure a few things in the first place, but once you've done that, you sit back and let
Kubernetes work its magic.

Containerization

Containerization is the process of packaging an application and dependencies as an image
and then running it as a container.

1: Kubernetes primer 4

It can be useful to think of containers as the next generation of virtual machines (VM).
Both are ways of packaging and running applications, but containers are smaller, faster,
and more portable.

Despite these advantages, containers haven'’t replaced VMs, and it’s common for them to
run side-by-side in most cloud-native environments. However, containers are the first-
choice solution for most new applications.

Cloud native

Cloud-native applications possess cloud-like features such as auto-scaling, self-healing,
automated updates, rollbacks, and more.

Simply running a regular application in the public cloud does not make it cloud-native.

Microservices

Microservices applications are built from many small, specialized, independent parts that
work together to form a useful application.

Consider an e-commerce app with the following six features:

+ Web front-end
+ Catalog

+ Shopping cart
+ Authentication
» Logging

- Store

To make this a microservices app, you design, develop, deploy, and manage each feature
as its own small application. We call each of these small apps a microservice, meaning this
app will have six microservices.

This design brings huge flexibility by allowing all six microservices to have their own
small development teams and their own release cycles. It also lets you scale and update
each one independently.

The most common pattern is to deploy each microservice as its own container. This
means one or more web front-end containers, one or more catalog containers, one or
more shopping cart containers, etc. Scaling any part of the app is as simple as adding or
removing containers.

Now that we've explained a few things, let’s re-write that jargon-filled sentence from the
start of the chapter.

1: Kubernetes primer 5

The original sentence read; “Kubernetes is an orchestrator of containerized cloud-native
microservices apps.” We now know this means: Kubernetes deploys and manages applications
that are packaged as containers and can easily scale, self-heal, and be updated.

That should clarify some of the main industry jargon. But don’t worry if some of it still
needs to be clarified; we'll cover everything again in much more detail throughout the
book.

Where did Kubernetes come from

Kubernetes was developed by a group of Google engineers partly in response to Amazon
Web Services (AWS) and Docker.

AWS changed the world when it invented modern cloud computing, and everyone
needed to catch up.

One of the companies catching up was Google. They’d built their own cloud but needed
a way to abstract the value of AWS and make it as easy as possible for customers to get
off AWS and onto their cloud. They also ran production apps, such as Search and Gmail,
on billions of containers per week.

At the same time, Docker was taking the world by storm, and users needed help
managing explosive container growth.

While all this was happening, a group of Google engineers took the lessons they'd
learned using their internal container management tools and created a new tool called
Kubernetes. In 2014, they open-sourced Kubernetes and donated it to the newly formed
Cloud Native Computing Foundation (CNCF)!.

CLOUD NATIVE

COMPUTING FOUNDATION

At the time of writing, Kubernetes is ~10 years old and has experienced incredible
growth and adoption. However, at its core, it still does the two things Google and the
rest of the industry need:

1. It abstracts infrastructure (such as AWS)
2. It simplifies moving applications between clouds

These are two of the biggest reasons Kubernetes is important to the industry.

Thttps://www.cncf.io

1: Kubernetes primer

Kubernetes and Docker

All of the early versions of Kubernetes shipped with Docker and used it as its runtime.
This means Kubernetes used Docker for low-level tasks such as creating, starting, and
stopping containers. However, two things happened:

1. Docker got bloated

2. People created lots of Docker alternatives

As a result, the Kubernetes project created the container runtime interface (CRI) to make
the runtime layer pluggable. This means you can pick and choose the best runtimes
for your needs. For example, some runtimes provide better isolation, whereas others
provide better performance.

Kubernetes 1.24 finally removed support for Docker as a runtime as it was bloated
and overkill for what Kubernetes needed. Since then, most new Kubernetes clusters
ship with containerd (pronounced “container dee”) as the default runtime. Fortunately,
containerd is a stripped-down version of Docker optimized for Kubernetes, and it
fully supports applications containerized by Docker. In fact, Docker, containerd, and
Kubernetes all work with images and containers that implement the Open Container
Initiative (OCI)? standards.

Figure 1.2 shows a four-node cluster running multiple container runtimes.

Cluster ‘
@

@ gVisor :nntainerm :nntainerm :nntainerm

B ata Qspin | | OQsPIN

Figure 1.2

Notice how some of the nodes have multiple runtimes. Configurations like this are
fully supported and increasingly common. You'll work with a configuration like this in
Chapter 14 when you deploy a WebAssembly (Wasm) app to Kubernetes.

thtps:/ /opencontainers.org

1: Kubernetes primer 7

What about Docker Swarm

In 2016 and 2017, Docker Swarm, Mesosphere DCOS, and Kubernetes competed to
become the industry standard container orchestrator. Kubernetes won.

However, Docker Swarm remains under active development and is popular with small
companies wanting a simple alternative to Kubernetes.

Kubernetes and Borg: Resistance is futile!

We already said that Google has been running containers at massive scale for a very long
time. Well, orchestrating these billions of containers were two in-house tools called Borg
and Omega. So, it’s easy to make the connection with Kubernetes — all three orchestrate
containers at scale, and all three are related to Google.

However, Kubernetes is not an open-source version of Borg or Omega. It's more like
Kubernetes shares its DNA and family history with them.

Google Google CLOUD NATIVE

COMPUTING FOUNDATION

Borg Omega Kubernetes
(Proprietary) (Proprietary) (open-source)

Figure 1.3 - Shared DNA

As things stand, Kubernetes is an open-source project owned by the CNCEF. It’s licensed
under the Apache 2.0 license, version 1.0 shipped way back in July 2015, and at the time
of writing, we're already at version 1.29 and averaging three new releases per year.

Kubernetes — what's in the name

Most people pronounce Kubernetes as “koo-ber-net-eez”, but the community is very
friendly, and people won’t mind if you pronounce it differently.

1: Kubernetes primer 8

The word Kubernetes originates from the Greek word for helmsman or the person who
steers a ship. You can see this in the logo, which is a ship’s wheel.

Figure 1.4 - The Kubernetes logo

Some of the original engineers wanted to call Kubernetes Seven of Nine after the famous
Borg drone from the TV series Star Trek Voyager. Copyright laws wouldn’t allow this, so
they gave the logo seven spokes as a subtle reference to Seven of Nine.

One last thing about the name. You'll often see it shortened to K8 and pronounced as

“kates”. The number 8 replaces the eight characters between the “K” and the “s”.

Kubernetes: the operating system of the cloud

Kubernetes is the de facto platform for cloud-native applications, and we sometimes

call it the operating system (OS) of the cloud. This is because Kubernetes abstracts the
differences between cloud platforms the same way that operating systems like Linux and
Windows abstract the differences between servers:

+ Linux and Windows abstract server resources and schedule application processes

+ Kubernetes abstracts cloud resources and schedules application microservices

As a quick example, you can schedule applications to Kubernetes without caring if it’s
running on AWS, Azure, Civo Cloud, GCP, or your on-premises datacenter. This makes
Kubernetes a key enabler for:

+ Hybrid cloud
+ Multi-cloud

+ Cloud migrations

In summary, Kubernetes makes it easier to deploy to one cloud today and migrate to
another cloud tomorrow.

1: Kubernetes primer 9

Application scheduling

One of the main things an OS does is simplify the scheduling of work tasks.

Computers are complex collections of hardware resources such as CPU, memory,
storage, and networking. Thankfully, modern operating systems hide most of this and
make the world of application development a far friendlier place. For example, how
many developers need to care which CPU core, memory DIMM, or flash chip their code
uses? Most of the time, we leave it up to the OS.

Kubernetes does a similar thing with clouds and datacenters.

At a high level, a cloud or datacenter is a complex collection of resources and services.
Kubernetes can abstract a lot of these and make them easier to consume. Again, how
often do you need to care about which compute node, which failure zone, or which
storage volume your app uses? Most of the time, we're happy to let Kubernetes decide.

Chapter summary

Kubernetes was created by Google engineers based on lessons learned running contain-
ers at hyper-scale for many years. It was donated to the community as an open-source
project and is now the industry standard platform for deploying and managing cloud-
native applications. It runs on any cloud or on-premises datacenter and abstracts the
underlying infrastructure. This allows you to build hybrid clouds, as well as migrate on,
off, and between different clouds. It's open-sourced under the Apache 2.0 license and is
owned and managed by the Cloud Native Computing Foundation (CNCF).

Don’t be afraid of all the new terminology. I'm here to help, and you can reach me at any
of the following:

+ Twitter: @nigelpoulton
« LinkedIn: linkedin.com/in/nigelpoulton/
« Mastodon: @nigelpoulton@hachyderm.io
+ Web: nigelpoulton.com

+ Email: tkb@nigelpoulton.com

2: Kubernetes principles of operation

This chapter introduces you to major Kubernetes technologies and prepares you for
upcoming chapters. You're not expected to be an expert at the end of this chapter.

We'll cover all of the following:

+ Kubernetes from 40K feet

+ Control plane nodes and worker nodes
+ Packaging apps for Kubernetes

¢ The declarative model and desired state
+ Pods

+ Deployments

« Services

Kubernetes from 40K feet

Kubernetes is both of the following:

o A cluster

« An orchestrator

Kubernetes: Cluster

A Kubernetes cluster is one or more nodes providing CPU, memory, and other resources
for use by applications.

Kubernetes supports two node types:

+ Control plane nodes

« Worker nodes

Both types can be physical servers, virtual machines, or cloud instances, and both can
run on ARM and AMD64/x86-64. Control plane nodes must be Linux, but worker
nodes can be Linux or Windows.

2: Kubernetes principles of operation 11

Control plane nodes implement the Kubernetes intelligence, and every cluster needs at
least one. However, you should have three or five for high availability (HA).

Every control plane node runs every control plane service. These include the API server,
the scheduler, and the controllers that implement cloud-native features such as self-
healing, autoscaling, and rollouts.

Worker nodes are for running user applications.

Figure 2.1 shows a cluster with three control plane nodes and three workers.

Cluster “

QQQ{API} ﬂQQ{API} QQQ{APU <Apps> <Apps> <Apps>
— ——a— T —w T

]]] 1]
l]| J
Control plane nodes Worker nodes
(System services) (User apps)
Figure 2.1

It's common to run user applications on control plan nodes in development and test
environments. However, many production environments restrict user applications to
worker nodes so that control plane nodes can focus entirely on cluster operations.

Control plane nodes can also run user applications, but you should probably force user
applications to run on worker nodes in production environments. Doing this allows
control plane nodes to focus on managing the cluster.

Kubernetes: Orchestrator

Orchestrator is jargon for a system that deploys and manages applications.

Kubernetes is the industry-standard orchestrator and can intelligently deploy applica-
tions across nodes and failure zones for optimal performance and availability. It can
also fix them when they break, scale them when demand changes, and manage zero-
downtime rolling updates.

That’s the big picture. Let’s dig a bit deeper.

2: Kubernetes principles of operation

Control plane and worker nodes

12

We already said a Kubernetes cluster is one or more control plane nodes and worker nodes.

Control plane nodes have to be Linux, but workers can be Linux or Windows.

Almost all cloud-native apps are Linux and will run on Linux worker nodes. However,
you'll need one or more worker nodes running Windows if you have cloud-native
Windows apps. Fortunately, a single Kubernetes cluster can have a mix of Linux and
Windows worker nodes, and Kubernetes is intelligent enough to schedule apps to the

correct nodes.

The control plane

The control plane is a collection of system services that implement the brains of Kuber-
netes. It exposes the API, schedules tasks, implements self-healing, manages scaling

operations, and more.

The simplest setups run a single control plane node and are best suited for labs and

testing. However, as previously mentioned, you should run three or five control plane
nodes in production environments and spread them across availability zones for high

availability, as shown in Figure 2.2

Fault zone A

As previously mentioned, it’s sometimes considered a production best practice to run
all user apps on worker nodes, allowing control plane nodes to allocate all resources to

cluster-related operations.

Most clusters run every control plane service on every control plane node for HA.

Fe|VM|D
*

]
Ctl plane node 2

Fault zone B

Figure 2.2 Control plane high availability

Fault zone C

2: Kubernetes principles of operation 13

Let’s take a look at the services that make up the control plane.

The API server

The API server is the front end of Kubernetes, and all requests to change and query the
state of the cluster go through it. Even internal control plane services communicate with
each other via the API server.

It exposes a RESTful API over HTTPS, and all requests are subject to authentication and
authorization. For example, deploying or updating an app follows this process:

. Describe the requirements in a YAML configuration file

. Post the configuration file to the API server

1

2

3. The request will be authenticated and authorized
4. The updates will be persisted in the cluster store
5

. The updates will be scheduled to the cluster

The cluster store

The cluster store holds the desired state of all applications and cluster components and
is the only stateful part of the control plane.

It’s based on the etcd distributed database, and most Kubernetes clusters run an etcd
replica on every control plane node for HA. However, large clusters that experience a
high rate of change may run a separate etcd cluster for better performance.

Be aware that a highly available cluster store is not a substitute for backup and recovery.
You still need adequate ways to recover the cluster store when things go wrong.

Regarding availability, etcd prefers an odd number of replicas to help avoid split brain
conditions. This is where replicas experience communication issues and cannot be sure
if they have a quorum (majority).

Figure 2.3 shows two etcd configurations experiencing a network partition. The cluster
on the left has four nodes and is experiencing a split brain with two nodes on either side
and neither having a majority. The cluster on the right only has three nodes but is not
experiencing a split-brain as Node A knows it does not have a majority, whereas Node B
and Node C know they do.

2: Kubernetes principles of operation 14

Betcd . Betcd

| NodeA NodeB Node C Node D : i Node A Node C NodeD ,
No majority No majority No majority Majority

Figure 2.3. HA and split brain conditions

If a split-brain occurs, etcd goes into read-only mode preventing updates to the cluster.
User applications will continue working, you just won’t be able to make cluster updates,
such as adding or modifying apps and services.

As with all distributed databases, consistency of writes is vital. For example, multiple
writes to the same value from different sources need to be handled. etcd uses the RAFT
consensus algorithm for this.

Controllers and the controller manager

Kubernetes uses controllers to implement a lot of the cluster intelligence. They all run on
the control plane, and some of the more common ones include:

+ The Deployment controller
+ The StatefulSet controller
+ The ReplicaSet controller

Others exist, and we’ll cover some of them later in the book. However, they all run as
background watch loops, reconciling observed state with desired state.

That’s a lot of jargon, and we'll cover it in detail later in the chapter. But for now, it
means controllers ensure the cluster runs what you asked it to run. For example, if
you ask for three replicas of an app, a controller will ensure three healthy replicas are
running and take appropriate actions if they aren'’t.

Kubernetes also runs a controller manager that is responsible for spawning and managing
the individual controllers.

Figure 2.4 gives a high-level overview of the controller manager and controllers.

2: Kubernetes principles of operation 15

db
~—1] Controller
manager

Deployment Other
controller controllers...
App 1 App 2

Want: 5 replicas Q Want: 3 replicas Q
Got: 5 replicas Got: 3 replicas

Figure 2.4. Controller manager and controllers

The scheduler

The scheduler watches the API server for new work tasks and assigns them to healthy
worker nodes.

It implements the following process:

1. Watch the API server for new tasks
2. Identify capable nodes
3. Assign tasks to nodes

Identifying capable nodes involves predicate checks, filtering, and a ranking algorithm.
It checks for taints, affinity and anti-affinity rules, network port availability, and
available CPU and memory. It ignores nodes incapable of running the tasks and ranks
the remaining ones according to factors such as whether it already has the required
image, the amount of available CPU and memory, and number of tasks it’s currently
running. Each is worth points, and the nodes with the most points are selected to run
the tasks.

The scheduler marks tasks as pending if it can’t find a suitable node.

If the cluster is configured for node autoscaling, the pending task kicks off a cluster
autoscaling event that adds a new node and schedules the task to the new node.

2: Kubernetes principles of operation 16

The cloud controller manager

If your cluster is on a public cloud, such as AWS, Azure, GCP, or Civo Cloud, it will run
a cloud controller manager that integrates the cluster with cloud services, such as instances,
load balancers, and storage. For example, if you're on a cloud and an application
requests a load balancer, the cloud controller manager provisions one of the cloud’s load
balancers and connects it to your app.

Control Plane summary

The control plane implements the brains of Kubernetes, including the API Server, the
scheduler, and the cluster store. It also implements controllers that ensure the cluster
runs what we asked it to run.

Figure 2.5 shows a high-level view of a Kubernetes control plane node.

Ctl

api

@ m C'J Controllers
sched ctrl

Q Cluster

[\iasp store

5 Linux
> VM Fe

Figure 2.5 - Control plane node

You should run three or five control plane nodes for high availability, and large busy
clusters might run a separate etcd cluster for better cluster store performance.

The API server is the Kubernetes frontend, and all communication passes through it.

Worker nodes

Worker nodes are for running user applications and look like Figure 2.6.

2: Kubernetes principles of operation 17

&

K ||m®|| &

Kubelet Runtime Network proxy
(kube-proxy)

A == Linux or Windows

> VM Fe

Figure 2.6 - Worker node

Let’s look at the major worker node components.

Kubelet

The kubelet is the main Kubernetes agent and handles all communication with the
cluster.

It performs the following key tasks:

+ Watches the API server for new tasks
« Instructs the appropriate runtime to execute tasks

+ Reports the status of tasks to the API server

If a task won’t run, the kubelet reports the problem to the API server and lets the control
plane decide what actions to take.

Runtime

Every worker node has one or more runtimes for executing tasks.
Most new Kubernetes clusters pre-install the containerd runtime and use it to execute
tasks. These tasks include:

+ Pulling container images

» Managing lifecycle operations such as starting and stopping containers

2: Kubernetes principles of operation 18

Older clusters shipped with the Docker runtime, but this is no longer supported. RedHat
OpenShift clusters use the CRI-O runtime. Lots of others exist, and each has its pros
and cons.

We'll use some different runtimes in the Wasm chapter.

Kube-proxy

Every worker node runs a kube-proxy service that implements cluster networking and
load balances traffic to tasks running on the node.

Now that you understand the fundamentals of the control plane and worker nodes, let’s
switch gears and see how to package applications to run on Kubernetes.

Packaging apps for Kubernetes

Kubernetes runs containers, VMs, Wasm apps, and more. However, they all have to be
wrapped in Pods to run on Kubernetes.

We'll cover Pods shortly, but for now, think of them as a thin wrapper that abstracts
different types of tasks so they can run on Kubernetes. The following courier analogy
might help.

Couriers allow you to ship books, clothes, food, electrical items, and more, so long as
you use their approved packaging and labels. Once you've packaged and labeled your
goods, you hand them to the courier for delivery. The courier then handles the complex
logistics of which planes and trucks to use, secure hand-offs to local delivery hubs, and
eventual delivery to the customer. They also provide services for tracking packages,
changing delivery details, and attesting successful delivery. All you have to do is package
and label the goods.

Running apps on Kubernetes is similar. Kubernetes can run containers, VMs, Wasm
apps and more, so long as you wrap them in Pods. Once wrapped in a Pod, you give the
app to Kubernetes, and Kubernetes runs it. This includes the complex logistics of choos-
ing appropriate nodes, joining networks, attaching volumes, and more. Kubernetes even
lets you query apps and make changes.

Consider a quick example.

You write an app in your favorite language, containerize it, push it to a registry, and
wrap it in a Pod. At this point, you can give the Pod to Kubernetes, and Kubernetes
will run it. However, most of the time you’ll use a higher-level controller to deploy
and manage Pods. To do this, you wrap the Pod inside a controller object such as a
Deployment.

2: Kubernetes principles of operation 19

Don’t worry about the details yet, we'll cover everything in a lot more depth and with
lots of examples later in the book. Right now, you only need to know two things:

1. Apps need to be wrapped in Pods to run on Kubernetes
2. Pods are normally wrapped in higher-level controllers for advanced features

Let’s quickly go back to the courier analogy to help explain the role of controllers.

Most couriers offer additional services such as insurance for the goods you're shipping,
signature and photographic proof of delivery, express delivery services, and more. All of
these add value to the service.

Again, Kubernetes is similar. It implements controllers that add value, such as ensuring
the health of apps, automatically scaling when demand increases, and more.

Figure 2.7 shows a container wrapped in a Pod, which, in turn, is wrapped in a Deploy-
ment. Don’t worry about the YAML configuration yet, it’s just there to seed the idea.

apiversion: apps/vl

kind: Deployment
metadata:
Scaling, self-healing, updates... name: hello-world

spec:
replicas: 10

Y Kubernetes atomic unit of éi;rategy:

<
scheduling v .

€ type: RollingUpdate
u]]]m]) rollingUpdate:

(]

a

App and . template:
dependencies spec:
containers:

- name: hello-world
image: ../k8sbook:1.0
ports:

- containerPort: 8080

Pod

Container

Figure 2.7 - Object nesting
The important thing to understand is that each layer of wrapping adds something:

¢ The container wraps the app and provides dependencies

+ The Pod wraps the container so it can run on Kubernetes

+ The Deployment wraps the Pod and adds self-healing, scaling, and more
You post the Deployment (YAML file) to the API server as the desired state of the

application, and Kubernetes implements it.

Speaking of desired state...

2: Kubernetes principles of operation 20

The declarative model and desired state

The declarative model and desired state are at the core of how Kubernetes operates. They
operate on three basic principles:

« Observed state
« Desired state
» Reconciliation

Observed state is what you have, desired state is what you want, and reconciliation is the
process of keeping observed state in sync with desired state.

Terminology: We use the terms actual state, current state, and observed state to
mean the same thing — the most up-to-date view of the cluster.

In Kubernetes, the declarative model works like this:

1. You describe the desired state of an application in a YAML manifest file
2. You post the YAML file to the API server

3. It gets recorded in the cluster store as a record of intent

4

. A controller notices the observed state of the cluster doesn’t match the new
desired state

9]

. The controller makes the necessary changes to reconcile the differences

6. The controller keeps running in the background, ensuring observed state matches
desired state

Let’s have a closer look.

You write manifest files in YAML that tell Kubernetes what an application should look
like. We call this desired state, and it usually includes things such as which images to use,
how many replicas, and which network ports.

Once you've created the manifest, you post it to the API server where it’s authenticated
and authorized. The most common way of posting YAML files to Kubernetes is with the
kubectl command-line utility.

Once authenticated and authorized, the configuration is persisted to the cluster store as
arecord of intent.

At this point, the observed state of the cluster doesn’t match your new desired state.
A controller will notice this and begin the process of reconciliation. This will involve
making all the changes described in the YAML file and is likely to include scheduling

2: Kubernetes principles of operation 21

new Pods, pulling images, starting containers, attaching them to networks, and starting
application processes.

Once reconciliation is completed, observed state will match desired state, and every-
thing will be OK. However, the controllers keep running in the background, ready to
reconcile any future differences.

It’s important to understand that what we’ve described is very different from the
traditional imperative model:

+ The imperative model requires complex scripts of platform-specific commands to
achieve an end-state

+ The declarative model is a simple platform-agnostic way of describing an end state

Kubernetes supports both but prefers the declarative model. This is because the declara-
tive model integrates with version control systems and enables self-healing, autoscaling,
and rolling updates.

Consider a couple of simple declarative examples.

Assume you've deployed an app from a YAML file requesting ten replicas. If a node
running two of the replicas fails, the observed state will drop to 8 replicas and no
longer match the desired state of 10. That’s OK, a controller will see the difference and
schedule 2 new replicas to bring the total back up to 10.

The same will happen for an app update. For example, if you update the YAML, telling
the app to use an updated image and post the change to Kubernetes, the relevant
controller will notice the difference and replace the replicas running the old version
with new replicas running the new version.

If you try to perform an update like this imperatively, you'll need to write complex
scripts to manage, monitor, and heath-check the entire update process. To do it declar-
atively, you only need to change a single line of YAML and Kubernetes does everything
else.

This is extremely powerful and fundamental to the way Kubernetes works.

Pods

The atomic unit of scheduling in the VMware world is the virtual machine (VM). In the
Docker world, it’s the container. In Kubernetes, it’s the Pod.

Yes, Kubernetes runs containers, VMs, Wasm apps, and more. But they all need to be
wrapped in Pods.

2: Kubernetes principles of operation 22

Pods and containers

The simplest configurations run a single container per Pod, which is why we sometimes
use the terms Pod and container interchangeably. However, there are powerful use cases
for multi-container Pods, including:

+ Service meshes
+ Helper services that initialize app environments

+ Apps with tightly coupled helper functions such as log scrapers

Figure 2.8 shows a multi-container Pod with a main application container and a service
mesh sidecar. Sidecar is jargon for a helper container that runs in the same Pod as the
main app container and provides services to it. In Figure 2.8, the service mesh sidecar
encrypts network traffic coming in and out of the main app container and provides
telemetry.

App Service mesh
(Main) (Sidecar

)
¢ N d— Network |

traffic

Figure 2.8 - Multi-container service mesh Pod

Multi-container Pods also help us implement the single responsibility principle where
every container performs a single simple task. In Figure 2.8, the main app container
might be serving a message queue or some other core application feature. Instead of
adding the encryption and telemetry logic into the main app, we keep the app simple
and implement it in the service mesh container running alongside it in the same Pod.

Pod anatomy

Each Pod is a shared execution environment for one or more containers. The execution
environment includes a network stack, volumes, shared memory, and more.

Containers in a single-container Pod have the execution environment to themselves,
whereas containers in a multi-container Pod share it.

As an example, Figure 2.9 shows a multi-container Pod with both containers sharing
the Pods IP address. The main application container is accessible outside the Pod on

2: Kubernetes principles of operation 23

10.0.10.15:8080, and the sidecar is accessible on 10.0.10.15:5005. If they need to
communicate with each other, container-to-container within the Pod, they can use the
Pod’s localhost interface.

\

Localhost

Main)
container Sidecar

L 10.0.10.15 J

Figure 2.9 - Multi-container Pod sharing Pod IP

You should choose a multi-container Pod when your application has tightly coupled
components needing to share resources such as memory or storage. In most other cases,
you should use single-container Pods and loosely couple them over the network.

Pod scheduling

All containers in a Pod are always scheduled to the same node. This is because Pods are
a shared execution environment, and you can’t easily share memory, networking, and
volumes across nodes.

Starting a Pod is also an atomic operation. This means Kubernetes only ever marks a Pod
as running when all its containers are started. For example, if a Pod has two containers
and only one is started, the Pod is not ready.

Pods as the unit of scaling

Pods are the minimum unit of scheduling in Kubernetes. As such, scaling an application
up adds more Pods and scaling it down deletes Pods. You do not scale by adding more
containers to existing Pods. Figure 2.10 shows how to scale the web-fe microservice
using Pods as the unit of scaling.

2: Kubernetes principles of operation 24

web-fe

web-fe

web-fe

web-fe

Figure 2.10 - Scaling with Pods

Pod lifecycle

Pods are mortal — they're created, they live, and they die. Anytime one dies, Kubernetes
replaces it with a new one. Even though the new one looks, smells, and feels the same as
the old one, it’s always a shiny new one with a new ID and new IP.

This forces you to design applications to be loosely coupled and immune to individual
Pod failures.

Pod immutability

Pods are immutable. This means you never change them once they’re running.

For example, if you need to change or update a Pod, you should always replace it with
anew one running the updates. You should never log on to a Pod and change it. This
means any time we talk about “updating Pods”, we always mean deleting the old one and
replacing it with a new one. This can be a huge mindset change for some of us, but it fits
nicely with modern tools and GitOps-style workflows.

2: Kubernetes principles of operation 25

Deployments

Even though Kubernetes works with Pods, you'll almost always deploy them via higher-
level controllers such as Deployments, StatefulSets, and DaemonSets. These all run on the
control plane and operate as background watch loops, reconciling observed state with
desired state.

Deployments add self-healing, scaling, rolling updates, and versioned rollbacks to
stateless apps.

Refer back to Figure 2.7 to see how Deployments wrap Pods.

Service objects and stable networking

Earlier in the chapter, we said that Pods are mortal and can die. However, if they're
managed by a controller, they get replaced by new Pods with new IDs and new IP
addresses. The same thing happens with rollouts and scaling operations:

+ Rollouts replace old Pods with new ones with new IPs
+ Scaling up adds new Pods with new IPs

+ Scaling down deletes existing Pods.

Events like these generate IP churn and make Pods unreliable. For example, clients
cannot make reliable connections to individual Pods as the Pods are not guaranteed to
be there.

This is where Kubernetes Services come into play by providing reliable networking for
groups of Pods.

Figure 2.11 shows internal and external clients connecting to a group of Pods via
a Kubernetes Service. The Service (capital “S” because it’s a Kubernetes API object)
provides a reliable name and IP and load balances requests to the Pods behind it.

2: Kubernetes principles of operation 26

[\ 7

pod pod

[| |0 | (]
v

Name: back-end
IP:172.16.1.43
Port: 4434

Figure 2.11

You should think of Services as having a front end and a back end. The front end has
a DNS name, IP address, and network port. The back end uses labels to load balance
traffic across a dynamic set of Pods.

Services keep a list of healthy Pods as scaling events, rollouts, and failures cause Pods to
come and go. This means they’ll always load balance traffic across active healthy Pods.
The Service also guarantees the name, IP, and port on the front end will never change.

Chapter summary

This chapter introduced you to some of the major Kubernetes features.

Control plane nodes host the control plane services that implement the intelligence of
Kubernetes. They can be physical servers, VMs, cloud instances, and more. Production
clusters usually run three or five control plane nodes for high availability.

Control plane services include the API server, the scheduler, the cluster store, and
controllers.

2: Kubernetes principles of operation 27

Worker nodes are for running user applications and can also be physical servers, VMs,
cloud instances, and more.

Every worker node runs the kubelet service that watches the API server for new work
tasks and reports back on task status.

Worker nodes also have one or more runtimes and the kube-proxy service. Runtimes
perform low-level operations such as starting and stopping containers and Wasm apps.
The kube-proxy handles all networking tasks on the node.

You learned that Kubernetes supports declarative and imperative methods of deploying
and managing apps but prefers the declarative method. This is where you describe

your desired state in a YAML configuration file that you give to Kubernetes and leave
Kubernetes to deploy and manage it. Controllers run on the control plane and reconcile
observed state with desired state.

You also learned about Pods, Deployments, and Services. Pods allow containers and
other workloads to run on Kubernetes. Deployments add self-healing, scaling, and
rollouts. Services add reliable networking and basic load-balancing.

3: Getting Kubernetes

This chapter shows a couple of ways to get a Kubernetes cluster you can use to follow
the hands-on examples throughout the book.

You'll learn how to:

1. Create a Kubernetes cluster on your laptop (free)

2. Create a hosted Kubernetes cluster in the cloud (costs money)

There are lots of ways to get Kubernetes, and we can’t cover them all. However, I've
hand-picked two that are easy and will allow you to follow most of the examples in the
book. You can use other clusters, but some of the hands-on examples may have small
and subtle differences.

The laptop example builds a single-node Kubernetes cluster in Docker Desktop. |
recommend this option for most readers, as it’s free?, and you can follow almost all the
examples.

The cloud example builds a production-grade Google Kubernetes Engine (GKE) cluster in
the Google Cloud. It’s easy to build and work with, but it costs money! Only use this
option if you are okay with spending money.

Create a Kubernetes cluster on your laptop

This section walks you through building a single-node Kubernetes cluster with Docker
Desktop.

You'll complete the following steps to build the cluster:

+ Install Docker Desktop
+ Enable Docker Desktop’s built-in Kubernetes cluster

o Test your cluster

3Docker Desktop is free for personal and educational use. If you use it for work, and your company has
more than 250 employees or does more than $10M USD in annual revenue, you have to pay for a license.

3: Getting Kubernetes 29

Install Docker Desktop

Docker Desktop is the easiest way to get Docker, Kubernetes, and kubectl on your
laptop. You also get a nice UI that makes switching between kubectl contexts easy.

kubectl is the Kubernetes command line utility, and you'll need it for all the examples
in the book.

A kubectl context is a collection of settings telling kubectl which cluster to issue com-
mands to and which credentials to authenticate with. You'll learn more about them later.

Complete the following simple steps to install Docker Desktop:

1. Search the web for Docker Desktop
2. Download the installer for your system (Linux, Mac, or Windows)

3. Fire up the installer and follow the next, next, next instructions

Windows users should install the WSL 2 subsystem when prompted.

After the installation, you may need to start the app manually. Mac users get a whale
icon in the menu bar at the top while running, whereas Windows users get the whale
in the system tray at the bottom. Clicking the whale exposes some basic controls and
shows whether Docker Desktop is running.

Open a terminal and run the following commands to ensure Docker and kubect1l are
installed and working.

$ docker --version
Docker version 25.0.2, build 29cf629

$ kubectl version --client=true -o yaml
clientVersion:

compiler: gc

gitVersion: v1.29.1

major: "1"

minor: "29"

platform: darwin/armé4

Enable Docker Desktop’s built-in Kubernetes cluster

Click the Docker whale icon in your menu bar or system tray and choose the Settings
option.

Select Kubernetes from the left navigation bar, check the Enable Kubernetes option,
and click Apply & restart.

3: Getting Kubernetes 30

It'll take a minute or two for Docker Desktop to pull the required images and start the
cluster. The Kubernetes icon in the bottom left of the Docker Desktop window will turn
green when the cluster is up and running.

Test your cluster

Run the following command to ensure the cluster is up and running and your kubectl
context is set.

$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
docker-desktop Ready control-plane 93d v1.29.1

Congratulations, you've built a Kubernetes cluster on your laptop that you can use for
most of the hands-on examples in the book. You won't be able to use it for some of the
storage examples as they leverage advanced storage features on the Google Cloud. You'll
also build a different cluster for the WebAssembly chapter.

Create a hosted Kubernetes cluster in the cloud

This option costs money. Be sure you understand the costs before you create this cluster.
I also recommend you delete it as soon as you finish using it. I usually delete mine every
night and only create a new one when I open the book and want to try some hands-on
exercises.

All the major cloud platforms offer a hosted Kubernetes service. This is a model where
the cloud provider builds the cluster and manages things such as high availability (HA),
performance, and updates.

Not all hosted Kubernetes services are equal, but they’re usually as close as you'll get to a
zero-effort production-grade Kubernetes cluster. For example, Google Kubernetes Engine
(GKE) is a hosted service that creates high-performance, highly-available clusters that
implement security best practices out of the box. All with just a few simple clicks and
your credit card details.

Other popular hosted Kubernetes services include:

« AWS: Elastic Kubernetes Service (EKS)
o Azure: Azure Kubernetes Service (AKS)

+ Civo Cloud Kubernetes
+ DigitalOcean: DigitalOcean Kubernetes (DOKS)

3: Getting Kubernetes 31

+ Google Cloud Platform: Google Kubernetes Engine (GKE)
+ Linode: Linode Kubernetes Engine (LKE)

We'll create a GKE cluster, and you'll complete all of the following steps:

+ GKE pre-requisites
+ Create a GKE cluster
¢ Test your GKE cluster

GKE pre-requisites

GKE is a hosted Kubernetes service on the Google Cloud Platform (GCP). Like most hosted
Kubernetes services, it provides:

« A fast and easy way to get a production-grade cluster
+ A managed control plane
+ Itemized billing

« Integration with additional services such as load balancers, volumes, service
meshes, and more

To build a GKE cluster, you'll need a Google Cloud account with billing configured and
a blank project. These are simple to set up, and the remainder of this section assumes
you already have them.

You'll also need the gcloud CLI. Go to https://cloud.google.com/sdk/, click the
Get started button, and follow the instructions to install the version for your platform.
The installer will automatically install the kubectl command line utility. As part of the
installation, you'll be prompted to run a gcloud auth login command to authorize
access to your Google Cloud project. This will open a browser session, and you need
to follow and accept the prompts.

Create a GKE cluster

Once you've got a new Google Cloud project and installed the gcloud CLI, complete the
following steps to create a new GKE cluster.

1. Goto https://console.cloud.google.com/ and select Kubernetes Engine >
Clusters from the navigation pane on the left. You may need to click the three
horizontal bars (hamburger) in the top left corner to make the navigation pane
visible.

3: Getting Kubernetes 32

2. Select the option to create a cluster and then choose the option to SWITCH TO
STANDARD CLUSTER. Do not create an AutoPilot cluster, as these don’t currently
work with all examples. You'll be prompted to confirm you want to switch from
autopilot to standard.

3. Give your cluster a meaningful name. The examples in the book will use gke-tkb.

4. Choose a Regional cluster in the Location type. Some of the examples later in the
book will only work with regional clusters.

5. Select a Region for your cluster.
6. Click Release channel and select the latest version from the Rapid channel.

7. Click default-pool from the left navigation menu and set Number of nodes (per
zone) to 1 in the Size section.

8. Feel free to explore other settings. However, do not change any of them as they
might impact the examples later in the book.

9. Once you're happy with your configuration and the estimated monthly cost, click
Create.

It'll take a couple of minutes to create your cluster.

Test your GKE cluster

The clusters page of your Google Cloud Console shows a high-level overview of the
Kubernetes clusters in your project. Feel free to poke around and familiarize yourself
with some of the settings.

Click the three dots to the right of your new cluster to reveal the Connect option. The
command-line access section gives you a long gcloud command to configure kubectl
to talk to your cluster. Copy the command to your clipboard and run it in a terminal.

$ gcloud container clusters get-credentials gke-tkb --region...
Fetching cluster endpoint and auth data.
kubeconfig entry generated for gke-tkb.

When the command is complete, run the following kubectl get nodes command to list
the nodes in the cluster.

3: Getting Kubernetes 33

$ kubectl get nodes

NAME STATUS ROLES VERSION

gke-gke-tkb-default...h2gp Ready <none> v1.29.0-gke.1381000
gke-gke-tkb-default...129b Ready <none> v1.29.0-gke.1381000
gke-gke-tkb-default...qzvé6 Ready <none> v1.29.0-gke.1381000

The node names and Kubernetes version should relate to the GKE cluster you created.

Notice how all nodes have <none> under the ROLES column. This is because GKE is a
hosted platform and only lets you see worker nodes. GKE manages the control plane
nodes and hides them from you.

If you get a warning about auth plugin deprecation, follow the instructions in the linked
article.

Congratulations. You have a production-grade Kubernetes cluster that you can use in
most of the hands-on examples. You'll build a different cluster for the WebAssembly
chapter.

Warning. Be sure to delete the cluster as soon as you finish using it to avoid
unwanted costs. | recommend deleting the cluster daily and creating a new
one each time you pick up the book and need a cluster. Doing this will
obviously delete anything created on the cluster you delete.

Working with kubectl

kubectl is the Kubernetes command-line tool, and you'll use it in all the hands-on
examples. You'll already have it if you've followed the instructions to install either of the
clusters.

Type kubectl in a terminal window to check if you have it. If you don’t have it, search
the web for install kubectl and follow the instructions for your system.

It’'s important that your kubectl version is no more than one minor version higher or
lower than your cluster. For example, if your cluster is running Kubernetes 1.29.x, your
kubectl should be no lower than 1.28.x and no higher than 1.30.x.

At a high level, kubectl converts user-friendly commands into HTTP REST requests
and sends them to the API server. Behind the scenes, it reads a kubeconfig file to know
which cluster to send commands to and which credentials to use.

The kubeconfig file is called config and lives in your home directory’s hidden .kube
folder. It contains definitions for:

« Clusters

3: Getting Kubernetes 34

« Users (credentials)

« Contexts

Clusters is a list of Kubernetes clusters that kubect1 knows about and allows a single
kubect installation to manage multiple clusters. Each cluster definition has a name,
certificate info, and API server endpoint.

Users is a list of user credentials. For example, you might have a dev user and an ops user

with different permissions. Each of these exists in the kubeconfig file and has a friendly

name and a set of credentials. If you're using X.509 certificates, the username and group
Kubernetes uses is embedded in the certificate.

Contexts are how kubectl groups clusters and users under a friendly name. For example,
you might have a context called ops-prod that combines the ops user credentials with
the prod cluster. Using kubectl with this context will send commands to the API server
of the prod cluster and authenticate as the ops user.

The following is a simple kubeconfig file with a single cluster called shield, a single user
called coulson, and a single context called director. The director context combines the
coulson user and the shield cluster. It’s also set as the default context.

apiVersion: vl
kind: Config

clusters: <<==== Cluster definitions in this block
- name: shield <<==== Friendly name for a cluster
cluster:
server: https://192.168.1.77:8443 <<==== Cluster's AIP endpoint
certificate-authority-data: LSOtLS1CRUdJITiBDRVJ <<==== Cluster's certificate
users: <<==== User definitions in this block
- name: coulson <<==== Friendly name not used by Kubernetes
user:
client-certificate-data: LSOtLS1CRUdJITiBDRV... <<==== User certificate
client-key-data: LSOtLS1CRUdJITiBFQyB <<==== User private key
contexts: <<==== Contexts 1in this block
- context:
name: director <<==== Context called "director"
cluster: shield <<==== Send commands to this cluster
user: coulson <<==== Authenticate as this user
current-context: director <<==== kubectl will use this context

You can run a kubectl config view command to view your kubeconfig. The command
will redact sensitive data.

You can see your current context with the kubectl config current-context com-
mand. The following example shows a system with kubectl configured to use the
cluster and user defined in the docker-desktop context.

3: Getting Kubernetes 35

$ kubectl config current-context
docker-desktop

You can change the current context by running a kubectl config use-context
command. The following command sets the current context to hpa-test. It will only
work if your kubeconfig file has a valid context called hpa-test.

$ kubectl config use-context hpa-test
Switched to context "hpa-test".

$ kubectl config current-context
hpa-test

If you installed Docker Desktop, you can easily switch between kubectl contexts by
clicking the Docker whale and choosing the Kubernetes Context option.

Chapter summary

This chapter showed you a couple of ways to get a Kubernetes cluster. However, lots of
other options exist.

Options like Docker Desktop, k3d, KinD, and minikube are a great way to get a local
development cluster on your laptop or other personal device.

Docker Desktop ships with the full suite of Docker development tools and automatically
installs kubectl. It also ships with an optional single-node Kubernetes cluster. k3d and
KinD build multi-node Kubernetes clusters on top of Docker Desktop.

You learned how to spin up a hosted Kubernetes cluster in the Google Cloud (GKE).
However, this costs money, and you should always delete it when not in use.

The chapter finished with an overview of kubectl, the Kubernetes command-line tool.

4: Working with Pods

Every app on Kubernetes runs inside a Pod.

+ When you deploy an app, you deploy it in a Pod

+ When you terminate an app, you terminate its Pod
+ When you scale an app up, you add more Pods

+ When you scale an app down, you remove Pods

+ When you update an app, you deploy new Pods

This makes Pods important and is why the chapter goes into detail.

The chapter has two main parts:

» Pod Theory
« Hands-on with Pods

If some of the content we're about to cover feels familiar, it's because we’re building on
some of the concepts introduced in Chapter 2.

We're also about to discover that Kubernetes uses Pods to run many different workload
types. However, most of the time, Pods run containers, so we'll reference containers in
most of the examples.

Pod theory

Kubernetes uses Pods for a lot of reasons. They're an abstraction layer, they enable
resource sharing, add features, enhance scheduling, and more.

Let’s take a closer look at some of those.

Pods are an abstraction layer

Pods abstract the details of different workload types. This means you can run containers,
VMs, serverless functions, and Wasm apps in them, and Kubernetes doesn’t know the
difference.

Using Pods as an abstraction layer benefits Kubernetes as well as the workloads:

4: Working with Pods 37

+ Kubernetes can focus on deploying and managing Pods without having to care
what’s inside them

+ Heterogenous workloads can run side-by-side on the same cluster, leverage the full
power of the declarative Kubernetes API, and get all the other benefits of Pods

Containers and Wasm apps work with standard Pods, standard workload controllers,
and standard runtimes. However, serverless functions and VMs need a bit of extra help.

Serverless functions run in standard Pods but require apps like Knative* to extend
the API with custom resources and controllers. VMs are similar, needing apps like
KubeVirt® to extend the APL.

Figure 4.1 shows four different workloads running on the same cluster. Each workload
is wrapped in a Pod, managed by a controller, and uses a standard runtime. VM
workloads run in a VirtualMachinelnstance (VMI) instead of a Pod, but VMIs are very
similar to Pods and utilize a lot of Pod features.

Workload
controllers @
POdS ;oq g pod

Workloads m]]]]]] M Fn VM

! !

v v
Runtimes Enntainerm Enntainerm :nntainerm Enntainerm

Figure 4.1 - Different workloads wrapped in Pods

Pods augment workloads

Pods augment workloads in many ways, including all of the following:

+ Resource sharing

+ Advanced scheduling

« Application health probes
+ Restart policies

+ Security policies

o Termination control

“https://knative.dev/
Shttps://kubevirt.io/

4: Working with Pods

« Volumes

38

The following command shows a complete list of Pod attributes and returns over 1,000

lines.

$ kubectl explain pods --recursive

KIND: Pod
VERSION: vl
DESCRIPTION:

Pod is a collection of containers that can run on a host. This resource is
created by clients and scheduled onto hosts.

FIELDS:
apiVersion <string>
kind <string>
metadata <Object>
annotations <map[string]string>
labels <map[string]string>
name <string>
namespace <string>
<Snip>

You can even drill into specific Pod attributes and see their supported values. The
following example drills into the Pod restartPolicy attribute.

$ kubectl explain pod.spec.restartPolicy

KIND: Pod

VERSION: vl

FIELD: restartPolicy <string>
DESCRIPTION:

Restart policy for all containers within the pod. One of Always, OnFailure, Never.
Default to Always.

More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-1ifecycle/...
Possible enum values:

- "Always" N

- ""Never"®

- ""OnFaijlure""

Despite adding so much, Pods are lightweight and add very little overhead.

Pods enable resource sharing

Pods run one or more containers, and all containers in the same Pod share the Pod’s

execution environment. This includes:

+ Shared filesystem and volumes (mnt namespace)

« Shared network stack (net namespace)

4: Working with Pods 39

+ Shared memory (IPC namespace)
+ Shared process tree (pid namespace)
+ Shared hostname (uts namespace)

Figure 4.2 shows a multi-container Pod with both containers sharing the Pod’s volume
and network resources.

p% L 10.0.10.15 J)

A
contaner Sidecar

\ Shared execution environment y

Figure 4.2 - Multi-container Pod sharing IP and volume

Other apps and clients can access the containers via the Pod’s 16.0.10.15 IP address

— the main app container is available on port 8680 and the sidecar on port 5005. They
can use the Pod’s localhost adapter if they need to communicate with each other inside
the Pod. Both containers also mount the Pod’s volume and can use it to share data. For
example, the sidecar container might sync static content from a remote Git repo and
store it in the volume where the main app container reads it and serves it as a web page.

Pods and scheduling

Kubernetes guarantees to schedule all containers in the same Pod to the same cluster
node. Despite this, you should only put containers in the same Pod if they need to share
resources such as memory, volumes, and networking. If your only requirement is to
schedule two workloads to the same node, you should put them in their own Pods and
use one of the following options to schedule them together.

Terminology: Before going any further, remember that nodes are host
servers that can be physical servers, virtual machines, or cloud instances. Pods
wrap containers and execute on nodes.

4: Working with Pods 40

Pods provide a lot of advanced scheduling features, including all of the following:

+ nodeSelectors

+ Affinity and anti-affinity

« Topology spread constraints

+ Resource requests and resource limits

nodeSelectors are the simplest way of running Pods on specific nodes. You give the
nodeSelector a list of labels, and the scheduler will only assign the Pod to a node with
all the labels.

Affinity and anti-affinity rules are like a more powerful nodeSelector.

As the names suggest, they support affinity and anti-affinity rules. But they also support
hard and soft rules, and they can select on nodes as well as Pods:

+ Affinity rules attract

« Anti-affinity rules repel

+ Hard rules must be obeyed

+ Soft rules are only suggestions

Selecting on nodes is common and works like a nodeSelector where you supply a list of
labels, and the scheduler will assign the Pod to nodes possessing the labels.

To select on Pods, the scheduler takes a similar list of labels and schedules the Pod to
nodes running other Pods possessing the labels.

Consider a couple of examples.

A hard node affinity rule specifying the project=qsk label tells the scheduler it can only
run the Pod on nodes with the project=qsk label. It won’t schedule the Pod if it can’t
find a node with that label. If it was a soft rule, the scheduler would try to find a node
with the label, but if it can’t find one, it’ll still schedule it. If it was an anti-affinity rule,
the scheduler would look for nodes that don’t have the label. The logic works the same
for Pod-based rules.

Topology spread constraints are a flexible way of intelligently spreading Pods across

your infrastructure for availability, performance, locality, or any other requirements.

A typical example is spreading Pods across your cloud or datacenter’s underlying
availability zones for high availability (HA). However, you can create custom domains
for almost anything, such as scheduling Pods closer to data sources, closer to clients for
improved network latency, and many more reasons.

Resource requests and resource limits are very important, and every Pod should use them.
They tell the scheduler how much CPU and memory a Pod needs, and the scheduler uses
them to select nodes with enough resources. If you don’t specify them, the scheduler
cannot know what resources a Pod requires and may schedule it to a node with
insufficient resources.

4: Working with Pods 41

Deploying Pods
Deploying a Pod includes the following steps:

. Define the Pod in a YAML manifest file

. Post the manifest to the API server

. The request is authenticated and authorized
. The Pod spec is validated

. The scheduler filters nodes based on nodeSelectors, affinity and anti-affinity rules,
topology spread constraints, resource requirements and limits, and more

U AN W N =

. The Pod is assigned to a healthy node meeting all requirements
. The kubelet on the node watches the API server and notices the Pod assignment

. The kubelet downloads the Pod spec and asks the local runtime to start it

O 0 N O\

. The kubelet monitors the Pod status and reports status changes to the API server

If the scheduler can’t find a suitable node, it marks it as pending.

Deploying a Pod is an atomic operation. This means a Pod only starts servicing requests
when all its containers are up and running.

Pod lifecycle

Pods are designed to be mortal and immutable.

Mortal means you create a Pod, it executes a task, and then it terminates. As soon as it
completes, it gets deleted and cannot be restarted. The same is true if it fails — it gets
deleted and cannot be restarted.

Immutable means you cannot modify them after they’'re deployed. This can be a huge
mindset change if you're from a traditional background where you regularly patched
live servers and logged on to them to make fixes and configuration changes. If you need
to change a Pod, you create a new one with the changes, delete the old one and replace it
with the new one. If a Pod needs to store data, you should attach a volume and store the
data in the volume so its not lost when the Pod is deleted.

Let’s look at a typical Pod lifecycle.

You define a Pod in a declarative YAML object that you post to the API server. It goes
into the pending phase while the scheduler finds a node to run it on. Assuming it finds
anode, the Pod gets scheduled, and the local kubelet instructs the runtime to start its

containers. Once all of its containers are running, the Pod enters the running phase. It
remains in the running phase indefinitely if it’s a long-lived Pod, such as a web server.

4: Working with Pods 42

If it’s a short-lived Pod, such as a batch job, it enters the succeeded state as soon as all
containers complete their tasks. This is shown in Figure 4.3.

Create Schedule Execute Delete
| - | -

»
L

pod

I

|

t Succeed/
[Fail

N
N

Figure 4.3 - Pod lifecycle

A quick side note on running VMs on Kubernetes. VMs are designed as mutable immortal
objects. For example, you can restart them, change their configurations, and even
migrate them. This is very different from the design goals of Pods and is why KubeVirt
wraps VMs in a modified Pod called a VirtualMachinelnstance (VMI) and manages them
using custom workload controllers.

Restart Policies

Earlier in the chapter, we said Pods augment apps with restart policies. However, these
apply to individual containers and not the actual Pod.

Let’s consider some scenarios.

You use a Deployment controller to schedule a Pod to a node, and the node fails. When
this happens, the Deployment controller notices the failed node, deletes the Pod, and
replaces it with a new one on a surviving node. Even though the new Pod is based on
the same Pod spec, it has a new UID, a new IP address, and no state. It’s the same when
nodes evict Pods during node maintenance or due to resource juggling — the evicted
Pod is deleted and replaced with a new one on another node.

The same thing even happens during scaling operations, updates, and rollbacks. For
example, scaling down deletes Pods, and scaling up always adds new Pods.

The take-home point is that anytime we say we're updating or restarting Pods, we really
mean replacing them with new ones.

Although Kubernetes can'’t restart Pods, it can definitely restart containers. This is
always done by the local kubelet and governed by the value of the spec.restartPolicy,
which can be any of the following:

« Always

4: Working with Pods 43

« Never

o OnFailure

The values are self-explanatory: Always will always attempt to restart a container, Never
will never attempt a restart, and OnFa+ilure will only attempt a restart if the container
fails, not if it completes successfully. The policy is Pod-wide, meaning it applies to all
containers in the Pod except for init containers. More on init containers later.

The restart policy you choose depends on the nature of the app — whether it’s a long-
living container or a short-living container.

Long-living containers host apps such as web servers, data stores, and message queues
that run indefinitely. If they fail, you normally want to restart them, so you'll typically
give them the Always restart policy.

Short-living containers are different and typically run batch-style workloads that run
a task through to completion. Most of the time, you're happy when they complete,
and you only want to restart them if they fail. As such, you'll probably give them the
OnFailure restart policy. If you don’t care if they fail, give them the Never policy.

In summary, Kubernetes never restarts Pods — when they fail, get scaled up and down,
and get updated, Kubernetes always deletes old Pods and creates new ones. However,
Kubernetes can restart individual containers on the same node.

Static Pods vs controllers

There are two ways to deploy Pods:

1. Directly via a Pod manifest (rare)

2. Indirectly via a workload resource and controller (most common)

Deploying directly from a Pod manifest creates a static Pod that cannot self-heal, scale,
or perform rolling updates. This is because theyre only managed by the kubelet on the
node they’re running on, and kubelets are limited to restarting containers on the same
node. Also, if the node fails, the kubelet fails as well and cannot do anything to help the
Pod.

On the flip side, Pods deployed via workload resources get all the benefits of being
managed by a highly available controller that can restart them on other nodes, scale them
when demand changes, and perform advanced operations such as rolling updates and
versioned rollbacks. The local kubelet can still attempt to restart failed containers, but if
the node fails or gets evicted, the controller can restart it on a different node. More on
workload resources and controllers in Chapter 6.

Remember, when we say restart the Pod, we mean replace it with a new one.

4: Working with Pods 44

The pod network

Every Kubernetes cluster runs a pod network and automatically connects all Pods to it. It’s
usually a flat Layer-2 overlay network that spans every cluster node and allows every
Pod to talk directly to every other Pod, even if the remote Pod is on a different cluster
node.

The pod network is implemented by a third-party plugin that interfaces with Kubernetes
and configures the network via the Container Network Interface (CNI).

You choose a network plugin at cluster build time, and it configures the Pod network
for the entire cluster. Lots of plugins exist, and each one has its pros and cons. However,
at the time of writing, Cilium® is the most popular and implements a lot of advanced
features such as security and observability.

Figure 4.4 shows three nodes running five Pods. All five Pods are connected to the
pod network and can communicate with each other. You can also see the Pod network
spanning all three nodes. However, the network is only for Pods and not nodes. As
shown in the diagram, you can connect nodes to multiple different networks, but the
Pod network spans them all.

= = = i
node node i KS;f:::rol i

1
QWO \7) QWO [N] |
pod pod pod pod pod 1| plugin |1
:_____|_____I

| Pod network *—
| |
Underlay A Underlay B
Figure 4.4 The pod network

Alot of clusters create a very open pod network with little or no security. This makes
the cluster easy to use and avoids frustrations commonly associated with network
security. However, you should use Kubernetes Network Policies and other measures
to secure it.

Shttps://cilium.io/

4: Working with Pods 45

Multi-container Pods

Multi-container Pods are a powerful pattern and are very popular in the real world.

According to microservices design patterns, every container should have a single clearly
defined responsibility. For example, an application syncing content from a repository
and serving it as a web page has two distinct responsibilities:

1. Sync the content
2. Serve the web page

You should design this app with two microservices and give each one its own container
— one container responsible for syncing the content and the other responsible for serving
the content. We call this separation of concerns, or the single responsibility principle, and it
keeps containers small and simple, encourages reuse, and makes troubleshooting easier.

Most of the time, you'll put application containers in their own Pods and they’ll
communicate over the network. However, sometimes, putting them in the same Pod is
beneficial. Sticking with the sync and serve example, putting the containers in the same
Pod will allow the sync container to pull content from the remote system and store it in
a shared volume where the web container can read it and serve it. Figure 4.5 shows the
architecture.

pod)
eb sync
Serve T - —
< content >
< Sync content Remote
s
L Shared execution environment J

Figure 4.5 - Multi-container Pod

Kubernetes has two main patterns for multi-container Pods: init containers and sidecar
containers. Let’s quickly explain each.

Multi-container Pods: Init containers

Init containers are a special type of container defined in the Kubernetes API. You run
them in the same Pod as application containers, but Kubernetes guarantees they’ll start

4: Working with Pods 46

and complete before the main app container starts. It also guarantees they’ll only run
once.

The purpose of init containers is to prepare and initialize the environment so it’s ready
for application containers.

Consider a couple of quick examples.

You have an application that should only start when a remote API is accepting connec-
tions. Instead of complicating the main application with the logic to check the remote
API, you run that logic in an init container in the same Pod. When you deploy the Pod,
the init container comes up first and sends requests to the remote API waiting for it

to respond. While this is happening, the main app container cannot start. However, as
soon as the remote API accepts a request, the init container completes, and the main app
container will start.

Assume you have another application that needs a one-time clone of a remote repository
before starting. Again, instead of bloating and complicating the main application with
the code to clone and prepare the content (knowledge of the remote server address,
certificates, auth, file sync protocol, checksum verifications, etc.), you implement that

in an init container that is guaranteed to complete the task before the main application
container starts.

A drawback of init containers is that they’re limited to running tasks before the main
app container starts. For something that runs alongside the main app container, you
need a sidecar container.

Multi-container Pods: Sidecars

Sidecar containers are regular containers that run at the same time as application
containers for the entire lifecycle of the Pod.

Unlike init containers, sidecars are not a resource in the Kubernetes APl — we're
currently using regular containers to hack the sidecar pattern. Work is in progress to
formalize the sidecar pattern in the API, but at the time of writing, it’s still an early alpha
feature.

The job of a sidecar container is to add functionality to an app without having to
implement it in the actual app. Common examples include sidecars that scrape logs,
sync remote content, broker connections, and munge data. They're also heavily used
by services meshes where the sidecar intercepts network traffic and provides traffic
encryption and telemetry.

Figure 4.6 shows a multi-container Pod with a main app container and a service
mesh sidecar. The sidecar intercepts all network traffic and provides encryption and
decryption. It also sends telemetry data to the service mesh control plane.

4: Working with Pods 47

N7

pod
Service mesh
(Maln) (Sidecar)
Network
]
!
L_______Telemetry >

Figure 4.6 - Service mesh sidecar

Pod theory summary

Pods are the atomic unit of scheduling on Kubernetes and abstract the details of the
workloads inside them. They also enable advanced scheduling and many other features.

Many Pods run a single container, but multi-container Pods are more powerful. You
can use multi-container Pods to tightly-couple workloads that need to share resources
such as memory and volumes. You can also use multi-container Pods to augment apps
(sidecar pattern) and initialize environments (init pattern).

You define Pods in declarative YAML objects, but you'll usually deploy them via higher-
level workload controllers that augment them with superpowers such as self-healing,
autoscaling, and more.

Time to see some examples.

Hands-on with Pods

If you're following along, clone the book’s GitHub repo and run all commands from the
pods folder.

$ git clone https://github.com/nigelpoulton/TheK8sBook.git
Cloning into 'TheK8sBook'...

$ cd TheK8sBook/pods

Pod manifest files

Let’s see our first Pod manifest. This is the pod.ym1 file from the pods folder.

4: Working with Pods 48

kind: Pod
apiVersion: vl
metadata:

name: hello-pod

labels:
zone: prod
version: vl

spec:

containers:

- name: hello-ctr
image: nigelpoulton/k8sbook:1.0
ports:

- containerPort: 8080
resources:
Timits:
memory: 128Mi
cpu: 0.5

It’s a simple example, but straight away you can see four top-level fields:

+ kind

- apiVersion

+ metadata

. spec
The kind field tells Kubernetes what type of object you're defining. This one’s defining a
Pod, but if you were defining a Deployment, the kind field would say Deployment.
apiVersion tells Kubernetes what version of the API to use when creating the object.

So far, this manifest describes a Pod and tells Kubernetes to build it using the v1 version
of the APL

The metadata section names the Pod hello-pod and gives it two labels. You'll use the
labels in a future chapter to connect the Pod to a Service for networking.

Most of the action happens in the spec section. This example defines a single-container
Pod with an application container called hello-ctr. The container is based on the
nigelpoulton/k8sbook:1.0 image, listens on port 8080, and tells the scheduler it needs
a maximum of 256MB of memory and half a CPU.

You just add more containers below the spec.containers section to make it a multi-
container Pod.

Manifest files: Empathy as Code

Quick side-step.

4: Working with Pods 49

Kubernetes YAML files are excellent sources of documentation, and you can use them to
get new team members up to speed quickly and help bridge the gap between developers
and operations.

For example, new team members can read your YAML files and quickly learn your
application’s basic functions and requirements. Operations teams can also use them
to understand application requirements such as network ports, CPU and memory
requirements, and much more.

Nirmal Mehta described these side benefits as a form of empathy as code in his 2017
DockerCon talk entitled A Strong Belief, Loosely Held: Bringing Empathy to IT.

Deploying Pods from a manifest file

Run the following kubectl apply command to deploy the Pod. The command sends the
pod.yml file to the API server defined in the current context of your kubeconfig file. It
also attaches credentials from your kubeconfig file.

$ kubectl apply -f pod.yml
pod/hello-pod created

Although the output says the Pod is created, it might still be pulling the image and
starting the container.

Run a kubectl get pods to check the status.
$ kubectl get pods

NAME READY STATUS RESTARTS AGE
hello-pod 0/1 ContainerCreating © 9s

The Pod in the example isn’t fully created yet — the READY column shows zero contain-
ers ready, and the STATUS column shows why.

This is a good time to mention that Kubernetes automatically pulls (downloads) images
from Docker Hub. To use another registry, just add the registry’s URL before the image
name in the YAML file.

Once the READY column shows 1/1 and the STATUS column shows Running, your Pod
will be running on a healthy cluster and node and monitored by the node’s kubelet.

You'll see how to connect to the app and test it in future chapters.

Introspecting Pods

Let’s look at some of the main ways you'll use kubectl to monitor and inspect Pods.

4: Working with Pods 50

kubectl get

You've already run a kubectl get pods command and seen that it returns a single line
of basic info. However, the following flags get you a lot more info:

+ —o wide gives a few more columns but is still a single line of output
+ -0 yaml gets you everything Kubernetes knows about the object

The following example shows the output of a kubectl get pods with the -o yaml flag.
The output is snipped for the book, but notice how it’s divided into two main parts:

* spec
¢ status

The spec section shows the desired state of the object, and the status section shows the
observed state.

$ kubectl get pods hello-pod -o yaml
apiVersion: vl
kind: Pod
metadata:
annotations:
kubectl.kubernetes.io/last-applied-configuration:
<Snip>
name: hello-pod
namespace: default
spec: <<==== Desired state 1is 1in this block
containers:
- image: nigelpoulton/k8sbook:1.0
imagePullPolicy: IfNotPresent
name: hello-ctr
ports:
<Snip>
status: <<==== Observed state 1is in this block
conditions:
- lastProbeTime: null
lastTransitionTime: "2024-01-03T18:21:51Z"
status: "True"
type: Initialized
<Snip>

The full output contains much more than the 17-line YAML file you used to create the
Pod. So, where does Kubernetes get all this extra detail?

Two main sources:

+ Pods have a lot of properties, and anything you don’t explicitly define in a YAML
file gets populated with default values

+ The status section shows you the current state of the Pod

4: Working with Pods 51

kubectl describe

Another great command is kubectl describe. This gives you a nicely formatted
overview of an object, including lifecycle events.

$ kubectl describe pod hello-pod

Name: hello-pod
Namespace: default
Labels: version=vl
zone=prod
Status: Running
IP: 10.1.0.103
Containers:
hello-ctr:
Container ID: containerd://ecOc3e...
Image: nigelpoulton/k8sbook:1.0
Port: 8080/TCP
<Snip>
Conditions:
Type Status
Initialized True
Ready True
ContainersReady True
<Snip>
Events:
Type Reason Age Message

Normal Scheduled 5m30s Successfully assigned ...
Normal Pulling 5m30s Pulling image "nigelpoulton/k8sbook:1.0"

Normal Pulled 5m8s Successfully pulled image ...
Normal Created 5m8s Created container hello-ctr
Normal Started 5m8s Started container hello-ctr

The output is snipped for the book, but it’s a very useful command.

kubectl logs

You can use the kubectl logs command to pull the logs from any container in a Pod.
The basic format of the command is kubectl logs <pod>.

If you run the command against a multi-container Pod, you automatically get the logs
from the first container in the Pod. However, you can override this by using the --
container flag and specifying the name of the container you want the logs from. If
you're unsure of the names of containers or the order they appear in a multi-container
Pod, just run a kubectl describe pod <pod> command. You can get the same info
from the Pod’s YAML file.

The following YAML shows a multi-container Pod with two containers. The first
container is called app, and the second is called syncer. Running a kubectl logs

4: Working with Pods 52

against this Pod without specifying the --container flag will get you the logs from the
app container.

kind: Pod
apiVersion: vl
metadata:
name: logtest
spec:
containers:
- name: app <<==== First container (default)
image: nginx
ports:
- containerPort: 8080
- name: syncer <<==== Second container
image: k8s.gcr.io/git-sync:v3.1.6
volumeMounts:
- name: html
<Snip>

You'd run the following command if you wanted the logs from the syncer container.
Don’t run this command, as you haven’t deployed this Pod.

$ kubectl logs logtest --container syncer

kubectl| exec

The kubectl exec command is a great way to execute commands inside running
containers.

You can use kubectl exec in two ways:

1. Remote command execution

2. Exec session
Remote command execution lets you send commands to a container from your local shell.
The container executes the command and returns the output to your shell.

An exec session connects your local shell to the container’s shell and is the same as being
logged on to the container.

Let’s look at both, starting with remote command execution.

Run the following command from your local shell. It’s asking the first container in the
hello-pod Pod to run a ps command.

4: Working with Pods 53

$ kubectl exec hello-pod -- ps

PID USER TIME COMMAND
1 root 0:00 node ./app.js
17 root 0:00 ps aux

The container executed the ps command and displayed the result in your local terminal.

The format of the command is kubectl exec <pod> -- <command>, and you can
execute any command installed in the container. By default, commands execute in the
first container in a Pod, but you can override this with the --container flag.

Try running the following command.

$ kubectl exec hello-pod -- curl localhost:8080
OCI runtime exec failed:...... "curl": executable file not found in $PATH

This one failed because the curl command isn’t installed in the container.

Let’s use kubectl exec to get an interactive exec session to the same container. This
works by connecting your terminal to the container’s terminal, and it feels like you're
logged on to the container.

Run the following command to create an exec session to the first container in the hello-

pod Pod. Your shell prompt will change to indicate you're connected to the container’s
shell.

$ kubectl exec -it hello-pod -- sh
#

The -1t flag tells kubectl exec to make the session interactive by connecting your
shell’s STDIN and STDOUT streams to the STDIN and STDOUT of the first container
in the Pod. The sh command starts a new shell process in the session, and your prompt
will change to indicate you're now inside the container.

Run the following commands from within the exec session to install the curl binary and
then execute a curl command.

apk add curl
<Snip>

curl localhost:8080
<html><head><title>K8s rocks!</title><link rel="stylesheet" href="http://netdna....

Making changes like this to live Pods is an anti-pattern as Pods are designed as im-
mutable objects. However, it’s OK for demonstration purposes like this.

4: Working with Pods 54

Pod hostnames

Pods get their names from their YAML file’s metadata.name field and Kubernetes uses
this as the hostname for every container in the Pod.

If you're following along, you’ll have a single Pod deployed called hello-pod. You
deployed it from the following YAML file that sets the Pod name as hello-pod.

kind: Pod

apiVersion: vl

metadata:
name: hello-pod <<==== Pod hostname. Inherited by all containers.
labels:
<Snip>

Run the following command from inside your existing exec session to check the
container’s hostname. The command is case-sensitive.

$ env | grep HOSTNAME
HOSTNAME=hello-pod

As you can see, the container’s hostname matches the name of the Pod. All containers
would have the same hostname if it was a multi-container Pod.

Because of this, you should ensure that Pod names are valid DNS names (a-z, 0-9, the
minus and period signs).

Type exit to quit your exec session and return to your local terminal.

Check Pod immutability

Pods are designed as immutable objects, meaning you shouldn’t change them after
deployment.

Immutability applies at two levels:

+ Object immutability (the Pod)
+ App immutability (containers)

Kubernetes handles object immutability by preventing changes to a running Pod’s
configuration. However, Kubernetes can’t always prevent you from changing the app
and filesystem in containers. You're responsible for ensuring containers and their apps
are stateless and immutable.

The following example uses kubectl edit to edit a live Pod object. Try and change any
of these attributes:

4: Working with Pods 55

« Pod name
« Container name
« Container port

+ Resource requests and limits

You need to run this command from your local terminal, and it will open the file in your
default editor. For Mac and Linux users, it will typically open the file in vi, whereas for
Windows, it’s usually notepad.exe.

$ kubectl edit pod hello-pod

Please edit the object below. Lines beginning with a '#' will be 1dignored...
apiVersion: vl
kind: Pod
metadata:
<Snip>
labels:
version: vl
zone: prod
name: hello-pod <<==== Try to change this
namespace: default
resourceVersion: "432621"
uid: al31fb37-ceb4-4484-9e23-26cOb9e7b4f4
spec:
containers:
- image: nigelpoulton/k8sbook:1.0
imagePullPolicy: IfNotPresent

name: hello-ctr <<==== Try to change this
ports:
- containerPort: 8080 <<==== Try to change this
protocol: TCP
resources:
Timits:
cpu: 500m Try to change this
memory: 256Mi Try to change this
requests:
cpu: 500m Try to change this

memory: 256Mi Try to change this

Edit the file, save your changes, and close your editor. You'll get a message telling you
the changes are forbidden because the attributes are immutable.

If you get stuck inside the kubectl edit session, you can probably exit by typing the
following key combination — :q and then pressing RETURN.

4: Working with Pods 56

Resource requests and resource limits
Kubernetes lets you specify resource requests and resource limits for each container in a
Pod.

* Requests are minimum values

 Limits are maximum values

Consider the following snippet from a Pod YAML:

resources:

requests: <<==== Minimums for scheduling
cpu: 0.5
memory: 256Mi

Timits: <<==== Maximums for kubelet to cap
cpu: 1.0

memory: 512Mi

This container needs a minimum of 256Mi of memory and half a CPU. The scheduler
reads this and assigns it to a node with enough resources. If it can’t find a suitable node,
it marks the Pod as pending, and the cluster autoscaler will attempt to provision a new
cluster node.

Assuming the scheduler finds a suitable node, it assigns the Pod to the node, and the
kubelet downloads the Pod spec and asks the local runtime to start it. As part of the
process, the kubelet reserves the requested CPU and memory, guaranteeing the resources
will be there when needed. It also sets a cap on resource usage based on each container’s
resource limits. In this example, it sets a cap of one CPU and 512Mi of memory. Most
runtimes will also enforce resource limits, but how each runtime implements this can
vary.

While a container executes, it is guaranteed its minimum requirements (requests).
However, it’s allowed to use more if the node has additional available resources, but it’s
never allowed to use more than what you specify in its limits.

For multi-container Pods, the scheduler combines the requests for all containers and
finds a node with enough resources to satisfy the full Pod.

If you've been following the examples closely, you'll have noticed that the pod.yml you
used to deploy the hello-pod only specified resource limits — it didn’t specify resource
requests. However, some command outputs have shown limits and requests. This is
because Kubernetes automatically sets requests to match limits if you only specify limits.

Multi-container Pod example - init container

The following YAML defines a multi-container Pod with an init container and main app
container. It’s from the initpod.yml file in the pods folder of the book’s GitHub repo.

4: Working with Pods 57

apiVersion: vl
kind: Pod
metadata:
name: initpod
labels:
app: initializer
spec:
initContainers:
- name: init-ctr
image: busybox:1.28.4
command: ['sh', '-c', 'until nslookup k8sbook; do echo waiting for k8sbook service;\
sleep 1; done; echo Service found!']
containers:
- name: web-ctr
image: nigelpoulton/web-app:1.0
ports:
- containerPort: 8080

Defining a container under the spec.initContainers block makes it an init container
that Kubernetes guarantees will run and complete before regular containers.

Regular app containers are defined under the spec.containers block and will not start
until all init containers successfully complete.

This example has a single init container called init-ctr and a single app container
called web-ctr. The init container runs a loop looking for a Kubernetes Service called
k8sBook. As soon as you create the Service, the init container will get a response and
exit. This allows the main container to start. You'll learn about Services in a future
chapter.

Deploy the multi-container Pod with the following command and then run a kubectl
get pods with the --watch flag to see if it comes up.

$ kubectl apply -f dinitpod.yml
pod/initpod created

$ kubectl get pods --watch
NAME READY STATUS RESTARTS AGE
initpod 0/1 Init:0/1 0 6s

The Init:0/1 status tells you that the init container is still running, meaning the main
container hasn’t started yet. If you run a kubectl describe command, you'll see the
overall Pod status is Pending.

4: Working with Pods 58

$ kubectl describe pod 1initpod

Name: initpod

Namespace: default

Priority: 0

Service Account: default

Node: docker-desktop/192.168.65.3

Labels: app=initializer

Annotations: <none>

Status: Pending <<==== Pod status
<Snip>

The Pod will remain in this phase until you create a Service called k8sbook.

Run the following commands to create the Service and re-check the Pod status.

$ kubectl apply -f dinitsvc.yml
service/k8sbook created

$ kubectl get pods --watch

NAME READY STATUS RESTARTS AGE
initpod 0/1 Init:0/1 0 15s
initpod 0/1 PodInitializing 0 3m39s
initpod 1/1 Running 0 3m57s

The init container completes as soon as the Service appears, and the main application
container starts. Give it a few seconds to fully start.

If you run another kubectl describe against the initpod Pod, you'll see the init
container is in the terminated state because it completed successfully (exit code 0).

Multi-container Pod example - sidecar container

Note: At the time of writing, Kubernetes doesn’t have API support for
sidecar containers. However, Kubernetes 1.28 introduced alpha support for a
potential solution. I'll update the book if this matures and gains traction.

Sidecar containers run alongside the main application container for the entire lifecycle
of the Pod. We currently define them as regular containers under the spec.containers
section of the Pod YAML, and their job is to augment the main application container or
provide a secondary support service.

The following YAML file defines a multi-container Pod with both containers mounting
the same shared volume. Listing the main app container as the first container and
sidecars after it is conventional.

4: Working with Pods 59

apiVersion: vl
kind: Pod
metadata:
name: git-sync
labels:
app: sidecar
spec:
containers:
- name: ctr-web <<==== First container (main app)
image: nginx
volumeMounts:
- name: html <<==== Mount shared volume
mountPath: /usr/share/nginx/
- name: ctr-sync <<==== Second container (sidecar)
image: k8s.gcr.io/git-sync:v3.1.6
volumeMounts:
- name: html <<==== Mount shared volume
mountPath: /tmp/git
env:
- name: GIT_SYNC_REPO
value: https://github.com/nigelpoulton/ps-sidecar.git
- name: GIT_SYNC_BRANCH
value: master
- name: GIT_SYNC_DEPTH
value: "1"
- name: GIT_SYNC_DEST
value: "html"
volumes:
- name: html <<==== Shared volume
emptyDir: {}

The main app container is called ctr-web. It’s based on an NGINX image and serves a
static web page loaded from the shared html volume.

The second container is called ctr-sync and is the sidecar. It watches a GitHub repo and
syncs changes into the same shared html volume.

When the contents of the GitHub repo change, the sidecar copies the updates to the
shared volume, where the app container notices and serves an updated version of the
web page.

We'll walk through the following steps to see it in action:

1. Fork the GitHub repo

2. Update the YAML file with the URL of your forked repo
3. Deploy the app

4. Connect to the app and see it display This is version 1.0

5. Make a change to your fork of the GitHub repo

4: Working with Pods 60

6. Verify your changes appear on the web page

Go to GitHub and fork the following repo. You'll need a GitHub account to do this.

https://github.com/nigelpoulton/ps-sidecar

Come back to your local machine and edit the sidecarpod.yml. Change the GIT_SYNC_-
REPO value to match the URL of your forked repo, and save your changes.

Run the following command to deploy the application. It will deploy the Pod as well as a
Service you'll use to connect to the app.

$ kubectl apply -f sidecarpod.yml
pod/git-sync created
service/svc-sidecar created

Check the status of the Pod with a kubectl get pods command.

As soon as the Pod enters the running state, run a kubectl get svc and copy the value
from the EXTERNAL-IP column. It might show as ‘localhost ‘ if you're running a Docker
Desktop cluster or another local option.

Paste the value into a new browser tab to see the web page. It will display This is
version 1.0.

Be sure to complete the following step against your forked repo.

Go to your forked repo and edit the index.html file. Change the <h1> line to something
different and save your changes.

Refresh the app’s web page to see your updates.

Congratulations. The sidecar container successfully watched a remote Git repo, synced
the changes to a shared volume, and the main app container updated the web page.

Feel free to run the kubectl get pods and kubectl describe pod commands to see
how multi-container Pods appear in the outputs.

Clean up

If you've been following along, you'll have the following objects on your cluster.

Pods Services
hello-pod
initpod k8sbook

git-sync svc-sidecar

4: Working with Pods 61

Delete them with the following commands.

$ kubectl delete pod hello-pod initpod git-sync
pod "hello-pod" deleted

pod "initpod" deleted

pod "git-sync" deleted

$ kubectl delete svc k8sbook svc-sidecar
service "k8sbook" deleted
service "svc-sidecar" deleted

You can also delete objects using their YAML files.

$ kubectl delete -f sidecarpod.yml -f initpod.yml -f pod.yml -f dinitsvc.yml
pod "git-sync" deleted

service "svc-sidecar" deleted

pod "initpod" deleted

pod "hello-pod" deleted

service "k8sbook" deleted

You may also want to delete your fork of the GitHub repo.

Chapter Summary

In this chapter, you learned that Kubernetes deploys all applications inside Pods. The
apps can be containers, serverless functions, Wasm apps, and VMs. However, they’re
usually containers, so we usually refer to Pods in terms of executing containers.

As well as abstracting different types of applications, Pods provide a shared execution
environment, advanced scheduling, application health probes, and lots more.

Pods can be single-container or multi-container, and all containers in a multi-container
Pod share the Pod’s networking, volumes, and memory.

You'll usually deploy Pods via higher-level workload controllers such as Deployments,
Jobs, and DaemonSets. Third-party tools, such as Knative and KubeVirt, extend the
Kubernetes API with custom resources and custom workload controllers that allow
Kubernetes to run serverless and VM workloads.

You define Pods in declarative YAML files that you post to the API server, and the
control plane schedules them to the cluster. Most of the time, you'll use kubectl apply
to post the YAML manifests to the API server, and the scheduler will deploy them.

5: Virtual clusters with Namespaces

Namespaces are a way of dividing a Kubernetes cluster into multiple virtual clusters.

This chapter sets the foundation for Namespaces, gets you up to speed with creating
and managing them, and introduces some use cases. You'll see them in action in future
chapters.

The chapter is divided as follows:

« Intro to Namespaces

- Namespace use cases

+ Default Namespaces

+ Creating and managing Namespaces
+ Deploying to Namespaces

Intro to Namespaces

The first thing to know is that Kubernetes Namespaces are not the same as kernel names-
paces.

+ Kernel namespaces partition operating systems into virtual operating systems called
containers

* Kubernetes Namespaces partition Kubernetes clusters into virtual clusters called
Namespaces

Note: We'll capitalize Namespace when referring to Kubernetes Namespaces.
This follows the pattern of capitalizing Kubernetes API objects and clarifies
that we're referring to Kubernetes Namespaces, not kernel namespaces.

It's also important to know that Namespaces are a form of soft isolation and enable
soft multi-tenancy. For example, you can create Namespaces for your dev, test, and qa
environments and apply different quotas and policies to each. However, they won’t
stop a compromised workload in one Namespace from impacting workloads in other
Namespaces.

The following command shows whether objects are namespaced or not. As you can see,
most objects are namespaced, meaning you can deploy them to a specific namespace
with custom policies and quotas. Objects that aren’t namespaced, such as Nodes and
PersistentVolumes, are cluster-scoped and cannot be isolated to Namespaces.

5: Virtual clusters with Namespaces 63

$ kubectl api-resources

NAME SHORTNAMES . NAMESPACED KIND

nodes no false Node
persistentvolumeclaims pvc true PersistentVolumeClaim
persistentvolumes pv false PersistentVolume

pods po true Pod

podtemplates true PodTemplate
replicationcontrollers rc true ReplicationController
resourcequotas quota true ResourceQuota

secrets true Secret
serviceaccounts sa true ServiceAccount
services svc true Service

<Snip>

Unless you specify otherwise, Kubernetes deploys objects to the default Namespace.

Namespace use cases

Namespaces are a way for multiple tenants to share the same cluster.

Tenant is a loose term and can refer to individual applications, different teams or
departments, and even external customers. How you implement Namespaces and what
you consider as tenants is up to you, but it’s most common to use Namespaces to divide
clusters for use by tenants within the same organization. For example, you might divide
a production cluster into the following three Namespace to match your organizational
structure:

« finance
e hr

e corporate-ops

You'd deploy Finance apps to the finance Namespace, HR apps to the hr Namespace,
and Corporate apps to the corporate-ops Namespace. Each Namespace can have its
own users, permissions, resource quotas, and policies.

Using Namespaces to divide a cluster among external tenants isn’t as common. This is
because they only provide soft isolation and cannot prevent compromised workloads
from escaping the Namespace and impacting workloads in other Namespaces. At the
time of writing, the only way to strongly isolate tenants is to run them on their own
clusters and their own hardware.

Figure 5.1 shows a cluster on the left using Namespaces for soft multi-tenancy. All apps
on this cluster share the same nodes and control plane, and compromised workloads
can impact both Namespaces. The two clusters on the right provide strong isolation by
implementing two separate clusters, each on dedicated hardware.

5: Virtual clusters with Namespaces 64
Cluster A Cluster B Cluster C ————
@ Nomsspace: | @ Nomgoace:
: 0 App App App
| ' C D F

Soft multi-tenancy with Namespaces Hard multi-tenancy - separate clusters and infra

O

H
©
w3
©

Figure 5.1 - Soft and hard isolation

Namespaces are lightweight and easy to manage but only provide soft isolation.
Running multiple clusters costs more and introduces more management overhead, but it
offers strong isolation.

Default Namespaces

Every Kubernetes cluster has a set of pre-created Namespaces.

Run the following command to list yours.

$ kubectl get namespaces

NAME STATUS AGE
default Active 2d
kube-system Active 2d
kube-public Active 2d

kube-node-lease Active 2d

The default Namespace is where new objects go if you don’t specify a Namespace
when creating them. kube-system is where control plane components such as the
internal DNS service and the metrics server run. kube-public is for objects that need
to be readable by anyone. And last but not least, kube-node-1lease is used for node
heartbeat and managing node leases.

Run a kubectl describe to inspect one of the Namespaces on your cluster. You can
substitute namespace with ns when working with kubectl.

5: Virtual clusters with Namespaces 65

$ kubectl describe ns default

Name: default

Labels: kubernetes.io/metadata.name=default
Annotations: <none>

Status: Active

No resource quota.
No LimitRange resource.

You can also add -n or --namespace to kubectl commands to filter results against a
specific Namespace.

Run the following command to list all Service objects in the kube-system Namespace.
Your output might be different.

$ kubectl get svc --namespace kube-system

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

kube-dns ClusterIP 10.43.0.10 <none> 53/UDP,53/TCP,9153...
metrics-server ClusterIP 10.43.4.203 <none> 443 /TCP
traefik-prometheus ClusterIP 10.43.49.213 <none> 9100/TCP

traefik LoadBalancer 10.43.222.75 <pending> 80:31716/TCP,443:31...

You can also use the --all-namespaces flag to return objects from all Namespaces.

Creating and managing Namespaces

In this section, you'll see how to create, inspect, and delete Namespaces.

You'll need a clone of the book’s GitHub repo if you want to follow along.

$ git clone https://github.com/nigelpoulton/TheK8sBook.git
<Snip>
You'll also need to run all commands from the TheK8sBook/namespaces directory.

Namespaces are first-class resources in the core vi API group. This means they’re
stable, well-understood, and have been around for a long time. It also means you can
work with them imperatively and declaratively. We'll do both.

Run the following imperative command to create a new Namespace called hydra.

$ kubectl create ns hydra
namespace/hydra created

Now, create one declaratively from the shield-ns.yml YAML file. It’s a simple file
defining a single Namespace called shield.

5: Virtual clusters with Namespaces 66

kind: Namespace
apiVersion: vl
metadata:
name: shield
labels:
env: marvel

Create it with the following command.

$ kubectl apply -f shield-ns.yml
namespace/shield created

List all Namespaces to see the two new ones you created.

$ kubectl get ns

NAME STATUS AGE
<Snip>

hydra Active 49s
shield Active 3s

If you know anything about the Marvel Cinematic Universe, you'll know Shield and
Hydra are bitter enemies and should never share the same cluster with only Namespaces
separating them.

Delete the hydra Namespace.

$ kubectl delete ns hydra
namespace "hydra" deleted

Configure kubectl for a specific Namespace

When working with Namespaces, you'll quickly realize it’s painful having to add the -n
or --namespace flag on all kubectl commands. A better way is to set your kubeconfig to
automatically run commands against a specific Namespace.

Run the following command to configure your kubeconfig to run all future kubectl
commands against the shield Namespace.

$ kubectl config set-context --current --namespace shield
Context "tkb" modified.

Run a few simple kubectl get commands to test it works. The shield Namespace is
empty, so your commands won’t return any objects.

5: Virtual clusters with Namespaces 67

Deploying objects to Namespaces

As previously mentioned, most objects are Namespaced, and Kubernetes deploys new
objects to the default Namespace unless you specify otherwise.

There are two ways to deploy objects to specific Namespaces:

+ Imperatively

+ Declaratively

To do it imperatively, add the -n or --namespace flag to commands. To do it declara-
tively, you specify the Namespace in the objects YAML manifest.

Let’s deploy an app to the shield Namespace using the declarative method.

The application is defined in the app.ym1 file in the namespaces folder of the book’s
GitHub repo. It defines three objects: a ServiceAccount, a Service, and a Pod. The
following YAML extract shows all three objects targeted at the shield Namespace.

Don’t worry if you don’t understand everything in the YAML, you only need to know it
defines three objects and targets each one at the shield Namespace.

apiVersion: vl
kind: ServiceAccount
metadata:
namespace: shield <<==== Namespace
name: default
apiVersion: vl
kind: Service
metadata:
namespace: shield <<==== Namespace
name: the-bus
spec:
type: LoadBalancer
ports:
- port: 8080
targetPort: 8080
selector:
env: marvel
apiVersion: vl
kind: Pod
metadata:
namespace: shield <<==== Namespace
name: triskelion
<Snip>

5: Virtual clusters with Namespaces 68

Deploy it with the following command. Don’t worry if you get a warning about a
missing annotation for the ServiceAccount.

$ kubectl apply -f app.yml
serviceaccount/default configured
service/the-bus configured
pod/triskelion created

Run a few commands to verify all three objects are in the shield Namespace. You don’t
need to add the -n shield flag if you configured kubectl to automatically target the
shield Namespace.

$ kubectl get pods -n shield
NAME READY STATUS RESTARTS AGE
triskelion 1/1 Running 0] 48s

$ kubectl get svc -n shield
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
the-bus LoadBalancer 10.43.30.174 localhost 8080:31112/TCP 52s

Now that the app is deployed, use curl or your browser to connect to it. Just point your
browser or curl command to the value in the EXTERNAL-IP column on port 808e. If
yours looks like the book’s example, you'll connect to localhost:8080.

$ curl localhost:8080

<!DOCTYPE html>

<html>

<head>
<title>A0S</title>
<Snip>

Congratulations. You've created a Namespace and deployed an app to it. Connecting to
the app is no different from connecting to an app in the default Namespace.

Clean up

The following commands will clean up your cluster and revert your kubeconfig to use
the default Namespace.

Delete the shield Namespace. This will automatically delete the Pod, Service, and
ServiceAccount, and it may take a few seconds to complete.

5: Virtual clusters with Namespaces 69

$ kubectl delete ns shield
namespace "shield" deleted

Reset your kubeconfig so it uses the default Namespace. If you don’t do this, future
commands will run against the deleted shield Namespace and return no results.

$ kubectl config set-context --current --namespace default
Context "tkb" modified.

Chapter Summary

In this chapter, you learned that Kubernetes uses Namespaces to divide clusters for
resource and accounting purposes. Each Namespace can have its own users, RBAC rules,
and resource quotas, and you can selectively apply policies to Namespaces. However,
they’re not a strong workload isolation boundary, so you cannot use them for hard
multi-tenancy.

If you don’t specify one at deploy time, Kubernetes deploys objects to the default
Namespace.

6: Kubernetes Deployments

This chapter shows you how to use Deployments to add cloud-native features such as self-
healing, scaling, rolling updates, and versioned rollbacks to stateless apps on Kubernetes.

The chapter is divided as follows:

» Deployment theory

+ Create a Deployment
« Manually scale an app
+ Perform a rollout

o Perform a rollback

Deployment theory

Deployments are the most popular way of running stateless apps on Kubernetes. They
add self-healing, scaling, rollouts, and rollbacks.

Consider a quick example.

Assume you have a requirement for a web app that needs to be resilient, scale on
demand, and be frequently updated. You write the app, containerize it, and define it in
a Pod YAML so it can run on Kubernetes. You then wrap the Pod inside a Deployment
and post it to Kubernetes where the Deployment controller deploys the Pod. At this
point, your cluster is running a single Deployment managing a single Pod.

If the Pod fails, the Deployment controller replaces it with a new one. If demand
increases, the Deployment controller can deploy more identical Pods. When you update
the app, the Deployment controller deletes the old Pods and replaces them with new
ones.

Assume the app has another stateless microservice, such as a shopping cart. You'd
containerize this, wrap it in its own Pod, wrap the Pod in its own Deployment, and
deploy it to the cluster.

At this point, you'd have two Deployments managing two different microservices.

Figure 6.1 shows this setup with the Deployment controller watching and managing
both Deployments. The web Deployment manages four identical web server Pods, and
the cart Deployment manages two identical shopping cart Pods.

6: Kubernetes Deployments 71

Deployment
controller

/N

Observe and manage

<

———————

Figure 6.1 - Deployments

Under the hood, Deployments follow standard Kubernetes architecture comprising:

1. A resource

2. A controller

At the highest level, resources define objects and controllers manage them.

The Deployment resource exists in the apps/v1 API” and defines all supported attributes
and capabilities.

The Deployment controller runs on the control plane, watches Deployments, and
reconciles observed state with desired state.

Deployments and Pods

Every Deployment manages one or more identical Pods.

For example, an application comprising a web service and a shopping cart service will
need two Deployments — one for managing the web Pods and the other for managing
the shopping cart Pods. Figure 6.1 showed the web Deployment managing four identical
web Pods and the cart Deployment managing two identical shopping cart Pods.

7https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#deployment-v1-apps

6: Kubernetes Deployments 72

Figure 6.2 shows a Deployment YAML file requesting four replicas of a single Pod. If
you increase the replica count to six, it will deploy and manage two additional identical
Pods.

apiVersion: apps/vl
kind: Deployment
metadata:

name: web
spec:

[replicas: 4]<—~

Give me 4 replicas of

te this Pod
minReadySeconds: 10

strategy:
type: RollingUpdate
rollingUpdate:

[template:
spec:
containers:
- name: web-app
image: my-web-app
ports:
- containerPort: 8080 |

Figure 6.2

Notice how the Pod spec is defined in a template embedded in the Deployment YAML.

Deployments and ReplicaSets

We've repeatedly said that Deployments add self-healing, scaling, rollouts, and rollbacks.
However, behind the scenes, it’s actually a different resource called a ReplicaSet that
provides the self-healing and scaling.

Figure 6.3 shows the overall architecture of containers, Pods, ReplicaSets, and Deploy-
ments. It also shows how they map into a Deployment YAML.

6: Kubernetes Deployments 73

rainersion: apps/v1l
kind: Deployment

metadata:
name: web
spec:
strategy:
type: RollingUpdate Rollouts and rollbacks
rollingUpdate:
maxUnavailable: 1 @
~ maxsurge: 1 - Scaling, self-healing
replicas: 2 ‘—”—”_,,————,—,,
selector:
matchLabels: @
app: hello-world L1 G Co-lo, sharing... | G Co-lo, sharing...
template: /
metadata: 11 [I]]m]]
labels: App & deps App & deps
app: hello-world ///
spec:
containers:

- name: hello-pod
image: nigelpoulton/k8sbook:1.0
ports:
- containerPort: 8080

Figure 6.3

Posting this Deployment YAML to the cluster will create a Deployment, a ReplicaSet,
and two identical Pods running identical containers. The Pods are managed by the
ReplicaSet, which, in turn, is managed by the Deployment. You should then perform all
management via the Deployment and never directly manage the ReplicaSet or Pods.

A quick word on scaling

It’s possible to scale your apps manually, and we’ll see how to do that shortly. However,
Kubernetes has several autoscalers that automatically scale your apps and infrastructure.
Some of them include:

« The Horizontal Pod Autoscaler
o The Vertical Pod Autoscaler
o The Cluster Autoscaler

The Horizontal Pod Autoscaler (HPA) adds and removes Pods to meet current demand.
Most clusters install it by default, and it’s widely used.

The Cluster Autoscaler (CA) adds and removes cluster nodes so you always have enough
to run all scheduled Pods. This is also installed by default and widely used.

6: Kubernetes Deployments 74

The Vertical Pod Autoscaler (VPA) increases and decreases the CPU and memory
allocated to running Pods to meet current demand. It isn’t installed by default, has
several known limitations, and is less widely used. Current implementations delete the
existing Pod and replace it with a new one every time it scales the Pods resources. This
is disruptive and can even result in Kubernetes scheduling the new Pod to a different
node. However, work is underway to enable in place updates to live Pods.

Community projects like karmada® take things further by allowing you to scale apps
across multiple clusters.

Let’s consider a quick example using the HPA and CA.

You deploy an application to your cluster and configure an HPA to autoscale the number
of application Pods between two and ten. Demand increases, and the HPA asks the
scheduler to increase the number of Pods from two to four. This works, but demand
continues rising, and the HPA asks the scheduler for another two Pods. However, the
scheduler can’t find a node with sufficient resources this time and marks the two new
Pods as pending. The CA notices the pending Pods and dynamically adds a new cluster
node. Once the node joins the cluster, the scheduler assigns the pending Pods to it.

The process works the same for scaling down. For example, the HPA reduces the
number of Pods when demand decreases. This may trigger the CA to reduce the number
of cluster nodes. When removing a cluster node, Kubernetes has to evict all Pods on the
node and replace them with new Pods on the surviving nodes.

You’'ll sometimes hear people refer to multi-dimensional autoscaling. This is jargon
for combining multiple scaling methods — scaling Pods and nodes, or scaling apps
horizontally (adding more Pods) and vertically (adding more resources to existing Pods).

It's all about the state

Before going any further, it’s vital that you understand the following concepts. If you
already know them, skip straight to the Rolling updates with Deployments section.

+ Desired state
« Observed state (sometimes called actual state or current state)
« Reconciliation

Desired state is what you want, observed state is what you have, and the goal is for them to
always match. When they don’t match, a controller starts a reconciliation process to bring
observed state back into sync with desired state.

The declarative model is how we declare a desired state to Kubernetes without telling
Kubernetes how to implement it. You leave the how up to Kubernetes.

8https://karmada.io/

6: Kubernetes Deployments 75

Declarative vs Imperative

The declarative model describes an end goal — you tell Kubernetes what you want. The
imperative model requires long lists of commands that tell Kubernetes how to reach the
end goal.

The following analogy will help:

« Declarative: Give me a chocolate cake to feed ten people.

« Imperative: Drive to store. Buy eggs, milk, flour, cocoa powder... Drive home.
Preheat the oven. Mix the ingredients. Place in a cake tin. If a fan-assisted oven,
place the cake in the oven for 30 minutes. If not a fan-assisted oven, place the cake
in the oven for 40 minutes. Set a timer. Remove from the oven when the timer
expires and turn the oven off. Leave to stand until cool. Add frosting.

The declarative model is simpler and leaves the how up to Kubernetes. The imperative
model is much more complex as you need to provide all the steps and commands that
will hopefully achieve an end goal — in this case, making a chocolate cake for ten people.

Let’s look at a more concrete example.

Assume you have an application with two microservices — a front-end and a back-end.
You anticipate needing five front-end replicas and two back-end replicas.

Taking the declarative approach, you write a simple YAML file requesting five front-
end Pods listening externally on port 80, and two back-end Pods listening internally on
port 27017. You then give the file to Kubernetes and sit back while Kubernetes makes it
happen. It’s a beautiful thing.

The opposite is the imperative model. This is usually a long list of complex instructions
with no concept of desired state. And, making things worse, imperative instructions can
have endless potential variations. For example, the commands to pull and start containerd
containers are different from the commands to pull and start CRI-O containers. This
results in more work and is prone to more errors, and because it’s not declaring a
desired state, there’s no self-healing. It’s devastatingly ugly.

Kubernetes supports both models but strongly prefers the declarative model.

Note: containerd and CRI-O are CRI runtimes that run on Kubernetes work-
ers and perform low-level tasks such as starting and stopping containers.

Controllers and reconciliation

Reconciliation is fundamental to desired state.

6: Kubernetes Deployments 76

For example, ReplicaSets are implemented as a background controller running in a
reconciliation loop, ensuring the correct number of Pod replicas are always present. If
there aren’t enough Pods, it adds more. If there are too many, it terminates some.

Assume a scenario where desired state is ten replicas, but only eight are present. It
makes no difference if this is due to failures or if an autoscaler has requested an increase.
Either way, the ReplicaSet controller creates two new replicas to sync observed state
with desired state. And the best bit is that it does it without needing help from you!

The exact same reconciliation process enables self-healing, scaling, rollouts, and
rollbacks.

Let’s take a closer look at rolling updates and rollbacks.

Rolling updates with Deployments

Deployments are amazing at zero-downtime rolling updates (rollouts). But they work
best if you design your apps to be:

1. Loosely coupled via APIs

2. Backward and forward compatible

Both are hallmarks of modern cloud-native microservices apps and work as follows.

Your microservices should always be loosely coupled and only communicate via well-
defined APIs. Doing this means you can update and patch any microservice without
having to worry about impacting others — all connections are via formalized APIs that
expose documented interfaces and hide specifics.

Ensuring releases are backward and forward-compatible means you can perform
independent updates without caring which versions of clients are consuming the service.
A simple non-tech analogy is a car. Cars expose a standard driving “API” that includes a
steering wheel and foot pedals. As long as you don’t change this “API”, you can re-map
the engine, change the exhaust, and get bigger brakes, all without the driver having to
learn any new skills.

With these points in mind, zero-downtime rollouts work like this.

Assume you're running five replicas of a stateless microservice. Clients can connect

to any of the five replicas as long as all clients connect via backward and forward-
compatible APIs. To perform a rollout, Kubernetes creates a new replica running the
new version and terminates one running the old version. At this point, you've got

four replicas on the old version and one on the new. This process repeats until all five
replicas are on the new version. As the app is stateless and multiple replicas are up and
running, clients experience no downtime or interruption of service.

6: Kubernetes Deployments 77

There’s a lot more going on behind the scenes, so let’s take a closer look.

Each microservice is built as a container and wrapped in a Pod. You then wrap each Pod
in its own Deployment for self-healing, scaling, and rolling updates. Each Deployment
describes all the following:

» Number of Pod replicas
 Container images to use
+ Network ports

+ How to perform rolling updates

You post Deployment YAML files to the API Server, and the ReplicaSet controller
ensures the correct number of Pods get scheduled. It also watches the cluster, ensuring
observed state matches desired state. A Deployment sits above the ReplicaSet, governing
its configuration and adding mechanisms for rollouts and rollbacks.

All good so far.

Now, assume you're exposed to a known vulnerability and need to release an update
with the fix. To do this, you update the same Deployment YAML file with the new

Pod spec and re-post it to the API server. This updates the existing Deployment object
with a new desired state requesting the same number of Pods, but all running the newer
version containing the fix.

At this point, observed state no longer matches desired state — you've got five old Pods,
but you want five new ones.

To reconcile, the Deployment controller creates a new ReplicaSet defining the same
number of Pods but running the newer version. You now have two ReplicaSets — the
original one for the Pods with the old version and the new one for the Pods with the
new version. The Deployment controller systematically increments the number of Pods
in the new ReplicaSet as it decrements the number in the old ReplicaSet. The net result
is a smooth incremental rollout with zero downtime.

The same process happens for future updates — you keep updating the same Deploy-
ment manifest, which you should store in a version control system.

Figure 6.4 shows a Deployment that’s been updated once. The initial release created
the ReplicaSet on the left, and the update created the one on the right. The update has
completed, as the ReplicaSet on the left is no longer managing any Pods, whereas the
one on the right is managing three live Pods.

6: Kubernetes Deployments 78

@ ReplicaSet 1 issesassnnnnnnnnnns, ReplicaSet 2 m——

Config: 0 Pods, app v1 : Config: 3 Pods, app v2

pod pod pod

Figure 6.4

In the next section, you'll see why it’s important that the old ReplicaSet still exists with
its configuration intact.

Rollbacks

As you saw in Figure 6.4, older ReplicaSets are wound down and no longer manage
any Pods. However, their configurations still exist and can be used to easily roll back to
previous versions.

The rollback process is the opposite of a rollout — wind an old ReplicaSet up while the
current one winds down.

Figure 6.5 shows the same app rolled back to the previous config and being managed by
the previous ReplicaSet.

ReplicaSet 1 m—— @ReplicaSet 2 ssssssssssssnsnnas, .
Config: 3 Pods, app v1 0 Config: 0 Pods, app v2
20 | ;

Figure 6.5

But that’s not the end. Kubernetes gives you fine-grained control over rollouts and
rollbacks. For example, you can insert delays, control the pace and cadence of releases,
and even probe the health and status of updated replicas.

But talk is cheap. Let’s see Deployments in action.

6: Kubernetes Deployments 79

Create a Deployment

You'll need the lab files from the book’s GitHub repo if you want to follow along. If you
still need to get them, run the following command to clone the repo.

$ git clone https://github.com/nigelpoulton/TheK8sBook.git
Cloning into 'TheK8sBook'...

Change into the deployments folder and run all future commands from there.

$ cd TheK8sBook/deployments

We'll use the deploy.yml file, as shown in the following snippet. It defines a single-
container Pod wrapped in a Deployment. It’s annotated and snipped to draw attention
to the parts we'll focus on.

kind: Deployment
apiVersion: apps/vl

metadata:
name: hello-deploy <<==== Deployment name (must be valid DNS name)
spec:
replicas: 10 <<==== Number of Pod replicas to deploy & manage
selector:
matchLabels:

app: hello-world
revisionHistoryLimit: 5
progressDeadlineSeconds: 300
minReadySeconds: 10
strategy: <<==== This block defines rolling update settings
type: RollingUpdate
rollingUpdate:
maxUnavailable: 1
maxSurge: 1
template: <<==== Below here s the Pod template
metadata:
labels:
app: hello-world
spec:
containers:
- name: hello-pod
image: nigelpoulton/k8sbook:1.0
ports:
- containerPort: 8080

There’s a lot going on in the file, so let’s explain the most important bits.

6: Kubernetes Deployments 80

The first two lines tell Kubernetes to create a Deployment object based on the version of
the Deployment resource defined in the apps/v1 APL

The metadata section names the Deployment hello-deploy. You should always give
objects valid DNS names. This means you should only use alphanumerics, the dot, and
the dash in object names.

The spec section is where most of the action happens.

spec.replicas asks for ten Pod replicas. In this case, the ReplicaSet controller will
create ten replicas of the Pod defined in the spec.template section.

spec.selector is a list of labels that Pods need to have for the Deployment and
ReplicaSet controllers to manage them. This label selector has to match the Pod labels
in the Pod template block (spec.template.metadata.labels). In this example, both
specify the app=hello-wor1ld label.

spec.revisionHistoryLimit tells Kubernetes to keep the previous five ReplicaSets

so you can roll back to the last five versions. Keeping more gives you more rollback
options, but keeping too many can bloat the object and cause problems on large clusters
with lots of releases.

spec.progressDeadlineSeconds tells Kubernetes to give each new replica a five-
minute start window before reporting the update as stalled. The counter is reset for
each replica, meaning each replica has its own five-minute window to come up properly
(progress).

spec.strategy tells the Deployment controller how to update the Pods when a rollout
occurs. We'll explain these settings later in the chapter when you perform a rollout.

Finally, everything below spec.template defines the Pod this Deployment will manage.
This example defines a single-container Pod using the nigelpoulton/k8sbook:1.0
image.

Run the following command to create the Deployment on your cluster.

Note: All kubectl commands include the necessary authentication tokens
from your kubeconfig file.

$ kubectl apply -f deploy.yml
deployment.apps/hello-deploy created

At this point, the Deployment configuration is persisted to the cluster store as a record
of intent, and Kubernetes has scheduled ten replicas to healthy worker nodes. The
Deployment and ReplicaSet controllers are also running in the background, watching
the state of play and eager to perform their reconciliation magic.

Feel free to run a kubectl get pods command to see the ten Pods.

6: Kubernetes Deployments 81

Inspecting Deployments

You can use the normal kubectl get and kubectl describe commands to see details
of Deployments and ReplicaSets.

$ kubectl get deploy hello-deploy
NAME READY UP-TO-DATE AVAILABLE AGE
hello-deploy 10/10 10 10 105s

$ kubectl describe deploy hello-deploy

Name: hello-deploy

Namespace: default

Annotations: deployment.kubernetes.io/revision: 1

Selector: app=hello-world

Replicas: 10 desired | 10 updated | 10 total | 10 available | © unavailable
StrategyType: RollingUpdate

MinReadySeconds: 10

RollingUpdateStrategy: 1 max unavailable, 1 max surge
Pod Template:

Labels: app=hello-world

Containers:

hello-pod:
Image: nigelpoulton/k8sbook:1.0
Port: 8080/TCP
<SNIP>

OldReplicaSets: <none>
NewReplicaSet: hello-deploy-54f5d46964 (10/10 replicas created)
<Snip>

The outputs are trimmed for readability, but take a minute to examine them, as they
contain a lot of information that will reinforce what you've learned.

As mentioned earlier, Deployments automatically create associated ReplicaSets. Verify
this with the following command.

$ kubectl get rs
NAME DESIRED CURRENT READY AGE
hello-deploy-54f5d46964 10 10 10 3m45s

You only have one ReplicaSet as you've only performed an initial rollout. However, you
can see the ReplicaSet’s name matches the Deployment’s name with a hash added to
the end. This is a crypto-hash of the Pod template section of the Deployment manifest
(everything below spec.template). You'll see this shortly, but making changes to the
Pod template section initiates a rollout and creates a new ReplicaSet with a hash of the
updated Pod template.

You can get more detailed information about the ReplicaSet with a kubectl describe
command. Your ReplicaSet will have a different name.

6: Kubernetes Deployments

$ kubectl describe rs hello-deploy-54f5d46964

Name: hello-deploy-54f5d46964
Namespace: default
Selector: app=hello-world,pod-template-hash=54f5d46964
Labels: app=hello-world
pod-template-hash=54f5d46964
Annotations: deployment.kubernetes.jo/desired-replicas: 10

deployment.kubernetes.io/max-replicas: 11
deployment.kubernetes.io/revision: 1
Controlled By: Deployment/hello-deploy
Replicas: 10 current / 10 desired
Pods Status: 10 Running / 0 Waiting / O Succeeded / 0 Failed
Pod Template:
Labels: app=hello-world
pod-template-hash=54f5d46964
Containers:

hello-pod:
Image: nigelpoulton/k8sbook:1.0
Port: 8080/TCP
<Snip>

82

Notice how the output is similar to the Deployment output. This is because the Deploy-

ment dictates the configuration of ReplicaSets, and ReplicaSet info gets rolled up into
the Deployment. The ReplicaSet’s status (observed state) also gets rolled up into the

Deployment status.

Accessing the app

The Deployment is running, and you've got ten replicas. However, you need a Kuber-
netes Service object to be able to connect to the app. We'll cover Services in the next
chapter, but for now, it’s enough to know that they provide network access to Pods.

The following YAML is from the 1b.ym1 file in the deployments folder. It defines a
Service that works with the Pods you just deployed.

apiVersion: vl
kind: Service
metadata:
name: lb-svc
labels:
app: hello-world
spec:
type: LoadBalancer
ports:
- port: 8080
protocol: TCP
selector:
app: hello-world

<<==== Send traffic to Pods with this label

6: Kubernetes Deployments 83

Deploy it with the following command.

$ kubectl apply -f 1b.yml
service/lb-svc created

Verify the Service configuration and copy the value in the EXTERNAL-IP column.

$ kubectl get svc 1lb-svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
1b-svc LoadBalancer 10.100.247.251 localhost 8080:31086/TCP

Open a new browser tab and connect to the value in the EXTERNAL-IP field on port 8080.
This will be localhost:8080 if you're on a local Docker Desktop cluster. It'll be a public
IP or DNS name if your cluster is in the cloud.

Figure 6.6 shows a browser accessing the app on localhost:8080.

© 8 @ kesrocks x |+ >
< > ¢ localhost:8080 *»00 :

Kubernetes rocks!
Check out my KCNA certification book.

The KCNA Book

Figure 6.6

Manually scale the app

You can manually scale Deployments in two ways:
+ Imperatively
+ Declaratively

The imperative method uses the kubectl scale command, whereas the declarative
method requires you to update the Deployment YAML file and re-post it to the cluster.
We'll show you both, but the declarative method is preferred.

Verify that you currently have ten replicas.

6: Kubernetes Deployments 84

$ kubectl get deploy hello-deploy
NAME READY UP-TO-DATE AVAILABLE AGE
hello-deploy 10/10 10 10 28m

Run the following commands to imperatively scale down to five replicas and verify the
operation worked.

$ kubectl scale deploy hello-deploy --replicas 5
deployment.apps/hello-deploy scaled

$ kubectl get deploy hello-deploy
NAME READY UP-TO-DATE AVAILABLE AGE
hello-deploy 5/5 5 5 29m

Congratulations, you've successfully scaled the Deployment down to 5 replicas. How-
ever, there’s a potential problem...

The current state of your environment no longer matches your declarative manifest —
there are five replicas on the cluster, but the Deployment YAML still defines 10. This
can cause issues when using the YAML file to perform future updates. For example,
updating the image version in the YAML file and re-posting it to the cluster will also
change the number of replicas back to 10, which you might not want. For this reason,
you should always keep your YAML manifests in sync with your live environment,
and the easiest way to do this is by making all changes declaratively via your YAML
manifests.

Let’s re-post the YAML file and return the replica count to 10.

$ kubectl apply -f deploy.yml
deployment.apps/hello-deploy configured

$ kubectl get deploy hello-deploy
NAME READY UP-TO-DATE AVAILABLE AGE
hello-deploy 10/10 10 10 38m

You may have noticed that scaling operations are almost instantaneous. This is not the
case with rolling updates which you're about to see next.

Kubernetes also has autoscalers that automatically scale Pods and infrastructure based
on current demand.

Perform a rolling update

Let’s perform a rolling update.

6: Kubernetes Deployments 85

Note: The terms rollout, release, zero-downtime update, and rolling update mean
the same thing, and we'll use them interchangeably.

The new version of the app has already been created, tested, and uploaded to Docker
Hub with the nigelpoulton/k8sbook:2.0 tag. All that’s left is for you to perform
the rollout. We're ignoring real-world CI/CD workflows and version control tools to
simplify the process and keep the focus on Kubernetes.

Before continuing, it’s vital you understand that all update operations are actually
replacement operations. When you update a Pod, you're actually deleting it and replacing
it with a new one. Pods are immutable objects, so you never change or update them after
they’re deployed.

The first step is to update the image version in the deploy.ymt file. Use your favorite
editor to update the image version to nigelpoulton/k8sbook:2.0 and save your
changes.

The following trimmed output shows which line in the file to update.

apiVersion: apps/vl
kind: Deployment
metadata:
name: hello-deploy
spec:
replicas: 10
<Snip>
template:
<Snip>
spec:

containers:

- name: hello-pod
image: nigelpoulton/k8sbook:2.0 <<==== Update this line to 2.0
ports:

- containerPort: 8080

The next time you post the file to Kubernetes, every Pod running the 1.0 version will
be deleted and replaced with new Pods running the 2.0 version. However, before doing
that, let’s look at the settings governing how the rollout will work.

The spec section of the YAML file contains all the settings that tell Kubernetes how to
perform the update.

6: Kubernetes Deployments 86

<Snip>
revisionHistoryLimit: 5
progressDeadlineSeconds: 300
minReadySeconds: 10
strategy:
type: RollingUpdate
rollingUpdate:
maxUnavailable: 1
maxSurge: 1
<Snip>

revisionHistoryLimit tells Kubernetes to keep the configs from the previous five
releases for easy rollbacks.

progressDeadlineSeconds tells Kubernetes to give each new Pod replica a five-minute
window to start properly before assuming it’s failed.

spec.minReadySeconds throttles the rate at which Kubernetes replaces replicas. This
config tells Kubernetes to wait 10 seconds between each replica. Longer waits give you
a better chance of catching problems and preventing scenarios where you replace all
replicas with broken ones. In the real world, you'll need to make this value large enough
to trap common failures.

There is also a nested spec.strategy map telling Kubernetes to:

+ Update using the RollingUpdate strategy
« Never have more than one Pod below desired state (naxUnavailable: 1)

« Never have more than one Pod above desired state (maxSurge: 1)

The desired state of this app is ten replicas. Therefore, maxSurge: 1 means Kubernetes

can go up to 11 replicas during the rollout, and maxUnavaitlable allows it to go down to
9. The net result is a rollout that updates two Pods at a time (the delta between 9 and 11

is 2).

This is all great, but how does Kubernetes know which Pods to delete and replace?
Labels!

If you look closely at the deploy.ym1 file, you'll see the Deployment spec has a selector
block. This is a list of labels the Deployment controller looks for when finding Pods

to update during rollouts. In this example, the controller will look for Pods with the
app=hello-wor1ld label. If you look at the Pod template towards the bottom of the

file, you'll notice it creates Pods with this same label. Net result: This deployment
creates Pods with the app=hello-wor1ld label and selects Pods with the same label when
performing updates, etc.

6: Kubernetes Deployments 87

apiVersion: apps/vl
kind: Deployment
metadata:
name: hello-deploy
spec:
selector: <<==== The Deployment will manage all
matchLabels: <<==== replicas on the cluster with
app: hello-world <<==== this label
<Snip>
template:
metadata:
labels:
app: hello-world <<==== Matches the label selector
<Snip>

Pods and Deployments are both immutable, meaning you cannot change the selector or
labels after you create the Deployment.

Run the following command to post the updated manifest to the cluster and start the
rollout.

$ kubectl apply -f deploy.yml
deployment.apps/hello-deploy configured

The rollout replaces two Pods at a time with a ten-second wait after each. This means it
will take a minute or two to complete

You can monitor the progress with kubectl rollout status.

$ kubectl rollout status deployment hello-deploy

Waiting for deployment "hello-deploy" rollout... 4 out of 10 new replicas...
Waiting for deployment "hello-deploy" rollout... 4 out of 10 new replicas...
Waiting for deployment "hello-deploy" rollout... 6 out of 10 new replicas...
e

If you quit monitoring the progress while the rollout is still happening, you can run
kubectl get deploy commands and see the effect of the update-related settings. For
example, the following command shows that six replicas have already been updated, and
you currently have nine. Nine is one less than the desired state of ten and is the result of
the maxUnavailable=1 value in the manifest.

$ kubectl get deploy hello-deploy
NAME READY UP-TO-DATE AVAILABLE AGE
hello-deploy 9/10 6 9 63m

6: Kubernetes Deployments 88

Pausing and resuming rollouts

You can use kubectl to pause and resume rollouts.

If your rollout is still in progress, pause it with the following command.

$ kubectl rollout pause deploy hello-deploy
deployment.apps/hello-deploy paused

Running a kubectl describe command during a paused rollout provides some
interesting info.

$ kubectl describe deploy hello-deploy

Name: hello-deploy
Namespace: default
Annotations: deployment.kubernetes.io/revision: 2
Selector: app=hello-world
Replicas: 10 desired | 6 updated | 11 total | 9 available | 2 unavailable
StrategyType: RollingUpdate
MinReadySeconds: 10
RollingUpdateStrategy: 1 max unavailable, 1 max surge
<Snip>
Conditions:
Type Status Reason
Available True MinimumReplicasAvailable
Progressing Unknown DeploymentPaused

OldReplicaSets: hello-deploy-54f5d46964 (3/3 replicas created)
NewReplicaSet: hello-deploy-5f84c5b7b7 (6/6 replicas created)

The Annotations line shows the object is on revision 2 (revision 1 was the initial
rollout and the current update is revision 2). Replicas shows the rollout is incomplete.
The third line from the bottom shows the Deployment condition as progressing but
paused. Finally, on the last two lines, you can see the ReplicaSet for the initial release

is managing three replicas, and the one for the new release is managing 6.

If a scale-up event occurs during a rollout, Kubernetes will balance the additional repli-
cas across both ReplicaSets. In this example, if the Deployment scales to 20 by adding 10
new replicas, Kubernetes will assign ~3 of the new replicas to the old ReplicaSet and ~6
to the new one.

Run the following command to resume the rollout.

$ kubectl rollout resume deploy hello-deploy
deployment.apps/hello-deploy resumed

Once it is complete, you can check the status with kubectl get deploy.

6: Kubernetes Deployments 89

$ kubectl get deploy hello-deploy
NAME READY UP-TO-DATE AVAILABLE AGE
hello-deploy 10/10 10 10 71m

The output shows the rollout as complete — 10 Pods are up-to-date and available.

If you've been following along, refresh your browser and see the updated app. The
previous version said Kubernetes rocks!, this one says WebAssembly is coming!

e o @ Wasm FTW x 4+ v
< > ¢ localhost:8080 o % 0@ :

WebAssembly is coming!

My Wasm blog

Figure 6.7

Perform a rollback

As previously mentioned, Kubernetes keeps old ReplicaSets as a documented revision
history and an easy way to roll back. The following command shows the history of the
Deployment with two revisions.

$ kubectl rollout history deployment hello-deploy
deployment.apps/hello-deploy

REVISION CHANGE-CAUSE

1 <none>

2 <none>

Revision 1 was the initial release based on the 1.0 image. Revision 2 is the rollout that
just updated the Pods to run version 2.0 of the image.

The following command shows the two ReplicaSets associated with each of the revi-
sions.

6: Kubernetes Deployments 90

$ kubectl get rs

NAME DESIRED CURRENT READY AGE
hello-deploy-5f84c5b7b7 10 10 10 27m
hello-deploy-54f5d46964 [0] 0 0 93m

The next kubectl describe command runs against the old ReplicaSet and proves its
configuration still references the old image version. The output is trimmed to fit the
book, and your ReplicaSets will have different names.

$ kubectl describe rs hello-deploy-54f5d46964

Name:
Namespace:
Selector:
Labels:

Annotations:

Controlled By:

Replicas:
Pods Status:
Pod Template:
Containers:
hello-pod:
Image:
Port:
<Snip>

hello-deploy-54f5d46964

default
app=hello-world,pod-template-hash=54f5d46964
app=hello-world

pod-template-hash=54f5d46964
deployment.kubernetes.io/desired-replicas: 10
deployment.kubernetes.jo/max-replicas: 11
deployment.kubernetes.io/revision: 1
Deployment/hello-deploy

0 current / 0 desired

0 Running / © Waiting / © Succeeded / 0 Failed

nigelpoulton/k8sbook:1.0 <<==== Still configured with old version
8080/TCP

The line you're interested in is the one shown second-from-last in the book and lists
the old image version. This means flipping the Deployment back to this ReplicaSet will
automatically replace all Pods with new ones running the 1.0 image.

Note: Don’t get confused if you hear rollbacks referred to as updates. That’s
exactly what they are. They follow the same logic and rules as an update/roll-
out — terminate Pods with the current image and replace them with Pods
running the new image. In the case of a rollback, the new image is actually an
older one.

The following example uses kubectl rollout to revert the application to revision 1.
This is an imperative command and not recommended. However, it’s convenient for
quick rollbacks, just remember to update your source YAML files to reflect the changes.

6: Kubernetes Deployments 91

$ kubectl rollout undo deployment hello-deploy --to-revision=1
deployment.apps "hello-deploy" rolled back

Although it might look like the operation is instantaneous, it isn’t. Like we said before,
rollbacks follow the same rules in the Deployment’s strategy block defining the rules
of the rollout. You can verify this and track the progress with the following kubectl
get deploy and kubectl rollout commands.

$ kubectl get deploy hello-deploy
NAME READY UP-TO-DATE AVAILABLE AGE
hello-deploy 9/10 6 9 96m

$ kubectl rollout status deployment hello-deploy

Waiting for deployment "hello-deploy"... 6 out of 10 new replicas have been updated...
Waiting for deployment "hello-deploy"... 7 out of 10 new replicas have been updated...
Waiting for deployment "hello-deploy"... out of 10 new replicas have been updated...
Waiting for deployment "hello-deploy"...
Waiting for deployment "hello-deploy"...
e

= 0

old replicas are pending termination...
of 10 updated replicas are available...

[}

As with the rollout, the rollback replaces two Pods at a time and waits ten seconds after
each.

Congratulations. You've performed a rolling update and a successful rollback.

Rollouts and labels

You've already seen that Deployments and ReplicaSets use labels and selectors to
determine which Pods they own and manage.

In earlier versions of Kubernetes, Deployments would seize ownership of static Pods

if their labels matched the Deployment’s label selector. However, recent versions of
Kubernetes prevent this by adding a system-generated pod-template-hash label to Pods
created by controllers.

Consider a quick example. Your cluster has five static Pods with the app=front-end
label. You add a new Deployment requesting ten Pods with the same label. Older
versions of Kubernetes would see the existing five static Pods with the same label, seize
ownership of them, and only create five new ones. The net result would be ten Pods
with the app=front-end label, all owned by the Deployment. However, the original five
static Pods might be running a different app, and you might not want the Deployment
managing them.

Fortunately, modern versions of Kubernetes tag all Pods created by a Deployment
(ReplicaSet) with the pod-template-hash label. This stops higher-level controllers from
seizing ownership of existing static Pods.

6: Kubernetes Deployments 92

Look closely at the following extremely snipped output to see how the pod-template-
hash label connects Deployments to ReplicaSets, and ReplicaSets to Pods.

$ kubectl describe deploy hello-deploy
Name: hello-deploy

<Snip>

NewReplicaSet: hello-deploy-54f5d46964

$ kubectl describe rs hello-deploy-54f5d46964

Name: hello-deploy-54f5d46964
<Snip>>
Selector: app=hello-world,pod-template-hash=54f5d46964

$ kubectl get pods --show-labels

NAME READY STATUS LABELS

hello-deploy-54f5d46964. . 1/1 Running app=hello-world,pod-template-hash=54f5d46964
hello-deploy-54f5d46964. . 1/1 Running app=hello-world,pod-template-hash=54f5d46964
hello-deploy-54f5d46964. . 1/1 Running app=hello-world,pod-template-hash=54f5d46964
hello-deploy-54f5d46964. . 1/1 Running app=hello-world,pod-template-hash=54f5d46964
<Snip>

ReplicaSets include the pod-template-hash label in their label selectors, but De-
ployments don’t. This is fine because it’s actually ReplicaSets that manage Pods, not
Deployments.

You shouldn’t attempt to modify the pod-template-hash label.

Clean up

Use kubectl delete -f deploy.yml and kubectl delete -f 1lb.yml to delete the
Deployment and Service created in the examples.

Chapter summary

In this chapter, you learned that Deployments are a great way to manage stateless apps
on Kubernetes. They augment Pods with self-healing, scalability, rolling updates, and
rollbacks.

Like Pods, Deployments are objects in the Kubernetes API, and you should work with
them declaratively. They’re defined in the apps/v1 API and implement a controller
running as a reconciliation loop on the control plane.

Behind-the-scenes Deployments use ReplicaSets to do a lot of the work with Pods. For
example, it’s actually a ReplicaSet that creates, terminates, and manages the number

6: Kubernetes Deployments 93

of Pod replicas. However, you shouldn’t directly create or edit ReplicaSets, you should
always configure them via a Deployment.

You can manually scale Deployments by editing the Deployment YAML and re-posting
it to the cluster. However, Kubernetes has autoscalers that automatically scale deploy-
ments based on demand.

Rolling updates happen by deleting old Pods and replacing them with new ones in a
controlled, organized manner.

7: Kubernetes Services

Pods are unreliable, and you should never connect to them directly. You should always
connect to them through a Service.

The chapter is divided as follows:

+ Service theory

« Hands-on with Services

Service Theory

Kubernetes treats Pods as ephemeral objects and deletes them when any of the following
events occur:

+ Scale-down operations
+ Rolling updates
+ Rollbacks

o Failures

This means they’re unreliable, and apps can’t rely on them being there to respond to
requests. Fortunately, Kubernetes has a solution — Service objects sit in front of one or
more identical Pods and expose them via a reliable DNS name, IP address, and port.

Figure 7.1 shows a client connecting to an application via a Service called app1. The
client connects to the name or IP of the Service, and the Service forwards requests to
the application Pods behind it.

7: Kubernetes Services 95

v

Name: app1, IP: 10.99.11.23, Port: 8080 | «———Front-end: stable

Selector: project=tkb Back-end: dynamic

\\‘
pod pod

project=tkb project=tkb project=tkb

Figure 7.1 - Clients accessing Pods via a Service

Note: Services are resources in the Kubernetes API, and as such, we capital-
ize the “S” to avoid confusion with other uses of the word.

Every Service has a front end and a back end. The front end includes a DNS name,

IP address, and network port that Kubernetes guarantees will never change. The

back end is a label selector that sends traffic to healthy Pods with matching labels.
Looking back to Figure 7.1, the client sends traffic to the Service on either app1:8080 or
10.99.11.23:8080, and Kubernetes guarantees it will reach a Pod with the project=tkb
label.

Services are also intelligent enough to maintain a list of healthy Pods with matching
labels. This means you can scale up and down, perform rolling updates and rollbacks,
and Pods can even fail, but the Service will always have an up-to-date list of active
healthy Pods.

Labels and loose coupling

Services use labels and selectors to know which Pods to send traffic to. This is the same
technology that loosely couples Deployments to Pods.

Figure 7.2 shows a Service selecting on Pods with the project=tkb and zone=prod
labels.

7: Kubernetes Services 96

e

Selector:
project=tkb
zone=prod

g
Pod A Pod B Pod C Pod D

project=tkb project=tkb project=tkb project=tkb
zone=prod zone=prod zone=prod
release=2024

Figure 7.2 - Services and labels

In this example, the Service sends traffic to Pod A, Pod B, and Pod D because they have
all the labels it’s looking for. It doesn’t matter that Pod D has additional labels. How-
ever, it won't send traffic to Pod C because it doesn’t have both labels. The following
YAML defines a Deployment and a Service. The Deployment will create Pods with the
project=tkb and zone=prod labels, and the Service will send traffic to them.

apiVersion: apps/vl
kind: Deployment
metadata:
name: tkb-2024
spec:
replicas: 10
<Snip>
template:
metadata:
labels:
project: tkb <<
zone: prod
spec:
containers:
<Snip>

Create Pods with these labels
Create Pods with these labels

A
A

apiVersion: vl
kind: Service
metadata:
name: tkb
spec:
ports:

7: Kubernetes Services 97

- port: 8080

selector:
project: tkb <<==== Send to Pods with these labels
zone: prod <<==== Send to Pods with these labels

Services and EndpointSlices

Whenever you create a Service, Kubernetes automatically creates an associated End-
pointSlice to track healthy Pods with matching labels.

It works like this.

You create a Service, and the EndpointSlice controller automatically creates an associated
EndpointSlice object. Kubernetes then watches the cluster, looking for Pods matching

the Service’s label selector. Any new Pods matching the selector are added to the
EndpointSlice, whereas any deleted Pods get removed. Applications send traffic to the
Service name, and the application’s container uses the cluster DNS to resolve the name
to an IP address. The container then sends the traffic to the Service’s IP, and the Service
forwards it to one of the Pods listed in the EndpointSlice.

Older versions of Kubernetes used an Endpoints object instead of EndpointSlices.
They’re functionally identical, but EndpointSlices perform better on large busy clusters.

Service types

Kubernetes has several types of Services for different use cases and requirements. The
major ones are:

o ClusterIP
« NodePort

» LoadBalancer

ClusterIP is the most basic and provides a reliable endpoint (name, IP, and port) on the
internal Pod network. NodePort Services build on top of ClusterIP and allow external
clients to connect via a port on every cluster node. LoadBalancers build on top of both
and integrate with cloud load balancers for extremely simple access from the internet.

All three are important, so let’s look at each in turn.
ClusterlIP Services - Accessing apps from inside the cluster

ClusterIP is the default. It gets a name and IP that is programmed into the internal
network fabric and is only accessible from inside the cluster. This means:

7: Kubernetes Services 98

+ The IP is only routable on the internal network
+ The name is automatically registered with the cluster’s internal DNS

« All containers are pre-programmed to use the cluster’s DNS to resolve names

Let’s consider an example.

You're deploying an application called skippy, and you want other applications on the
cluster to access it by its name. To satisfy these requirements, you create a new ClusterIP
Service called skippy. Kubernetes creates the Service, assigns it an internal IP, and
creates the DNS records in the cluster’s internal DNS. Kubernetes also configures all
containers on the cluster to use the cluster DNS for name resolution. This means every
app on the cluster can connect to the new app using the skippy name.

However, this doesn’t work outside the cluster, as ClusterIPs aren’t routable, and they
require access to the cluster DNS.

We'll go into a lot more detail in the service discovery chapter.

NodePort Services - Accessing apps from outside the cluster

NodePort Services build on top of ClusterIP Services by adding a dedicated port on every
cluster node that external clients can use. We call this dedicated port the “NodePort”.

The following YAML shows a NodePort Service called skippy.

apiVersion: vl
kind: Service

metadata:
name: skippy <<==== Registered with the internal cluster DNS (ClusterIP)
spec:
type: NodePort <<==== Service type
ports:
- port: 8080 <<==== ClusterIP port
targetPort: 9000 <<==== Application port 1in container
nodePort: 30050 <<==== External port on every cluster node (NodePort)
selector:

app: hello-world

Posting this to the cluster will create a ClusterIP Service with the usual internally
routable IP and DNS name. It will also create port 30050 on every cluster node and map
it back to the ClusterIP. This means external clients can send traffic to any cluster node
on port 300560 and reach the Service.

Figure 7.3 shows a NodePort Service exposing three Pods on every cluster node on
port 30050. Step 1 shows an external client hitting a node on the NodePort. Step 2
shows the node forwarding the request to the ClusterIP of the Service inside the cluster.

7: Kubernetes Services 99

The Service picks a Pod from the EndpointSlice’s always-up-to-date list in step 3 and
forwards it to the chosen Pod in step 4.

IP:10.0.0.50

DNS: skippy _@_,

Port: 8080

Pod 1 1P:9000
Pod 2 1P:9000
Pod 3 1P:9000...

Figure 7.3 - NodePort Service

The external client could’ve sent the request to any cluster node, and the Service
could’ve sent the request to any of the three healthy Pods. In fact, future requests will
probably go to other Pods as the Service performs basic round-robin load balancing.

However, NodePort Services have two significant limitations:

« They use high-numbered ports between 30000-32767

« Clients need to know the names or IPs of nodes, as well as whether nodes are
healthy

This is why most people use LoadBalancer Services instead.

LoadBalancer Services - Accessing apps via load balancers

LoadBalancer Services are the easiest way of exposing Services to external clients. They
simplify NodePort Services by putting a cloud load balancer in front of them.

Figure 7.4 shows a LoadBalancer Service. As you can see, it’s basically a NodePort
Service fronted by a highly-available load balancer with a publicly resolvable DNS name
and low port number.

7: Kubernetes Services 100

Wil

Public IP & DNS, low port

| NodePort I‘
Ee @
pod

IP: 10.0.0.50

DNS: skippy _@_,
Port: 8080

Pod 1 1P:9000
Pod 2 IP:9000
Pod 3 IP:9000...

Figure 7.4 - LoadBalancer Service

The client connects to the load balancer via a reliable, friendly DNS name on a low-
numbered port, and the load balancer forwards the request to a NodePort on a healthy
cluster node. From there, it’s the same as a NodePort Service — send to the internal
ClusterIP Service, select a Pod from the EndpointSlice, and send the request to the Pod.

The following YAML creates a LoadBalancer Service listening on port 8680 and maps
it all the way through to port 9600 on Pods with the project=tkb label. It automatically
creates the required NodePort and ClusterIP constructs in the background.

apiVersion: vl
kind: Service
metadata:
name: lb <<==== Registered with cluster DNS
spec:
type: LoadBalancer
ports:
- port: 8080 <<==== Load balancer port
targetPort: 9000 <<==== Application port inside container
selector:
project: tkb

You'll create and use a LoadBalancer Service in the hands-on section later.

7: Kubernetes Services 101

Summary of Service theory

Services sit in front of Pods and make them accessible via a reliable network endpoint.

The front end of a Service provides an IP, DNS name, and a port that is guaranteed
to be stable for the entire life of the Service. The back-end load balances traffic over a
dynamic set of Pods that match a label selector.

ClusterIP Services are the default and provide reliable endpoints on the internal cluster
network. NodePorts and LoadBalancers provide external endpoints.

LoadBalancer Services create a load balancer on the underlying cloud platform, as well
as all the constructs and mappings to forward traffic from the load balancer to the Pods.

Hands-on with Services

This section shows you how to work with Services imperatively and declaratively. As al-
ways, Kubernetes prefers the declarative method of deploying and managing everything
with YAML files. However, it’s also helpful to know the imperative commands.

You'll need all of the following if you're following along:

« Kubernetes cluster
+ Clone of the book’s GitHub repo

You'll be creating and working with LoadBalancer Services, and you can use any of the
clusters we showed you how to create in Chapter 3. If your cluster is in the cloud, you'll
provision one of your cloud’s internet-facing load balancers and will work with public
IPs or public DNS names. If you're using a local cluster, such as Docker Desktop, the
experience will be the same, but you'll use local constructs such as localhost.

If you don’t already have a copy of the book’s GitHub repo, clone it with the following
command and then switch to the services directory.

$ git clone https://github.com/nigelpoulton/TheK8sBook.git
Cloning into 'TheK8sBook'...

$ cd TheK8sBook/services

Run the following command to deploy a sample app. It'’s a Deployment that creates ten
Pods running a web app listening on port 8086 and with the chapter=services label.

7: Kubernetes Services 102

$ kubectl apply -f deploy.yml
deployment.apps/svc-test created

Ensure the Pods were successfully deployed and then continue to the next section.

Working with Services imperatively

The kubectl expose command creates a Service for an existing Deployment. It’s
intelligent enough to inspect the running Deployment and create all the required
constructs, such as IP address, DNS records, and correct port mappings.

Run the following command to create a new LoadBalancer Service for the Pods in the
svc-test Deployment.

$ kubectl expose deployment svc-test --type=LoadBalancer
service/svc-test exposed

Run a kubectl get to see its basic config. It may take a minute for the EXTERNAL-IP
column to populate.

$ kubectl get svc -o wide

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) SELECTOR
kubernetes ClusterIP 10.96.0.1 <none> 443 /TCP <none>
svc-test LoadBalancer 10.10.19.33 212.2.245.220 8080:31755/TCP chapter=services

The first line is a system Service that exposes the Kubernetes API on the cluster.
Your Service is on the second line, and there’s a lot of info, so let’s step through it.

First up, it’s been allocated the same name as the Deployment it’s sitting in front of —
svc-test.

The TYPE column shows this one’s a LoadBalancer Service, and the one in the example is
assigned an EXTERNAL-IP of 212.2.245.220. If you're on a local cluster such as Docker
Desktop, the EXTERNAL-IP might show localhost.

The CLUSTER-IP column lists the Service’s internal IP that’s only routable on the internal
cluster network.

The PORT(S) column shows the load balancer port (8086) and the NodePort (31755). By
default, the load balancer port matches the port the app listens on, but you can override
this. The NodePort is randomly assigned from between 30000-32767.

The SELECTOR column matches the labels on the Pods.

A couple of things are worth noting.

7: Kubernetes Services 103

First up, the command inspected the running Deployment and created the correct port
mappings and label selector — the app is listening on port 8680, and all 10 Pods have the
chapter=services label.

Second up, even though it’s a LoadBalancer Service, it also created all the ClusterIP and
NodePort constructs. This is because LoadBalancer Services build on top of NodePort
Services, which, in turn, build on top of ClusterIP Services, as shown in Figure 7.5.

load-balancer| : E{ok:0)

LoadBalancer

\ 4
(rode): GEED

NodePort

A 4

(0101933): QD

ClusterlIP

4 S,

N,
N,
\

e "
pod pod pod

Figure 7.5 - Service stacking

The kubectl describe command gives you even more detail.

$ kubectl describe svc svc-test

Name: svc-test

Namespace: default

Labels: <none>

Annotations: <none>

Selector: chapter=services

Type: LoadBalancer

IP Family Policy: SingleStack

IP Families: IPv4

IP: 10.10.19.33

IPs: 10.10.19.33

LoadBalancer Ingress: 212.2.245.220

Port: <unset> 8080/TCP <<==== Load balancer port
TargetPort: 8080/TCP <<==== Application port in container
NodePort: <unset> 31755/TCP <<==== NodePort on each cluster node

7: Kubernetes Services 104

Endpoints: 10.1.0.200:8080,10.1.0.201:8080,10.1.0.202:8080 + 7 more...
Session Affinity: None

External Traffic Policy: Cluster

Events: <none>

The output repeats a lot of what you've already seen, and I've added comments to a few
lines to clarify the different port-related values.

There are also a few additional lines of interest.
Endpoints is the list of healthy matching Pods from the Service’s EndpointSlice object.

Session Affinity allows you to control session stickiness — whether or not connec-
tions from the same client always go to the same Pod. The default is None and allows
connections from the same clients to be forwarded to any Pods. You should try the
ClientIP option if your clients and Pods store state in Pods and require session stickiness.
However, this is an anti-pattern as microservices apps should be designed for process
disposability where clients can connect to any instance of a service.

External Traffic Policy dictates whether traffic hitting the Service will be load
balanced across Pods on all cluster nodes or just Pods on the node the traffic arrives on.
The default is Cluster, and it sends traffic across Pods on all cluster nodes but obscures
source IP addresses. The other option is Local, which only sends traffic to Pods on the
node the traffic arrives on but preserves source IPs.

If your cluster runs dual-stack networking, your output may also list IPv6 addresses.

Test if the Service works by pointing your browser to the value in the EXTERNAL-IP
column on port 8080.

O 0 @ Kesrocks x|+ v
< > C A NotSecure | 212.2.245.220:8080/ *» 0@ :

Kubernetes rocks!

Check out my KCNA certification book.

The KCNA Book

Figure 7.7

7: Kubernetes Services 105

It works. The app is running in a container and listening on port 8080. You created

a LoadBalancer Service that listens on port 8086 and forwards traffic to a NodePort
Service on each cluster node on port 31755, which, in turn, forwards it to a ClusterIP
Service on port 8080. From there, it’s sent to a Pod hosting an app replica on port 8086.

Coming up next, you'll do it all again but declaratively. However, you'll need to clean up
first.

$ kubectl delete svc svc-test

service "svc-test" deleted

The declarative way

It’s time to do things the proper way — the Kubernetes way.

A Service manifest file

The following YAML is from the 1b.yml file, and you'll use it to deploy a LoadBalancer
Service declaratively.

kind: Service
apiVersion: vl
metadata:

name: cloud-1b

spec:
type: LoadBalancer
ports:
- port: 9000 <<==== Load balancer port
targetPort: 8080 <<==== Application port inside container
selector:

chapter: services

Let’s step through it.

The first two lines tell Kubernetes this YAML is defining a Service object based on the
specification in the core/v1 API group. The core group is special and is omitted from
the apiVersion field.

The metadata block specifies the name of the Service that Kubernetes will register with
the cluster DNS. You can also define labels and annotations here.

The spec section defines all the front-end and back-end details. This example tells
Kubernetes to deploy a LoadBalancer Service that listens on port 9000 on the front
end and sends traffic to Pods on port 8680 on the back end if they have the chap-
ter=services label.

Deploy it with the following command.

7: Kubernetes Services 106

$ kubectl apply -f lb.yml
service/cloud-1lb created

Inspecting Services

Services are regular API resources, and you can inspect them with the usual kubectl
get and kubectl describe commands.

$ kubectl get svc cloud-1b
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
cloud-1b LoadBalancer 10.43.191.202 212.2.247.202 9000:30202/TCP

The output will show <pending> in the EXTERNAL-IP column while the cloud platform
provisions the load balancer and allocates it in IP address. Keep refreshing the command
until an address appears.

The Service in the example is exposed to the internet via a cloud load balancer on
212.2.245.220. If you're running on a local cluster such as Docker Desktop, it will
probably be exposed on your laptop’s localhost interface. Either way, you can connect
to it on the value in the EXTERNAL-IP column on port 9000.

EndpointSlice objects

Earlier in the chapter, you learned that every Service gets one or more of its own
EndpointSlice objects. These maintain an up-to-date list of Pods matching the label
selector, and you can inspect them with the usual kubectl commands.

The examples are from a cluster running dual-stack networking. Notice how two
EndpointSlices exist — one for the [Pv4 mappings and the other for IPv6. Your cluster
may only have IPv4 mappings.

$ kubectl get endpointslices

NAME ADDRESSTYPE PORTS ENDPOINTS AGE
1b-cloud-n7jg4 IPv4 8080 10.42.1.16,10.42.1.17,10.42.0.19 + 7 more... 2mls
1b-cloud-9s6sq IPv6 8080 fd00:10:244:1::¢c,fd00:10:244:1::9 + 7 more... 2mls

$ kubectl describe endpointslice lb-cloud-n7jg4

Name: lb-cloud-n7jg4
Namespace: default
Labels: chapter=services

endpointslice.kubernetes.io/managed-by=endpointslice-controller.k8s.i0
kubernetes.io/service-name=svc-test
Annotations: endpoints.kubernetes.io/last-change-trigger-time: 2024-01-01T18:13:40Z
AddressType: IPv4
Ports:

7: Kubernetes Services 107

Name Port Protocol
<unset> 8080 TCP
Endpoints:

- Addresses: 10.42.1.16

Conditions:
Ready: true

Hostname: <unset>
TargetRef: Pod/lb-cloud-9d7b4cf9d-hnvbf
NodeName: k3d-tkb-agent-2

Zone: <unset>
- Addresses: 10.42.1.17
<Snip>
Events: <none>

The full output of the kubectl describe command has a block for each healthy Pod
containing useful info. If a Service matches on more than 100 Pods, it will have more
than one EndpointSlice.

Clean up

Run the following command to delete the Deployment and Services created in the
examples. Kubernetes will automatically delete Endpoints and EndpointSlices when you
delete their associated Service.

$ kubectl delete -f deploy.yml -f 1b.yml
deployment.apps "svc-test" deleted
service "cloud-1b" deleted

Chapter Summary

In this chapter, you learned that Services provide stable and reliable networking

for Pods. They have a front end with a stable DNS name, IP address, and port that
Kubernetes guarantees will never change. They also have a back-end that sends traffic
to healthy Pods matching a label selector.

ClusterIP Services provide reliable networking on the internal Kubernetes network,
NodePort Services expose a port on every cluster node, and LoadBalancer Services
integrate with cloud platforms to create highly available internet-facing load balancers.

Finally, Services are first-class objects in the Kubernetes API and should be managed
declaratively through version-controlled YAML files.

8: Ingress

Ingress is all about accessing multiple web applications through a single LoadBalancer
Service.

You'll need a working knowledge of Kubernetes Services before reading this chapter. If
you don’t already have this, consider going back and reading the previous chapter first.

This chapter is divided as follows:

« Setting the scene for Ingress
+ Ingress architecture

+ Hands-on with Ingress

We'll capitalize Ingress as it’s a resource in the Kubernetes API. We'll also be using the
terms LoadBalancer and load balancer as follows:

o LoadBalancer refers to a Kubernetes Service object of type=LoadBalancer

« load balancer refers to one of your cloud’s internet-facing load balancers

As an example, when you create a Kubernetes LoadBalancer Service, Kubernetes talks to
your cloud platform and provisions a cloud load balancer.

Ingress was promoted to generally available (GA) in Kubernetes version 1.19 after being
in beta for over 15 releases. During the 3+ years it was in alpha and beta, service meshes
increased in popularity, and there’s now some overlap in functionality. As a result, if
you're planning on deploying a service mesh, you may not need Ingress.

Setting the Scene for Ingress

The previous chapter showed you how to use NodePort and LoadBalancer Services to
expose applications to external clients. However, both have limitations.

NodePort Services only work on high port numbers, and clients need to keep track of
node [P addresses. LoadBalancer Services fix this but require a one-to-one mapping
between internal Services and cloud load balancers. This means a cluster with 25
internet-facing apps will need 25 cloud load balancers, and cloud load balancers cost
money! Your cloud may also limit the number of load balancers you can create.

8: Ingress 109

Ingress fixes this by letting you expose multiple Services through a single cloud load
balancer.

It does this by creating a single cloud load balancer on port 86 or 443 and using host-
based and path-based routing to map connections to different Services on the cluster.

Ingress architecture

Ingress is defined in the networking.k8s.1io/v1 API sub-group, and it requires the
usual two constructs:

1. A resource

2. A controller

The resource defines the routing rules, and the controller implements them.

However, Kubernetes doesn’t have a built-in Ingress controller, meaning you need

to install one. This differs from Deployments, ReplicaSets, Services, and most other
resources that have built-in pre-configured controllers. However, some cloud platforms
simplify this by allowing you to install one when you build the cluster. We'll show you
how to install the popular NGINX Ingress controller in the hands-on section.

Once you have an Ingress controller, you deploy Ingress resources with rules telling the
controller how to route requests.

On the topic of routing, Ingress operates at layer 7 of the OSI model, also known as the
application layer. This means it can inspect HTTP headers and forward traffic based on
hostnames and paths.

Note: The OSI model is the industry-standard reference model for TCP/IP
networking and has seven layers numbered 1-7. The lowest layers are
concerned with signaling and electronics, the middle layers deal with
reliability through acknowledgements and retries, and the higher layers add
services for things like HTTP. Ingress operates at layer 7, also known as the
application layer, and implements HTTP intelligence.

The following table shows how hostnames and paths can route to backend ClusterIP
Services.

Host-based example Path-based example Backend K8s Service
shield.mcu.com mcu.com/shield shield
hydra.mcu.com mcu.com/hydra hydra

8: Ingress 110

Figure 8.1 shows two requests hitting the same cloud load balancer. Behind the scenes,
DNS name resolution maps both hostnames to the same load balancer IP. An Ingress
controller watches the load balancer and routes the requests based on the hostnames in
the HTTP headers. In this example, shield.mcu.com is routed to the shield ClusterIP
Service, and hydra.mcu. com is routed to the hydra Service. The logic is the same for
path-based routing, and we’ll see both in the hands-on section.

shield
ho
Emeucon @
/..::@
u.com
fydra.me Cloud Ingress @
load balancer routing rules
hydra

Figure 8.1 Host-based routing

In summary, a single Ingress can expose multiple ClusterIP Services through a single
cloud load balancer. You create and deploy Ingress resources that tell the Ingress
controller how to route requests based on hostnames and paths in request headers. You
might have to install an Ingress controller manually.

Let’s see it in action.

Hands-on with Ingress

You'll need both of these if you're following along:

+ A Kubernetes cluster
+ A clone of the book’s GitHub repo

If your cluster is in the cloud, the examples will create one of your cloud’s internet-
facing load balancers, and you’ll work with public IP addresses or public DNS names.
If you have a local cluster, such as Docker Desktop, you'll work with localhost and
private IP addresses.

If you don’t already have it, clone the book’s GitHub repo with the following command.

8: Ingress 111

$ git clone https://github.com/nigelpoulton/TheK8sBook.git
Cloning from...

Change into the TheK8sBook/ingress directory and run all commands from there.

You'll complete all of the following steps:

. Install the NGINX Ingress controller
. Configure an Ingress class

. Deploy a sample app

. Configure an Ingress object

. Inspect the Ingress object

. Configure DNS name resolution

N N U N W N =

. Test the Ingress

Install the NGINX Ingress controller

You'll install the NGINX controller from a YAML file hosted in the Kubernetes GitHub
repo. It installs a bunch of Kubernetes constructs, including a Namespace, ServiceAc-
counts, ConfigMap, Roles, RoleBindings, and more.

Install it with the following command. I've split the command over two lines because the
URL is so long. You'll have to run it on a single line.

$ kubectl apply -f https://raw.githubusercontent.com/kubernetes/ingress-nginx/
controller-vl.9.4/deploy/static/provider/cloud/deploy.yaml

namespace/ingress-nginx created
serviceaccount/ingress-nginx created
<Snip>

Run the following command to check the ingress-nginx Namespace and ensure the
controller Pod is running. It may take a few seconds to enter the running phase, and
Windows users will need to replace the backslash (\) at the end of the first line with a
backtick ().

8: Ingress 112

$ kubectl get pods -n dingress-nginx \
-1 app.kubernetes.io/name=ingress-nginx

NAME READY STATUS RESTARTS AGE
ingress-nginx-admission-create-789md 0/1 Completed 0 25s
ingress—-nginx-admission-patch-tc4cl 0/1 Completed 0 25s
ingress-nginx-controller-7445ddc6c4-csf98 0/1 Running 0 26s

Don’t worry about the Completed Pods. These were short-lived Pods that initialized the
environment.

Once the controller Pod is running, you have an NGINX Ingress controller and are ready
to create some Ingress objects. However, before doing that, let’s look at Ingress classes.

Ingress classes

Ingress classes allow you to run multiple Ingress controllers on a single cluster. The
process is simple:

1. You assign each Ingress controller to an Ingress class
2. When you create Ingress objects, you assign them to an Ingress class

If you're following along, you'll have at least one Ingress class called nginx. This was
created when you installed the NGINX controller.

$ kubectl get ingressclass
NAME CONTROLLER PARAMETERS AGE
nginx k8s.io0/ingress-nginx <none> 2m25s

You'll have multiple classes if your cluster already had an Ingress controller.

Take a closer look at the nginx Ingress class with the following command. There is no
shortname for Ingress class objects.

$ kubectl describe ingressclass nginx

Name: nginx

Labels: app.kubernetes.io/component=controller
app.kubernetes.io/instance=ingress-nginx
app.kubernetes.io/name=1ingress-nginx
app.kubernetes.io/part-of=ingress-nginx
app.kubernetes.io/version=1.9.4

Annotations: <none>

Controller: k8s.i0/ingress-nginx

Events: <none>

With an Ingress controller and Ingress class in place, you're ready to deploy the same
environment and configure an Ingress object.

8: Ingress 113

Configure host-based and path-based routing

This section deploys two apps and a single Ingress object. The Ingress will route traffic
to both apps via a single load balancer. This can be a cloud-based load balancer or
localhost on a local cluster.

You'll complete all the following steps:

1. Deploy an app called shield and front it with a ClusterIP Service (backend) called
svc-shield

2. Deploy an app called hydra and front it with a ClusterIP Service (backend) called
svc-hydra

3. Deploy an Ingress object that creates a single load balancer and routing rules for
the following hostnames and paths

» Host-based: shield.mcu.com >> svc-shield
» Host-based: hydra.mcu.com >> svc-hydra
Path-based: mcu.com/shield >> svc-shield
+ Path-based: mcu.com/hydra >> svc-hydra

4. Configure DNS name resolution to that shield.mcu.com, hydra.mcu.com, and
mcu. com point to the load balancer

Figure 8.2 shows the overall architecture using host-based routing.

svc-shield shield

e K8s Service Pods

ou

load balancer @

shield.mcu.com _— pod

hydra.mcu.com —p _

mcu.com —~—
Ingress rules @—

shield.mcu.com > svc-shield P
hydra.mcu.com > svc-shield svc-hydra hydra
mcu.com/shield > svc-shield K8s Service Pods
mcu.com/hydra > svc-shield

Figure 8.2 Host-based routing

Traffic flow to the shield Pods will be as follows:

1. Client sends traffic to shield.mcu.com or mcu.com/shield

2. DNS name resolution ensures the traffic goes to the load balancer

8: Ingress 114

3. Ingress controller reads the HTTP headers and finds the hostname (shield.mcu.com)
or path (mcu.com/shield)

4. Ingress rule triggers and routes the traffic to the svc-shield ClusterIP backend
Service

5. The ClusterIP Service ensures the traffic reaches a shield Pod

Deploy the sample environment
This section deploys the two apps and ClusterIP Services that the Ingress will route
traffic to.

The lab is defined in the app.ym1 file in the ingress folder and comprises the following.

+ An app called shield, listening on port 8080, and fronted by a ClusterIP Service
called svc-shield

+ Another app called hydra, also listening on port 8680, and fronted by a ClusterIP
Service called svc-hydra

Deploy it with the following command.

$ kubectl apply -f app.yml
service/svc-shield created
service/svc-hydra created
pod/shield created
pod/hydra created

Once the Pods and Services are up and running, proceed to the next section to create the
Ingress.

Create the Ingress object

You'll deploy the ingress object defined in the ig-all.yml file. It describes an Ingress
object called mcu-all with four rules.

8: Ingress 115

1 apiVersion: networking.k8s.io/v1l

2 kind: Ingress

3 metadata:

4 name: mcu-all

5 annotations:

6 nginx.ingress.kubernetes.io/rewrite-target: /
7 spec:

8 ingressClassName: nginx

9 rules:

10 - host: shield.mcu.com <<==== Host rule for shield app
11 http:

12 paths:

13 - path: /

14 pathType: Prefix

15 backend:

16 service:

17 name: svc-shield

18 port:

19 number: 8080

20 - host: hydra.mcu.com <<==== Host rule for hydra app
21 http:

22 paths:

23 - path: /

24 pathType: Prefix

25 backend:

26 service:

27 name: svc-hydra

28 port:

29 number: 8080

30 - host: mcu.com

31 http:

32 paths:

33 - path: /shield <<==== Path rule for shield app
34 pathType: Prefix

35 backend:

36 service:

37 name: svc-shield

38 port:

39 number: 8080

40 - path: /hydra <<==== Path rule for shield app
41 pathType: Prefix

42 backend:

43 service:

44 name: svc-hydra

45 port:

46 number: 8080

Let’s step through it.

The first two lines tell Kubernetes to deploy an Ingress object based on the scheme in
the networking.k8s.io0/v1 APL

8: Ingress 116

Line four gives the Ingress a name.

The annotation on line six tells the controller to make a best-effort attempt to rewrite
paths to the path your app expects. This example rewrites incoming paths to “/”. For
example, traffic hitting the load balancer on the mcu.com/shield path will have the path
rewritten to mcu. com/. You'll see an example shortly. This annotation is specific to the
NGINX Ingress controller, and you'll have to comment it out if you're using a different
controller.

The spec.ingressClassName field on line eight tells Kubernetes this Ingress object is
intended for the NGINX Ingress controller you installed earlier. You'll have to change
this line, or comment it out, if you're using a different Ingress controller.

The file contains four rules:

+ Lines 10-19 define a host-based rule for traffic arriving on shield.mcu.com
+ Lines 20-29 define a host-based rule for traffic arriving on hydra.mcu.com
+ Lines 30-39 define a path-based rule for traffic arriving on mcu.com/shield

+ Lines 40-49 define a host-based rule for traffic arriving on mcu.com/hydra

Let’s look at an example of a host-based rule and then a path-based rule.

The following host-based rule triggers on traffic arriving via shield.mcu. com at the root
“/” path and forwards it to the ClusterIP back-end Service called svc-shield on port
8080.

- host: shield.mcu.com <<==== Traffic arriving via this hostname
http:
paths:
- path: / <<==== Arriving at root (no subpath specified)
pathType: Prefix
backend: <<==== The next five lines reference an
service: <<==== existing "backend" ClusterIP Service
name: svc-shield <<==== called "svc-shield"
port: <<==== that's listening on
number: 8080 <<==== port 8080

The following path-based rule triggers when traffic arrives on mcu.com/shield. It gets
routed to the same svc-shield back-end Service on the same port.

8: Ingress 117

- host: mcu.com <<==== Traffic arriving via this hostname
http:
paths:
- path: /shield <<==== Arriving on this subpath
pathType: Prefix
backend: <<==== The next five lines reference an
service: existing "backend" ClusterIP Service

called "svc-shield"
that's listening on
port 8080

name: svc-shield
port:
number: 8080

Deploy the Ingress object with the following command.

$ kubectl apply -f dig-all.yml
ingress.networking.k8s.io/mcu-all created

Inspecting Ingress objects

List all Ingress objects in the default Namespace. If your cluster is on a cloud, it can take
a minute or so to get an ADDRESS while the cloud provisions the load balancer.

$ kubectl get ing
NAME CLASS HOSTS ADDRESS PORTS
mcu-all nginx shield.mcu.com,hydra.mcu.com,mcu.com 212.2.246.150 80

The cLAss field shows which Ingress class is handling this set of rules. It may show as
<None> if you only have a single Ingress controller and didn’t configure classes. The
HOSTS field is a list of hostnames the Ingress will handle traffic for. The ADDRESS field
is the load balancer endpoint. If you're on a cloud, it will be a public IP or public DNS
name. If you're on a local cluster, it'll probably be localhost. The PORTS field can be 80
Or 443.

On the topic of ports, Ingress only supports HTTP and HTTPS.
Describe the Ingress. The output is trimmed to fit the page.

8: Ingress 118

$ kubectl describe ing mcu-all

Name: mcu-all
Namespace: default
Address: 212.2.246.150
Ingress Class: nginx
Default backend: <default>
Rules:

Host Path Backends

shield.mcu.com / svc-shield:8080 (10.36.1.5:8080)
hydra.mcu.com / svc-hydra:8080 (10.36.0.7:8080)

mcu.com /shield svc-shield:8080 (10.36.1.5:8080)
/hydra svc-hydra:8080 (10.36.0.7:8080)
Annotations: nginx.ingress.kubernetes.io/rewrite-target: /
Events: <none>
Type Reason Age From Message
Normal Sync 27s (x2 over 28s) nginx-ingress-controller Scheduled for sync

Let’s step through the output.

The Address line is the IP or DNS name of the load balancer created by the Ingress. It
might be localhost on local clusters.

Default backend is where the controller sends traffic arriving on a hostname or path it
doesn’t have a route for. Not all Ingress controllers implement a default backend.

The rules define the mappings between hosts, paths, and backends. Remember that
backends are usually ClusterIP Services that send traffic to Pods.

You can use annotations to define controller-specific features and integrations with
your cloud back end. This example tells the controller to rewrite all paths to look like
they arrived on root “/”. This is a best-effort approach, and as you'll see later, it doesn’t
work with all apps.

At this point, the load balancer is created. You can probably view it through your cloud
console if you're on a cloud platform. Figure 8.3 shows how it looks on the Google
Cloud back end if your cluster is on Google Kubernetes Engine (GKE).

8: Ingress 119

& Ingress Details (! REFRESH 2 EDIT @ DELETE 8 KUBECTL
Type Ingress
IP address 34.159.139.235 (4
Routes
Route Service Pod selector Clusters Pods
shield.mcu.com/ 2 svc-shield env = shield tkb 1/1
hydra.mcu.com/ (2 svc-hydra env = hydra tkb 1/1
mcu.com/shield 4 svc-shield env = shield tkb /1
mcu.com/hydra [£ svc-hydra env = hydra tkb 11
Serving pods
Service Name Status Restarts
svc-shield shield & Running 0
svc-hydra hydra @ Running 0

Figure 8.3 Cloud back-end load balancer configuration
If you've been following along, you'll have all of the following:

+ Two apps and associated ClusterIP Services
+ Load balancer
+ Ingress (controller and resource) configured to route traffic

The only thing left to configure is DNS name resolution so that shield.mcu. com,
hydra.mcu.com and mcu.com all send traffic to the load balancer.

Configure DNS name resolution

In the real world, you'll configure your internal DNS or internet DNS to point host-
names to the Ingress load balancer. How you do this varies depending on your environ-
ment and who provides your internet DNS.

If you're following along, the easiest thing to do is edit the hosts file on your local
computer and map the hostnames to the Ingress load balancer.

8: Ingress 120

On Mac and Linux, this file is /etc/hosts, and you'll need root permissions to edit it.
On Windows, it’s C: \Windows\System32\drivers\etc\hosts, and you'll need to open
it as an administrator.

Create three new lines mapping shield.mcu.com, hydra.mcu.com, and mcu.com to the
IP of the load balancer. Use the IP from the output of a kubectl get ing mcu-all
command. If yours says localhost, use the 127.0.0.1 IP address.

Windows users will need to open notepad.exe as an administrator and open the hosts
file in c:\Windows\System32\drivers\etc. Make sure the open dialog window is set to
open All files (*.x).

$ sudo vi /etc/hosts

Host Database

<Snip>

212.2.246.150 shield.mcu.com
212.2.246.150 hydra.mcu.com
212.2.246.150 mcu.com

Remember to save your changes.

With this done, any traffic you send to shield.mcu.com, hydra.mcu.com, or mcu.com
will be sent to the Ingress load balancer.

Test the Ingress

Open a web browser and try the following URLSs:

+ shield.mcu.com
+ hydra.mcu.com

e mcu.com

Figure 8.4 shows the overall architecture and traffic flow. Traffic hits the load balancer
that was created automatically when the Ingress was created. The traffic arrives on port
80 and the Ingress sends it to an internal ClusterIP Service based on the hostname in
the headers. Traffic for shield.mcu.com goes to the svc-shield Service, and traffic for
hydra.mcu.com goes to the svc-hydra Service.

8: Ingress 121

svc-shield

&

Shleld-n; mc\l-"o‘“
Lcop, s\\'\"'\d'
mcu.com > @) ..e mcu.com ,, Q
M By o, dry
é‘a. 'I"CU.C
w Load balancer om 9

svc-hydra

Figure 8.4 - host-based routing

Notice that requests to mcu. com are routed to the default backend. This is because you
didn’t create an Ingress rule for mcu.com. Depending on your Ingress controller, the
message returned will be different, and your Ingress may not even implement a default
backend. The default backend configured by the GKE built-in Ingress returns a helpful
message saying, response 404 (backend NotFound), service rules for [/] non-existent.

Now try connecting to either of the following:

« mcu.com/shield

« mcu.com/hydra

For path-based routing like this, the Ingress uses the rewrite targets feature as specified in
the object annotation. However, the image doesn’t display because path rewrites like this
don’t work for all apps.

Congratulations, you've successfully configured Ingress for host-based and path-based
routing — you've got two applications fronted by two ClusterIP Services, but both are
exposed through a single load balancer created and managed by Kubernetes Ingress!

Clean up

If you're following along, you'll have all of the following on your cluster:

Pods Services Ingresscontrollers Ingress resources
shield svc-shield ingress-nginx mcu-all
hydra svc-hydra

Delete the Ingress resource.

8: Ingress 122

$ kubectl delete -f dig-all.yml
ingress.networking.k8s.io "mcu-all" deleted

Delete the Pods and ClusterIP Services. It may take a few seconds for the Pods to
terminate gracefully.

$ kubectl delete -f app.yml

service "svc-shield" deleted
service "svc-hydra" deleted

pod "shield" deleted

pod "hydra" deleted

Delete the NGINX Ingress controller.

$ kubectl delete -f https://raw.githubusercontent.com/kubernetes/ingress-nginx/
controller-v1l.9.4/deploy/static/provider/cloud/deploy.yaml

namespace "ingress-nginx" deleted

serviceaccount "ingress-nginx" deleted

<Snip>

Finally, don’t forget to revert your /etc/hosts file if you added manual entries
earlier.

$ sudo vi /etc/hosts

Host Database

<Snip>
212.2.246.150 shield.mcu.com <<==== Delete this entry
212.2.246.150 hydra.mcu.com = Delete this entry

212.2.246.150 mcu.com <<==== Delete this entry

Chapter summary

In this chapter, you learned that Ingress is a way to expose multiple applications
(ClusterIP Services) via a single cloud load balancer. They’re stable objects in the API but
have features that overlap with a lot of service meshes. If you're running a service mesh,
you may not need Ingress.

Lots of Kubernetes clusters require you to install an Ingress controller, and lots of
options exist. However, some hosted Kubernetes services make things easy by shipping
with a built-in Ingress controller.

Once you've installed an Ingress controller, you create and deploy Ingress objects,
which are lists of rules governing how incoming traffic is routed to applications on your
cluster. It supports host-based and path-based HTTP routing.

9: WebAssembly on Kubernetes

WebAssembly (Wasm) is driving a new wave of cloud computing, and platforms like
Kubernetes and Docker are evolving to take advantage.

Virtual Machines were the first wave, containers were the second, and Wasm is the third.
Each wave has enabled smaller, faster, and more portable applications that can go places
and do things the previous waves couldn’t.

M
 —

Virtual Machines Containers WebAssembly

Smaller, faster, more secure...

Figure 9.1

The chapter is divided as follows:

« Wasm Primer
+ Understanding Wasm on Kubernetes
« Hands-on with Wasm on Kubernetes

A quick word on terminology.

The terms WebAssembly and Wasm mean the same thing, and we’ll use them interchange-
ably. In fact, Wasm is short for WebAssembly and isn’t an acronym. This means the
correct way to write it is Wasm, not WASM. However, be kind to people and don’t
criticize them if they make unimportant mistakes like this.

Also, this chapter focuses on using WebAssembly with Kubernetes. This is one of many

use cases covered by terms such as “WebAssembly outside the browser’, “WebAssembly on the
server’, “WebAssembly in the cloud”, and “WebAssembly at the edge”.

9: WebAssembly on Kubernetes 124

Wasm Primer

WebAssembly first appeared on the scene in 2017 and immediately made a name for
itself by speeding up web apps. Fast-forward 7 years, and it’s an official W3C standard,
it’s in all the major browsers, and it’s the go-to solution for web games and web apps
that require high performance without sacrificing security and portability.

It should, therefore, come as no surprise that cloud entrepreneurs observed the rise of
WebAssembly and realized it would be a great technology for cloud apps.

In fact, WebAssembly is such a great fit for the cloud that Docker Founder Solomon
Hykes famously tweeted, “If Wasm+WASI existed in 2008, we wouldn’t have needed to create
Docker. That’s how important it is. WebAssembly on the server is the future of computing. A
standardized system interface was the missing link. Let’s hope WASI is up to the task!”.

He quickly followed up with another tweet saying he expected a future where Linux
containers and Wasm containers work side-by-side, and Docker works with them all.

At the time of writing, Solomon’s predicted future is already here. Docker has excellent
support for Wasm, and it’s already possible to run Linux containers and Wasm contain-
ers side-by-side in the same Kubernetes Pod. However, the WebAssembly standards and
ecosystem are still very new, and traditional Linux containers remain the best solution
for many cloud apps and use cases.

On the technical side, Wasm is a binary instruction set architecture (ISA) like ARM,

x86, MIPS, and RISC-V. This means programming languages can compile source code
into Wasm binaries that will run on any system with a Wasm runtime. Wasm apps execute
inside a deny-by-default secure sandbox that distrusts the application, meaning access
to everything is denied and must be explicitly allowed. This is the opposite of containers
that start with everything wide open.

WASI is the WebAssembly System Interface and allows sandboxed Wasm apps to se-
curely access external services such as key-value stores, networks, the host environment,
and more. WASI is absolutely vital to the success of Wasm outside the browser, and at
the time of writing, WASI Preview 2 is in development and expected to be a huge step
forward.

Let’s quickly cover the security, portability, and performance aspects of Wasm.

Wasm security

Wasm starts with everything locked down. Containers start with everything wide open.

Speaking of container security, it’s important to acknowledge the incredible work done
by the community securing containers and container orchestration platforms. It’s easier
than ever to run secure containerized apps, especially on hosted Kubernetes platforms.

9: WebAssembly on Kubernetes 125

However, the allow-by-default model with broad access to a shared kernel will always
present security challenges for containers.

WebAssembly is very different. Wasm apps execute in a deny-by-default sandbox where
the runtime has to explicitly allow access to anything outside the sandbox. You should
also know that this sandbox has been battle-hardened through many years of running
untrusted in one of the most hostile environments in the world (the web).

Wasm portability

It’s a common misconception that containers are portable. They’re not!

We only think containers are portable because they're smaller than VMs and easier to
copy between hosts and registries. However, this isn’t true portability. In fact, containers
are architecture-dependent, meaning they're not portable. For example, every container is
built for a single OS and architecture.

Even though container build tools have made it easy to build for multiple platforms, it’s
still an overhead, and many organizations end up with image sprawl. As an oversimplified
example, | maintain two images for most of the apps in this book — one for Linux

on ARM and another for Linux on AMD64. Sometimes, I'll update an app and forget

to build the Linux/amd64 image. This causes examples to fail for readers running
Kubernetes on Linux/amd64.

WebAssembly solves this and delivers on the build once, run everywhere promise!

It does this by implementing its own bytecode format that requires a runtime to execute.
You build an app once as a Wasm binary, and then a Wasm runtime on any host can
execute it.

As a quick example, I built the sample app for this chapter on an ARM-based Mac.
However, I compiled it to Wasm, meaning it'll run on any host with a Wasm runtime.
Later in the chapter, we'll execute it on a Kubernetes cluster that could be on your
laptop, in a datacenter, or in the cloud. It can also run on any architecture supported by
Kubernetes. Wasm runtimes even exist for exotic architectures found on IoT and edge
devices.

Speaking of IoT devices, Wasm apps are typically a lot smaller than Linux containers.
This means they can run in resource-constrained environments, such as the edge and
IoT, where containers can'’t.

WebAssembly delivers on the promise of build once, run anywhere.

Wasm performance

As a general rule, VMs take minutes to start, and containers take seconds, but Wasm gets
us into the exciting world of sub-second start times.

9: WebAssembly on Kubernetes 126

In fact, Wasm cold starts are so fast that they don’t feel like cold starts. For example,
Wasm apps commonly start in around ten milliseconds or less. And with the right
optimizations, some can start in microseconds!

This is game-changing and is driving a lot of the early use cases. For example, Wasm is
great for event-driven architectures like serverless functions. It also makes things like
true scale-to-zero a real possibility.

Quick recap

WebAssembly apps are smaller, faster, more portable, and more secure than traditional
Linux containers. However, it’s still the early days, and Wasm isn’t the right choice for
everything. Currently, Wasm is an excellent choice for event handlers and anything
needing super-fast startup times. It’s also great for IoT, edge computing, and building
extensions and plugins. However, at the time of writing, containers may still be the
better choice for traditional cloud apps where networking, heavy I/O, and connecting
to other services are requirements.

Despite all of this, Wasm is developing fast, and WASI Preview 2 will push things along
even faster!

Now that we know a bit about WebAssembly, let’s see how to make it work with
Kubernetes.

Understanding Wasm on Kubernetes

This section introduces the major requirements for running Wasm apps on Kubernetes
clusters that use containerd. Other ways to run Wasm apps on Kubernetes exist.

This is also just an overview section. We'll cover everything in more detail in the hands-
on section.

It's widely understood that Kubernetes is a high-level orchestrator that uses other tools to
perform low-level tasks such as creating, starting, and stopping containers. The most
common configuration is Kubernetes using containerd to manage these lower-level
tasks.

Figure 9.2 shows Kubernetes scheduling tasks to a worker node running containerd.
containerd instructs runc to build the container and start the app. After the container is
created, runc exits, and the shim process maintains the connection between the running
container and containerd.

9: WebAssembly on Kubernetes 127

Enntainerm

FrEJrRunc FrCJrRunc

| |
| (I [

Figure 9.2

In this architecture, everything below containerd is hidden from Kubernetes. This
makes it possible to replace runc and the standard shim with a Wasm runtime and a
Wasm shim. Figure 9.3 shows the same environment but has added two Wasm shims
to the node.

9: WebAssembly on Kubernetes 128

:nntainerm

Shim Shim
RUNC RUNC Wasmedge Wasmtime
| | ! !

Figure 9.3

In this example, all changes are below containerd — there’s still a single unchanged
instance of containerd on the node. This is a fully supported configuration, and we’ll
deploy it in the hands-on section.

It's also worth noting that the Wasm shim architecture differs from the runc shim
architecture. As shown in Figure 9.4, a Wasm shim is a single binary that includes the
shim code and the Wasm runtime code.

Shim

“M/A-runwasi
Wasm runtime

Figure 9.4

:nntainerm

The code to interface with containerd is always runwasi’®, but each shim can embed a
specific Wasm runtime. For example, the Spin shim embeds the runwasi Rust library
and the Spin runtime code. Likewise, the Slight shim embeds runwasi and the Slight
runtime. In each shim, the embedded Wasm runtime creates the Wasm host and executes
the Wasm app, while runwasi keeps containerd in the loop.

°https://github.com/containerd/runwasi

9: WebAssembly on Kubernetes 129

One last thing on shims. containerd mandates that all shim binaries be named as follows:

+ Use the containerd-shim- prefix
+ Specify the name of the runtime

« Specify the version

As an example, the Spin shim must be called containerd-shim-spin-vi.

Figure 9.5 shows a Kubernetes cluster with two nodes running different shims. One is
running the WasmEdge shim and the other is running the Spin shim. In configurations
like this, Kubernetes needs help scheduling workloads to nodes with the correct shims.
The way to do this is a combination of node labels and RuntimeClass objects. Node 2 in
the diagram has the spin=yes label, and a RuntimeClass object exists that selects on the
label and specifies the target runtime in the handler property. This ensures any Pod
referencing this RuntimeClass will be scheduled to Node 2 and use the Spin runtime.
We'll see all of this in more detail in the hands-on section.

Shim

BB runwasi PR runwasi

Figure 9.5

The workflow to deploy a Wasm app to a Kubernetes cluster using containerd is as
follows:

1. Write the app and compile it as a Wasm binary

2. Package the Wasm binary as an OCI image and store it in an OCI registry
3. Install a Wasm shim on at least one cluster node

4. Create a RuntimeClass that specifies the Wasm shim

9: WebAssembly on Kubernetes 130

5. Create a Pod for the Wasm app (use the Wasm image from step 2)
6. Reference the RuntimeClass in the Pod
7. Deploy the Pod to Kubernetes

When the Pod is deployed, the following things will happen:

1. The Pod will be scheduled to a node matching the node selector in the Runtime-
Class

2. The kubelet on the node will pass the work to containerd with the shim info from
the RuntimeClass

3. containerd will start the app using the shim requested in the RuntimeClass

Don’t worry if this sounds confusing. We're about to walk through a complete work-
flow.

Hands-on with Wasm on Kubernetes

In this section, you'll write a Wasm app and take it through all the steps required to run
it on a multi-node Kubernetes cluster.

In the real world, cloud platforms and other tools will simplify the process, and there
are other ways to run Wasm apps on Kubernetes. However, this section gives you a deep
understanding of everything involved so you're ready to deploy and manage Wasm apps
on Kubernetes in the real world.

We'll complete all of the following:

Build a simple web app

Compile it as a Wasm binary

Build it into an OCI image

Push it to an OCI registry

Build a multi-node Kubernetes cluster

Configure the cluster for Wasm

NSy kA DD =

Deploy the app to Kubernetes

You'll need all of the following if you plan on following along. Install them if you don’t
already have them:

+ Docker Desktop 4.27.1 or later

9: WebAssembly on Kubernetes 131

+ k3d 5.6.0 or later
» Rust 1.72 or later with the wasm32-wasi target installed

+ Spin 2.0 or later

Chapter 3 showed you how to install Docker Desktop and k3d. You'll build a new k3d
cluster in a later step.

Go to https://www.rust-lang.org/tools/install to install Rust.

Once you've installed Rust, run the following command to install the wasm32-wasi
target so that Rust can compile code to Wasm binaries.

$ rustup target add wasm32-wasi
info: downloading component 'rust-std' for 'wasm32-wasi'
info: installing component 'rust-std' for 'wasm32-wasi'

Spin is a popular Wasm framework that includes a Wasm runtime and tools to build and
work with Wasm apps. Search the web for install Fermyon Spin and follow the installation
instructions for your platform.

We'll split the remainder of this chapter as follows:

+ Build and prepare the Wasm app
+ Build and configure Kubernetes for Wasm

+ Deploy and test the app

Build and prepare the Wasm app

You can skip this section if you already know how to compile Wasm apps and package
them as OCI images. However, if you're new to Wasm and containers, this section will
teach you important fundamentals about building Wasm apps and packaging them as
container images.

Run all the following commands from within the wasm folder of the book’s GitHub repo.

Run the following spin new command and complete the prompts as shown. This will
scaffold a simple Spin app that responds to web requests on port 80 on the /tkb path.
TKB is short for The Kubernetes Book.

$ spin new tkb-wasm -t http-rust
Description []: My first Wasm app
HTTP path [/...]: /tkb

9: WebAssembly on Kubernetes 132

You'll have a new directory called tkb-wasm containing everything needed to build and
run the app.

Change into the tkb-wasm directory and list its contents. If your system doesn’t have
the tree command installed, you can try running an s -R or equivalent Windows
command.

$ cd tkb-wasm

$ tree
F—— Cargo.toml

F—— spin.toml

src
L— 1ib.rs

2 directories, 3 files

We're only interested in two files:

+ spin.toml tells Spin how to do things such as build and run the app

+ src/lib.rs is the app source code

Edit the src/1lib.rs file so that it returns the text The Kubernetes Book loves Wasm!.
Only change the text in the line indicated by the annotation in the snippet.

use spin_sdk::http::{IntoResponse, Request};

<Snip>

fn handle_tkb_wasm(req: Request) -> anyhow::Result<impl IntoResponse> {
println! ("Handling request to {:?}", req.header("spin-full-url"));
Ok(http::Response: :builder()

.status(200)
.header ("content-type", "text/plain")
.body("The Kubernetes Book loves Wasm!")?) <<==== Only change this line

Save your changes and run a spin build to compile the app as a Wasm binary. Behind
the scenes, spin build runs a more complicated cargo build command from the Rust
toolchain.

9: WebAssembly on Kubernetes 133

$ spin build

Building component tkb-wasm with ‘cargo build --target wasm32-wasi --release’
Updating crates.io index
Updating git repository “https://github.com/fermyon/spin’
<Snip>

Finished building all Spin components

Congratulations, you just built and compiled a Wasm app!

The application binary is called tkb_wasm.wasm in the target/wasm32-wasi/release/
folder. This will run on any machine with a Wasm runtime. Later in the chapter, you'll
run it on a Kubernetes node with the spin Wasm runtime.

Now that you've compiled the app, the next step is to create a Dockerfile that tells
Docker how to package it as an OCI image so you can store it in an OCI registry such
as Docker Hub.

Create a new Dockerfile in the tkb-wasm folder with the following content.

FROM scratch
COPY /target/wasm32-wasi/release/tkb_wasm.wasm .
COPY spin.toml .

The FROM scratch line tells Docker to base the new image on the empty scratch image
instead of a typical Linux base image. This keeps the image small and helps build a
minimal container at runtime — Wasm apps don’t need a container, but container
platforms and tools such as Docker and Kubernetes use tools that do. At runtime, the
Wasm app and Wasm runtime will execute inside a minimal container that is basically
just namespaces and cgroups (no filesystem etc.).

The first cOPY instruction copies the compiled Wasm binary into the root folder of the
container. The second one copies the spin.tomt file into the same root folder.

The spin.toml file tells the spin runtime where the Wasm app is and how to execute it.
Right now, it expects the Wasm app to be in the target/wasm32-wasi/release folder,
but the Dockerfile will copy it to the root folder in the container. This means you need
to update the spin.toml file to expect it in the / folder.

Edit the spin.toml file and strip the leading path from the [component.tkb-wasm] field
to look like this. The annotation in the snippet is only there to show you which line to
change, do not include it in your file.

9: WebAssembly on Kubernetes 134

$ vim spin.toml

<Snip>

[component.tkb-wasm]

source = "tkb_wasm.wasm" <<==== Remove the leading path from this line
<Snip>

At this point, you have all the following:

+ A Wasm app (Wasm binary)
+ A spin.toml file to tell the spin Wasm runtime how to execute the Wasm app

+ A Dockerfile telling Docker how to build the Wasm app into an OCI image

Run the following command to build the Wasm app into an OCI image. You'll need to
use a different image name on the last line if you plan on pushing it to a registry in a
later step.

$ docker build \
--platform wasi/wasm \
--provenance=false \
-t nigelpoulton/k8sbook:wasm-0.1 .

The --platform wasi/wasm flag sets the OS and Architecture of the image. Tools like
docker run can read these attributes at runtime to help them create the container and
run the app.

Check the image exists on your local machine. Feel free to run a docker <inspect and
verify the OS and Architecture attributes.

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
nigelpoulton/k8sbook wasm-0.1 30bal5a926fe 2 mins ago 620kB

Notice how small the image is. Similar hello world Linux containers are usually several
megabytes in size.

Congratulations, you've created a Wasm app and built it into an OCI image that you can
push to a registry so that Kubernetes can pull it in a later step. You don’t have to push
the image to a registry, as there’s a pre-created image you can use later. However, if you
do push it to a registry, you'll need to replace the image tag with the one you created in
the earlier step. You'll also need an account on the registry you're pushing to.

9: WebAssembly on Kubernetes 135

$ docker push nigelpoulton/k8sbook:wasm-0.1

The push refers to repository [docker.io/nigelpoulton/k8sbook]
cdfbd289f3c8: Pushed

86896blae048: Pushed

wasm-0.1: digest: sha256:30bal5a926fef07bf9d8...b2608b2033f45ff5 size: 695

So far, you've written an app, compiled it to Wasm, packaged it as an OCI image, and
pushed it to a registry. Next, we'll build and configure a Kubernetes cluster that can run
Wasm apps.

Build and configure Kubernetes for Wasm

This section requires you to build a new k3d Kubernetes cluster on your laptop or
other local machine. It’s based on a special k3d image that includes pre-installed Wasm
components that other k3d clusters don’t include. This means the k3d cluster we
showed you how to build in Chapter 3 will not work for these examples, and you'll
need to build the cluster we're about to demonstrate if you want to follow along. This
is because Wasm is still very new, and not all Kubernetes distributions include the
components to run Wasm yet. This will change in the future.

You'll complete all of the following steps in this section:

+ Build a 3-node Kubernetes cluster (one control plane node and two workers)
+ Inspect the Wasm configuration on one of the worker nodes
+ Label a worker node so the scheduler knows it can run Wasm apps
+ Create a RuntimeClass so the scheduler assigns Wasm apps to the node
Run the following command to create a new k3d cluster called wasm. Doing this will

also change your kubectl context to the new cluster. You'll need to change this back when
you complete this chapter.

$ k3d cluster create wasm \
--image ghcr.io/deislabs/containerd-wasm-shims/examples/k3d:v0.10.0 \
-p "5005:80@loadbalancer" --agents 2

The first line creates a new cluster called wasm.

The --image flag tells k3d which image to use to build the control plane node and
worker nodes. This is a special image that includes containerd Wasm shims.

The -p flag creates a load balancer that connects to an Ingress on the cluster and maps
port 5005 on your host machine to an Ingress on port 86 inside the cluster.

The --agents 2 flag creates two worker nodes.

Once the cluster is running, you can test connectivity with the following command. You
should see three nodes — one control plane node and two workers.

9: WebAssembly on Kubernetes 136

$ kubectl get nodes

NAME STATUS ROLES AGE VERSION

k3d-wasm-agent-0 Ready <none> 13s v1.27.4+k3sl
k3d-wasm-server-0 Ready control-plane 17s v1.27.4+k3s1
k3d-wasm-agent-1 Ready <none> 13s v1.27.4+k3s1

Kubernetes needs at least one node with both of the following if it wants to run Wasm
workloads:

1. containerd up and running

2. A containerd Wasm shim installed and registered

Exec onto the k3d-wasm-agent-1 worker node and check if containerd is running.

$ docker exec -it k3d-wasm-agent-1 ash

$ ps | grep containerd

PID USER COMMAND
98 0 containerd
<Snip>

Now check if any Wasm shims are installed. They should be in the /b4in directory and
named according to the containerd shim naming convention, which prefixes the shim name
with containerd-shim- and requires a version at the end. The following output shows
five shims — runc-v2 is the default shim for executing Linux containers, the other four
are Wasm shims. The important one for us is the Spin shim called containerd-shim-
spin-vl1.

$ 1s /bin | grep shim
containerd-shim-lunatic-vl
containerd-shim-runc-v2
containerd-shim-slight-vl
containerd-shim-spin-v1
containerd-shim-wws-v1

The presence of a Wasm shim isn’t enough, they also need to be registered with contain-
erd and loaded as part of the containerd config.

Check the containerd configuration file (config.toml) for Wasm shim entries. The file is
normally stored in /etc/containerd, but k3d currently stores it in a different location.
The output is trimmed so it only shows the Wasm runtimes.

9: WebAssembly on Kubernetes

$ cat /var/lib/rancher/k3s/agent/etc/containerd/config.toml

<Snip>
[plugins.cri.containerd.runtimes.spin]
runtime_type = "jo.containerd.spin.v1l"

[plugins.cri.containerd.runtimes.slight]
runtime_type = "do.containerd.slight.v1l"

[plugins.cri.containerd.runtimes.wws]
runtime_type = "jo.containerd.wws.v1l"

[plugins.cri.containerd.runtimes.lunatic]
runtime_type = "djo.containerd.lunatic.vl"

You can also run the following command to verify the active containerd config. The
command parses the output for references to the Spin Wasm shim.

$ containerd --config \
/var/lib/rancher/k3s/agent/etc/containerd/config.toml \
config dump | grep spin

<Snip>
[plugins."io.containerd.grpc.vl.cri".containerd.runtimes.spin]
runtime_type = "io.containerd.spin.v2"
[plugins."io.containerd.grpc.vl.cri".containerd.runtimes.spin.options]

You've confirmed that containerd is running and that Wasm shims are present and
registered. This means the node can run Wasm containers.

All nodes in the example k3d cluster are running the same shims, meaning every
node can run Wasm apps, and no further work is needed. However, most real-world
environments have heterogeneous node configurations where different nodes have
different shims and runtimes. In these scenarios, you need to label nodes and create
RuntimeClasses to help Kubernetes schedule work to the correct nodes.

We'll label the agent-1 node with the wasm=yes label and create a RuntimeClass that
targets nodes with that label.

Run the following command to add the wasm=yes label to the agent-1 worker. You'll
need to type exit to quit your exec session and return to your host’s terminal first.

$ kubectl label nodes k3d-wasm-agent-1 wasm=yes
node/k3d-wasm-agent-1 labeled

Verify the operation worked. Your output may include a lot more labels.

137

9: WebAssembly on Kubernetes 138

$ kubectl get nodes --show-labels | grep wasm=yes
NAME STATUS ROLES LABELS
k3d-wasm-agent-0 Ready <none> beta.kubernetes...,wasm=yes

Run the following command to create a RuntimeClass called rc-spin.

kubectl apply -f - <<EOF
apiVersion: node.k8s.io/v1l
kind: RuntimeClass
metadata:

name: rc-spin
scheduling:

nodeSelector:

wasm: "yes"
handler: spin
EOF

The scheduling.nodeSelector field ensures that Pods using this RuntimeClass will
only be scheduled to nodes with the wasm=yes label. The handler field tells containerd
to use the spin shim to execute Wasm apps.

Check the resource was created correctly.

$ kubectl get runtimeclass
NAME HANDLER AGE
rc-spin spin 1im

At this point, the Kubernetes cluster has everything it needs to run Wasm workloads —
the agent-1 worker node is labeled and has four Wasm shims installed, and a Runtime-
Class exists to schedule Wasm tasks to the node.

Deploy and test the app

The app is defined in the app.yml file in the wasm folder of the book’s GitHub repo and
comprises a Deployment, a Service, and an Ingress.

https://github.com/nigelpoulton/TheK8sBook/tree/main/wasm/app.yml

The important part of the Deployment YAML is the reference to the RuntimeClass in
the Pod spec. This will ensure all three replicas get scheduled to a node that meets the
nodeSelector requirements in the RuntimeClass (nodes with the wasm=yes label). All
three replicas will be scheduled to the agent-1 node in our example.

9: WebAssembly on Kubernetes 139

apiVersion: apps/vl
kind: Deployment
metadata:
name: wasm-spin
spec:
replicas: 3
<Snip>
template:
metadata:
labels:
app: wasm
<Snip>
spec:
runtimeClassName: rc-spin <<==== Referencing the RuntimeClass
containers:
- name: testwasm
image: nigelpoulton/k8sbook:wasm-0.1 <<==== Pre-created 1image
command: ["/"]

There’s also an Ingress and a Service not shown in the YAML snippet. The Ingress
directs traffic arriving on the "/" path to a ClusterIP Service called wasm-spin. The
Service then forwards the traffic to all Pods with the app=wasm label on port 80. The
replicas defined in the Deployment all have the app=wasm label.

The traffic flow is shown in Figure 9.6.

wasm-spin
LoadBalancer Service
& po
Routing rules 80:80 Label
/ —» wasm-spin Select: app=wasm app=wasm

Figure 9.6

The next step will deploy the app from the app.ym1 file in the book’s GitHub repo.
This YAML file uses a pre-created Wasm image from the book’s Docker Hub repo. If
you want to use the image you created in the earlier steps, edit your local copy of the
app.yml file, change the image field, and reference the local app.yml in the following
kubectl apply command.

9: WebAssembly on Kubernetes 140

$ kubectl apply \
-f https://raw.githubusercontent.com/nigelpoulton/TheK8sBook/main/wasm/app.yml
deployment.apps/wasm-spin created
service/svc-wasm created
ingress.networking.k8s.i0/ing-wasm created

Check the status of the Deployment with a kubectl get deploy wasm-spin command.

Wait for all three replicas to be ready, and then run the following command to ensure
they're all scheduled to the agent-1 worker node.

$ kubectl get pods -o wide

NAME READY STATUS N NODE

wasm-spin-5f6fccc557-5jzx6 1/1 Running Ce k3d-wasm-agent-1
wasm-spin-5f6fccc557-c2tq7 1/1 Running . k3d-wasm-agent-1
wasm-spin-5f6fccc557-fténz 1/1 Running Ce k3d-wasm-agent-1

Kubernetes has scheduled all three to the agent-1 node. This means the label and
RuntimeClass worked as expected.

Test the app with the following eur1 command. You can also point your browser to
http://localhost:5005/tkb.

$ curl http://localhost:5005/tkb
The Kubernetes Book loves Wasm!

Congratulations, the Wasm app is running on your Kubernetes cluster!

Clean up

If you followed along, you'll have all the following artifacts that you may wish to clean
up:

+ k3d Kubernetes cluster called wasm
+ Wasm OCI image stored in an OCI registry
« Wasm OCI image on your local host

+ Spin app on your local machine

The easiest way to clean up the Kubernetes cluster is to delete it. If you built a dedicated
k3d cluster for these exercises, you can delete it with this command.

9: WebAssembly on Kubernetes 141

$ k3d cluster delete wasm

If you want to keep the cluster and only delete the resources, run the following two
commands.

$ kubectl delete \
-f https://raw.githubusercontent.com/nigelpoulton/TheK8sBook/main/wasm/app.yml
deployment.apps "wasm-spin" deleted
service "svc-wasm" deleted
ingress.networking.k8s.io "ing-wasm" deleted

$ kubectl delete runtimeclass rc-spin
runtimeclass.node.k8s.io "rc-spin" deleted

You can delete the Wasm image on your local machine with the following command. Be
sure to substitute the name of your image.

$ docker rmi nigelpoulton/k8sbook:wasm-0.1

When you created the app with spin new and spin build, you got a new directory
called tkb-wasm containing all the application artifacts. Use your favorite tool to delete
the directory and all files in it. Be sure to delete the correct directory!

Set your Kubernetes context back to the cluster you've been using for the other exam-
ples in the book. If you've got Docker Desktop you can click the Docker whale and
choose the cotext from the Kubernetes context option.

Chapter Summary

Wasm is powering the third wave of cloud computing, and platforms like Docker and
Kubernetes are evolving to work with it. Docker can already build Wasm apps into
container images, run them with docker run, and host them on Docker Hub. Projects
like containerd and runwasi are making it easy to run Wasm containers on Kubernetes.

Wasm is a binary instruction set that programming languages use as a compilation target
— instead of compiling to something like Linux on ARM, you compile to Wasm.

Compiled Wasm apps are tiny binaries that can run anywhere with a Wasm runtime.
Wasm apps are smaller, faster, more portable, and more secure than traditional Linux
containers. However, at the time of writing, Wasm apps cannot do everything that Linux
containers can.

The high-level process is to write apps in existing languages, compile them as Wasm
binaries, and then use tools such as docker build and docker push to build them

9: WebAssembly on Kubernetes 142

into OCI images and push them to OCI registries. From there, they can be wrapped in
Kubernetes Pods and run on Kubernetes clusters just like regular containers.

Kubernetes clusters running containerd have a growing choice of Wasm runtimes
that are implemented as containerd shims. To run a Wasm app on a Kubernetes cluster
with containerd, you need to install and register a Wasm shim on at least one worker
node. You then need to label the node and reference the label in a RuntimeClass so the
scheduler can assign Wasm Pods to it.

Other ways to run Wasm apps on Kubernetes exist. One alternative is using crun instead
of containerd. See the Kwasm project if you need to add Wasm support to an existing
cluster.

10: Service discovery deep dive

In this chapter, you'll learn about service discovery, why it's important, and how it’s
implemented in Kubernetes. You'll also learn some troubleshooting tips.

You'll get the most from this chapter if you know how Kubernetes Services work. If you
don’t already know this, you should read Chapter 7 first.

The chapter is split into the following sections:

+ Setting the scene

o The Service registry

« Service registration

« Service discovery

+ Service discovery and Namespaces

+ Troubleshooting service discovery

Note: The word service has a lot of different meanings. We capitalize the first
letter for clarity when referring to the Service resource in the Kubernetes
APL

Setting the scene

Finding things on busy platforms like Kubernetes is hard, service discovery makes it easy.

Most Kubernetes clusters run hundreds or thousands of microservices apps. Each one
sits behind its own Service for a reliable name and IP. When one app talks to another, it
actually talks to the Service in front of it. For the remainder of this chapter, any time we
say an app needs to find or talk to another app, we mean it needs to find or talk to the
Service in front of it.

Figure 10.1 shows app-a talking to app-b via its Service object.

10: Service discovery deep dive 144

R R

app-a app-b

Figure 10.1 - Apps connect via Services

Apps need two things to be able to send requests to other apps:

1. A way to know the name of the other app (the name of its Service)

2. A way to convert the name into an [P address

Developers are responsible for step 1 — ensuring apps know the names of the other apps
and microservices they consume. Kubernetes is responsible for step 2 — converting
names to [P addresses.

Figure 10.2 is a high-level view of the overall process with four main steps:

+ Step 1: The developer configures app-a to talk to app-b

« Step 2: app-a asks Kubernetes for the IP address of app-b
+ Step 3: Kubernetes returns the IP address

« Step 4: app-a sends requests to app-b’s IP address

10: Service discovery deep dive 145

Talk to
app-b T
v ® Service registry
| Give me the
@ IP of app-b app-a: 10.0.0.15
pod ———| app-b: 10.0.0.99

<4—10.0.0.99 3
’ pp-b
app-a ® 10.0.0.99
Consume T
10.0.0.99
(app-b)
Figure 10.2

Step 1 is the only manual step. Kubernetes handles steps 2, 3, and 4 automatically.

Let’s take a closer look.

The service registry

The job of a service registry is to maintain a list of Service names and their associated IP
addresses. Apps use it to convert Service names into IP addresses.

Every Kubernetes cluster has a built-in cluster DNS that it uses as its service registry.
It’s a Kubernetes-native application running on the control plane of every Kubernetes
cluster as two or more Pods managed by a Deployment and fronted by a Service. The
Deployment is usually called coredns or kube-dns, and the Service is always called
kube-dns.

Figure 10.3 shows the service registry architecture. It also shows a Service registering
its name and IP and two containers using it for service discovery. As you'll find out later,
service registration and service discovery are both automatic.

10: Service discovery deep dive 146

@kube-system
T —————
: coredns ——————
|
|
|

|

|

|

:

fij |

ne —Registration —— Nfp coredns-d6.. |
m I__ Discovery :Itl |
e EE’ :
pod coredns-n7 |

|

|

|

kube-dns
(10.96.01.0:53)

e EEEEE h
[uu-u] S —— Cluster DNS (service registry) - — — — — — - Y

Figure 10.3 - Cluster DNS architecture

The following commands show the Pods, Deployment, and Service that comprise the
cluster DNS (service registry). They match what is in Figure 10.3, and you can run the
commands on your cluster.

This command lists the Pods running the cluster DNS. Each is usually a Pod using the
registry.k8s.i0/coredns/coredns image to provide the cluster DNS. GKE and some
other clusters use a different image and call the Pods and Deployment kube-dns instead
of coredns.

$ kubectl get pods -n kube-system -1 k8s-app=kube-dns

NAME READY STATUS RESTARTS AGE
coredns-76f75df574-d6nn5 1/1 Running 0 13d
coredns-76f75df574-n7qzk 1/1 Running 0 13d

The next command shows the Deployment that manages the Pods. It ensures there is
always the correct number of cluster DNS Pods.

$ kubectl get deploy -n kube-system -1 k8s-app=kube-dns
NAME READY UP-TO-DATE AVAILABLE AGE
coredns 2/2 2 2 13d

The following command shows the Service in front of the cluster DNS Pods. It’s always
called kube-dns, but it gets a different IP on each cluster. As you'll find out later,
Kubernetes automatically configures every container to use this IP for service discovery.

10: Service discovery deep dive 147

$ kubectl get svc -n kube-system -1 k8s-app=kube-dns
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT (S) AGE
kube-dns ClusterIP 10.96.0.10 <none> 53/UDP,53/TCP,9153/TCP 13d

In summary, every Kubernetes cluster runs an internal cluster DNS service that it uses
as the service registry. It maps every Service’s name and IP, and runs on the control
plane as a set of Pods managed by a Deployment and fronted by a Service.

Let’s switch our focus to service registration.

Service registration

The most important thing to know about service registration on Kubernetes is that it’s
automatic!

At a high level, you develop applications and put them behind Services for reliable
names and IPs. Kubernetes automatically registers these Service names and IPs with the
service registry.

From now on, we'll call the service registry the cluster DNS.

There are three steps in service registration:

1. Assign the Service a name
2. Assign the Service an IP
3. Register the name and IP with the cluster DNS

Developers are responsible for point one. Kubernetes is responsible for points two and
three.

Consider a quick example.

You're developing a new web app that other apps will connect to using the valkyrie-
web name. To accomplish this, you put it behind a Service called valkyrie-web and post
it to the API server. Kubernetes ensures the Service name is unique and automatically
assigns it an IP address (ClusterIP). It also automatically registers the name and IP in the
cluster DNS.

The registration process is automatic because the cluster DNS is a Kubernetes-native
application that watches the API server for new Services. Every time it sees a new one, it
gets its name and IP and automatically registers it. This means applications don’t need
any service registration logic — you put them behind a Service, and the cluster DNS
automatically registers them.

Figure 10.4 summarises the service registration process and adds some of the details
from Chapter 7.

10: Service discovery deep dive 148

Servi
POST Service creeargleuée& Config Cluster DNS
configto APl |[—» assigned —» | persistedto |— sees new

server ClusterlP cluster store Service
EndpointSlices Kube-proxies
N . . IPV
»| ° cf;:::‘;ds —» | createdwith |—» | pullService |—> cr:art‘:js
Pod IPs config

Figure 10.4 - Service registration flow

Let’s step through the diagram.

You post a new Service resource manifest to the API server, where it’s authenticated
and authorised. Kubernetes allocates it a ClusterIP and persists its configuration to the
cluster store. The cluster DNS observes the new Service and registers the appropriate
DNS A and SRV records. Associated EndpointSlice objects are created to hold the list of
healthy Pod IPs that match the Service’s label selector. Every node runs a kube-proxy
that observes the new objects and creates local routing rules so that requests to the
Service’s ClusterIP get routed to Pods.

In summary, every app sits behind a Service for a reliable name and IP. The cluster DNS
watches the cluster for new Service objects and automatically registers their names and
IPs.

Let’s look at service discovery.

Service discovery

Applications use names to talk to other apps. However, they need to convert these
names into [P addresses, which is where service discovery comes into play.

Assume you have a cluster with two apps called enterprise and cerritos. The enterprise
app sits behind a ClusterIP Service called ent, and the cerritos app sits behind one
called cer. Kubernetes has assigned both Services a ClusterIP, and the cluster DNS has
automatically registered them. Right now, things are as follows.

App Service name ClusterIP
Enterprise ent 192.168.201.240
Cerritos cer 192.168.200.217

10: Service discovery deep dive 149

Name: ent Name: cer

IP: 192.168.201.240 1P: 192.168.200.217

Port: 8080 Port: 8080
(kube-dns)

10.96.0.10

| |
Load-balancing @ Load-balancing

) ent: 192.168.201.240 X
enterprise cer: 192.168.200.217 cerritos

Figure 10.5

If either of the apps wants to connect to the other, it needs to know its name and how to
convert it to an IP.

Developers are responsible for coding applications with the names of the applications
they consume, but Kubernetes automatically converts the names to IPs.

Consider a quick example where the enterprise app from Figure 10.5 needs to send
requests to the cerritos app. For this to work, the enterprise app developers need to
configure it with the name of the Service in front of the cerritos app. Assuming they

did this, the enterprise app will send requests to cer. However, it needs a way to convert
cer into an IP address. Fortunately, Kubernetes configures every container to ask the
cluster DNS to convert names to [Ps. This means the containers hosting the instances of
the enterprise app will send the cer name to the cluster DNS, and the cluster DNS will
return the ClusterIP. The app then sends requests to the IP.

As previously mentioned, Kubernetes configures every container to use the cluster
DNS for service discovery. This is done by automatically configuring every container’s
/etc/resolv.conf file with the IP address of the cluster DNS Service. It also adds
search domains to append to unqualified names.

An unqualified name is a short name such as ent. Appending a search domain converts it
to a fully qualified domain name (FQDN) such as ent.default.svc.cluster.local.

The following extract is from a container’s /etc/resolv.conf file configured to send
service discovery requests (DNS queries) to the cluster DNS at 16.96.0. 10. It also lists
three search domains to append to unqualified names.

$ cat /etc/resolv.conf

search default.svc.cluster.local svc.cluster.local cluster.local
nameserver 10.96.0.10 <<==== ClusterIP of internal cluster DNS
options ndots:5

10: Service discovery deep dive 150

The following command proves the nameserver IP in the previous /etc/resolv.conf
file matches the IP address of the cluster DNS (the kube-dns Service).

$ kubectl get svc -n kube-system -1 k8s-app=kube-dns
NAME TYPE CLUSTER-IP PORT (S) AGE
kube-dns ClusterIP 10.96.0.10 53/UDP,53/TCP,9153/TCP 13d

Now that you know the basics, let’s see how the enterprise app from Figure 10.5 sends
requests to the cerritos app.

First, the enterprise app needs to know the name of the cer Service fronting the cerritos
app. That’s the job of the enterprise app developers. Assuming it knows the name, it
sends requests to cer. The network stack of the app’s container automatically sends

the name to the cluster DNS, asking for the associated IP. The cluster DNS responds
with the ClusterIP of the cer Service, and the app sends requests to the IP. However,
ClusterIPs are virtual [Ps that require additional magic to ensure requests eventually
reach the cerritos Pods.

ClusterlIP routing

ClusterIPs are on a special network called the service network and there are no routes to
it! This means every container sends ClusterIP traffic to its default gateway.

Terminology: A default gateway is where a system sends network traffic
when it doesn’t have a route. Default gateways then forward traffic to
another device, hoping the next device will have a route to the destination.

The container’s default gateway sends the traffic to the node it’s running on. The node
doesn’t have a route to the service network either, so it sends it to its own default
gateway. This causes the node’s kernel to process the traffic, which is where the magic
happens...

Every Kubernetes node runs a system service called kube-proxy that implements

a controller watching the API server for new Services and EndpointSlice objects.
Whenever it sees them, it creates rules in the kernel to intercept ClusterIP traffic and
forward it to individual Pod IPs.

This means that every time a node’s kernel processes traffic for a ClusterlIP, it redirects it
to the IP of a healthy Pod matching the Service’s label selector.

Summarising service discovery

Let’s quickly summarise the service discovery process with the help of the flow diagram
in Figure 10.6.

10: Service discovery deep dive 151

Query DNS for > Receive > Send traffic to
Service name ClusterlP ClusterlP

No route. Send No route. Send

. Forward to
»| to container's |—» NoJe — > to Node's —

default gateway default gateway
Rewrite IP
Processed by Trap ..
| Node'skernet [T [apvsruie [T | 2RI
Figure 10.6

The enterprise app sends the request to the cer Service. The container converts this
name to an IP address by sending it to the address of the cluster DNS configured in its
/etc/resolv.conf file. The cluster DNS responds with the IP, and the container sends
the traffic to the IP. However, ClusterIPs are on the service network and the container
doesn’t have a route to it. So, it sends it to its default gateway, which forwards it to

the node it’s running on. The node doesn’t have a route either, so it sends it to its own
default gateway. This causes the node’s kernel to process the request and redirect it to
the IP address of a Pod that matches the Service’s label selector.

Service discovery and Namespaces

Every Kubernetes object gets a name in the cluster address space, and you can partition the
address space with Namespaces.

The cluster address space is a DNS domain that we usually call the cluster domain. On
most clusters, it’s cluster.local, and object names have to be unique within it. For
example, you can only have one Service called cer in the default Namespace, and it will
be called cer.default.svc.cluster.local.

Long names like this are called fully qualified domain names (FQDN), and the format is
<object-name>.<namespace>.svc.cluster.local.

You can use Namespaces to partition the address space below the cluster domain. For
example, if your cluster has two Namespaces called dev and prod, the address space will

10: Service discovery deep dive 152

be partitioned as follows:

o dev: <service-name>.dev.svc.cluster.local

« prod: <service-name>.prod.svc.cluster.local

Object names must be unique within a Namespace but not across Namespaces. As a quick
example, Figure 10.7 shows a single cluster divided into two Namespaces called dev
and prod. Both Namespaces have identical instances of the cer Service. This makes
Namespaces a good tool for running parallel dev and prod configurations on the same
cluster.

n]
3 =
-8
- o

<

@ svc.cluster.local
............ .

n
[]
=

Figure 10.7

Apps can use short names such as ent and cer to connect to Services in the local
Namespace, but they need to use fully qualified domain names to connect to Services
in remote Namespaces.

Let’s walk through a quick example.

Service discovery example

The following YAML is from the sd-example.yml file in the service-discovery folder
of the book’s GitHub repo.

10: Service discovery deep dive

The file defines two Namespaces, two Deployments, two Services, and a single stan-
dalone jump Pod. The Deployments and Services have identical names as they're in
different Namespaces. The jump Pod is only deployed to the dev Namespace. The

example in the book is snipped.

o

30 O

enterprise jump

el

od pod

enterprise

apiVersion: vl
kind: Namespace
metadata:
name: dev
apiVersion: vl
kind: Namespace
metadata:
name: prod
apiVersion: apps/vl
kind: Deployment
metadata:
name: enterprise
namespace: dev
spec:
replicas: 2
template:
spec:
containers:

Figure 10.8

- image: nigelpoulton/k8sbook:text-dev

name: enterp
ports:

rise-ctr

- containerPort: 8080

apiVersion: apps/vl

153

10: Service discovery deep dive 154

kind: Deployment
metadata:

name: enterprise

namespace: prod
spec:

replicas: 2

template:

spec:

containers:

- image: nigelpoulton/k8sbook:text-prod
name: enterprise-ctr
ports:

- containerPort: 8080
apiVersion: vl
kind: Service
metadata:

name: ent
namespace: dev
spec:
selector:
app: enterprise
ports:
- port: 8080
type: ClusterIP
apiVersion: vl
kind: Service

metadata:
name: ent
namespace: prod
spec:
selector:
app: enterprise
ports:
- port: 8080

type: ClusterIP
apiVersion: vl
kind: Pod
metadata:

name: jump

namespace: dev

spec:

terminationGracePeriodSeconds: 5

containers:

- name: jump
image: ubuntu
tty: true
stdin: true

10: Service discovery deep dive 155

Run the following command to deploy everything. You need to run the command from
within the service-discovery directory.

$ kubectl apply -f sd-example.yml
namespace/dev created
namespace/prod created
deployment.apps/enterprise created
deployment.apps/enterprise created
service/ent created

service/ent created

pod/jump-pod created

Check that everything is deployed correctly. The outputs are trimmed to fit the book
and don’t show all objects.

$ kubectl get all --namespace dev

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/enterprise 2/2 2 2 51s

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/ent ClusterIP 10.96.138.186 <none> 8080/TCP 51s
<Snip>

$ kubectl get all --namespace prod

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/enterprise 2/2 2 2 1m24s
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/ent ClusterIP 10.96.147.32 <none> 8080/TCP 1m25s
<snip>

You have two Namespaces called dev and prod, and each has an instance of the enter-
prise app and an instance of the ent Service. The dev Namespace also has a standalone
Pod called jump.

Let’s see how service discovery works within a Namespace and across Namespaces.
You'll do all of the following:

1. Log on to the jump Pod in the dev Namespace

2. Check its /etc/resolv.conf file

3. Connect to the instance of the ent Service in the local dev Namespace
4. Connect to the instance of the ent Service in the remote prod Namespace

The version of the app in each Namespace returns a different message so you can be
sure you've connected to the right one.

Open an interactive exec session to the container in the jump Pod. Your terminal
prompt will change to indicate you're attached to the container.

10: Service discovery deep dive 156

$ kubectl exec -it jump --namespace dev -- bash
root@jump: /#

Inspect the contents of the container’s /etc/resolv.conf file. It should have the IP
address of your cluster’s kube-dns Service as well as the search domain for the dev
Namespace (dev.svc.cluster.local)

cat /etc/resolv.conf

search dev.svc.cluster.local svc.cluster.local cluster.local
nameserver 10.96.0.10

options ndots:5

Install the curt utility.

apt-get update && apt-get install curl -y
<snip>

Run the following curl command to connect to the ent Service on port 8080. This will
connect you to the instance in the local dev Namespace.

curl ent:8080
Hello from the DEV Namespace!
Hostname: enterprise-76fc64bd9-1lvzsn

The Hello from the DEV Namespace response proves the connection reached the instance
in the dev Namespace.

The container automatically appended dev.svc.cluster.local to the name and sent
the query to the cluster DNS specified in its /etc/resolv.conf file. The cluster DNS
returned the ClusterIP for the ent Service in the local dev Namespace and the app sent
the traffic to that IP address. En route to the node’s default gateway, the traffic caused a
trap in the node’s kernel and was redirected to a Pod hosting the app.

Run another curl command, but this time append the domain name of the prod
Namespace. This will cause the cluster DNS to return the ClusterIP of the Service in the
prod Namespace.

curl ent.prod.svc.cluster.local:8080
Hello from the PROD Namespace!
Hostname: enterprise-5cfcd578d7-nvzlp

This time, the response comes from a Pod in the prod Namespace.

The tests prove that Kubernetes automatically resolves short names to the local Names-
pace, and that you need to specify FQDNs to connect across Namespaces.

Type exit to detach your terminal from the jump Pod.

10: Service discovery deep dive 157

Troubleshooting service discovery

Kubernetes makes service registration and service discovery automatic. However, a lot is
happening behind the scenes, and knowing how to inspect and restart things is helpful.

As mentioned, Kubernetes uses the cluster DNS as its built-in service registry. This runs
as one or more managed Pods with a Service object providing a stable endpoint. The
important components are:

+ Pods: Managed by the coredns Deployment
« Service: A ClusterIP Service called kube-dns listening on port 53 TCP/UDP
+ EndpointSlice objects: Names pre-fixed with kube-dns

All of these objects are in the kube-system Namespace and tagged with the k8s-
app=kube-dns label to help you find them more easily.

Check that the coredns Deployment and its Pods are running.

$ kubectl get deploy -n kube-system -1 k8s-app=kube-dns

NAME READY UP-TO-DATE AVAILABLE AGE
coredns 2/2 2 2 14d

$ kubectl get pods -n kube-system -1 k8s-app=kube-dns

NAME READY STATUS RESTARTS AGE
coredns-76f75df574-6q7k7 1/1 Running 0 14d
coredns-76f75df574-krnr7 1/1 Running 0 14d

Check the logs from each of the coredns Pods. The following output is typical of a
working DNS Pod. You'll need to use the name of a Pod from your environment.

$ kubectl logs coredns-76f75df574-n7qzk -n kube-system

.:53

[INFO] plugin/reload: Running configuration SHA512 = 591cf328ccccl2b...
CoreDNS-1.11.1

linux/armé4, gol.20.7, ae2bbc2

Now check the Service and EndpointSlice objects. The output should show the service is
up, has an IP address in the ClusterIP field, and is listening on port 53 TCP/UDP.

The ClusterIP address for the kube-dns Service must match the IP address in the
/etc/resolv.conf files of all containers on the cluster. If it doesn’t, containers will send
DNS requests to the wrong place.

10: Service discovery deep dive 158

$ kubectl get svc kube-dns -n kube-system
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT (S) AGE
kube-dns ClusterIP 10.96.0.10 <none> 53/UDP,53/TCP,9153/TCP 14d

The associated kube-dns EndpointSlice object should also be up and have the IP
addresses of the coredns Pods listening on port 53.

$ kubectl get endpointslice -n kube-system -1 k8s-app=kube-dns
NAME ADDRESSTYPE PORTS ENDPOINTS AGE
kube-dns-jb72g IPv4 9153,53,53 10.244.1.9,10.244.1.14 14d

Once you've verified the fundamental DNS components are up and working, you can
perform more detailed and in-depth troubleshooting. Here are some simple tips.

Start a troubleshooting Pod with your favorite networking tools installed (ping,
traceroute, curl, dig, nslookup, etc.). The registry.k8s.i0/e2e-test-images/jessie-
dnsutils image is a popular choice if you don’t have your own custom image. You can
go to explore.ggcr.dev/ to browse the registry.k8s.io0/e2e-test-images repo for
newer versions.

The following command starts a new standalone Pod called dnsutils and will connect
your terminal. It’s based on the image just mentioned and may take a few seconds to
start.

$ kubectl run -it dnsutils \
--image registry.k8s.io/e2e-test-images/jessie-dnsutils:1.7

A common way to test if the cluster DNS is working is to use nslookup to resolve the
kubernetes Service. This runs on every cluster and exposes the API server to all Pods.
The query should return an IP address and the name kubernetes.default.svc.cluster.local.

nslookup kubernetes

Server: 10.96.0.10
Address: 10.96.0.10#53
Name: kubernetes.default.svc.cluster.local

Address: 10.96.0.1

The first two lines should show the IP address of your cluster DNS. The last two
should show the FQDN of the kubernetes Service and its ClusterIP. You can verify
the ClusterIP of the kubernetes Service by running a kubectl get svc kubernetes
command.

Errors such as nslookup: can’t resolve kubernetes are indicators that DNS isn’t working. A
possible solution is to delete the coredns Pods. This will cause the coredns Deployment
to recreate them.

The following command deletes the DNS Pods. If you're still logged on to the dnsutils
Pod, you'll need to type exit to disconnect before running the command.

10: Service discovery deep dive 159

$ kubectl delete pod -n kube-system -1 k8s-app=kube-dns
pod "coredns-76f75df574-d6énn5" deleted
pod "coredns-76f75df574-n7qzk" deleted

Run a kubectl get pods -n kube-system -1 k8s-app=kube-dns to verify they've
restarted and then test DNS again.

Clean up

Run the following commands to clean up.

$ kubectl delete pod dnsutils

$ kubectl delete -f sd-example.yml

Chapter summary

In this chapter, you learned that Kubernetes uses the internal cluster DNS for service
registration and service discovery. It's a Kubernetes-native application that watches
for newly created Service objects and automatically registers their names and IPs. The
kubelet on each node also configures all containers to use the cluster DNS for service
discovery.

The cluster DNS resolves Service names to ClusterIPs. These are stable virtual IPs on a
special network called the service network. There are no routes to this network, but the
kube-proxy configures all cluster nodes to redirect ClusterIP traffic to Pod IPs on the
Pod network.

11: Kubernetes storage

Storing and retrieving data is critical to most real-world business applications. For-
tunately, the Kubernetes persistent volume subsystem lets you connect enterprise-grade
storage systems that provide advanced data management services such as backup and
recovery, replication, snapshots, and more.

The chapter is divided as follows:

+ The big picture

+ Storage providers

+ The Container Storage Interface (CSI)

+ The Kubernetes persistent volume subsystem
+ Dynamic provisioning with Storage Classes

+ Hands-on

Kubernetes supports a variety of external storage systems. These include enterprise-
class storage systems from providers such as EMC, NetApp, and all the major cloud
providers. The hands-on examples later in the chapter are designed for Kubernetes
clusters on Google Kubernetes Engine (GKE) and won’t work on other platforms.
However, the principles and workflows apply to most Kubernetes environments.

The big picture

Kubernetes supports many types of storage from many different providers. These
include block, file, and object storage from various external systems that can be in the
cloud or your on-premises datacenters.

Figure 11.1 shows the high-level architecture.

11: Kubernetes storage 161

Plugin layer
Storage providers (csi) K
(Portworx, NetApp, EMC,) Persistent volume subsystem

AWS EBS, Azure File...)

Figure 11.1

The storage providers are on the left. As mentioned, these are the external systems
providing advanced storage services and can be on-premises systems such as EMC and
NetApp, or storage services provided by your cloud.

In the middle of the diagram is the plugin layer. This is the interface that connects

the external storage systems with Kubernetes. Modern plugins use the Container
Storage Interface (CSI), which is an industry-standard storage interface for container
orchestrators such as Kubernetes. If you're a developer writing storage plugins, the CSI
abstracts the internal Kubernetes machinery and allows you to develop out-of-tree.

Note: Before the CSI, we had to develop all storage plugins as part of the
main Kubernetes code tree (in-tree). This forced them to be open source

and tied all updates and bug fixes to the Kubernetes release cycle. This was
problematic for plugin developers as well as the Kubernetes maintainers.
Fortunately, now that we have the CSI, plugin developers no longer need to
open-source their code, and they can release updates and bug fixes whenever
required.

On the right of Figure 11.1 is the Kubernetes persistent volume subsystem. This is a
standardized set of API objects that make it easy for applications running on Kubernetes
to consume storage. There are a growing number of storage-related API objects, but the
core ones are:

« PersistentVolumes (PV)
+ PersistentVolumeClaims (PVC)
+ StorageClasses (SC)

Throughout the chapter, we'll refer to these by their PascalCase truncated names —

PersistentVolume, PersistentVolumeClaim, and StorageClass. We'll also use their shortnames,
PV, PVC, and SC.

PVs map to external volumes, PVCs grant access to PVs, and SCs make it all automatic
and dynamic.

11: Kubernetes storage 162

Consider the quick example and workflow shown in Figure 11.2.

=
csl plugin
—-o @ D@

(50GB) ebs.csi.aws.com

vl

Amazon Web Services

Figure 11.2 - Volume provisioning workflow

1. The Pod needs a volume and requests it via a PersistentVolumeClaim

[\

. The PVC asks the StorageClass to create a new PV and associated volume on the
AWS backend

. The SC makes the call to the AWS backend via the CSI plugin

. The CSI plugin creates the device (50GB EBS volume) on AWS

. The CSI plugin reports the creation of the external volume back to the SC

. The SC creates the PV and maps it to the EBS volume on the AWS back end
. The Pod mounts the PV and uses it

N Ot AW

Before digging deeper, it’s worth noting that Kubernetes has mechanisms to prevent
multiple Pods from writing to the same PV. It also forces a 1:1 mapping between
external volumes and PVs — you cannot map a single 50GB external volume to 2 x
25GB PVs.

Let’s dig a bit deeper.

Storage Providers

As previously mentioned, Kubernetes lets you use storage from a wide range of external
systems. We usually call these providers or provisioners.

Each provider supplies its own CSI plugin and has unique features and configuration
options.

11: Kubernetes storage 163

The provider usually distributes the plugin via a Helm chart or YAML installer. Once
installed, the plugin runs as a set of Pods in the kube-system Namespace, and it’s your
responsibility to read the plugin’s documentation and configure it properly.

Some obvious restrictions apply. For example, you can’t provision and mount AWS EBS
volumes if your cluster is on Microsoft Azure. Locality restrictions may also apply. For
example, Pods usually have to be in the same region or zone as the storage back end.

The Container Storage Interface (CSI)

The CSI is an open-source project that defines an industry-standard interface so
container orchestrators can leverage external storage resources in a uniform way. For
example, it gives storage providers a documented interface to work with. It also means
that CSI plugins should work on any orchestration platform that supports the CSI.

You can find a relatively up-to-date list of CSI plugins in the following repository. The
repository refers to plugins as drivers.

* https://kubernetes-csi.github.io/docs/drivers.html

Most cloud platforms pre-install CSI plugins for the cloud’s native storage services.
You'll have to manually install plugins for third-party storage systems, but most are
available as Helm charts or can be installed via YAML files from the provider. Once
installed, CSI plugins usually run as a set of Pods in the kube-system Namespace.

The Kubernetes persistent volume subsystem

The Persistent Volume Subsystem is a set of API objects that allow applications to
request and access storage. It has the following resources that we’ll look at and work
with:

« PersistentVolumes (PV)

« PersistentVolumeClaims (PVC)

+ StorageClasses (SC)

As previously mentioned, PVs represent external volumes on Kubernetes. PVCs grant
applications access to a PV. SCs allow applications to create PVs dynamically.
Let’s walk through another example.

Assume you have an external storage system with the following tiers of storage:

11: Kubernetes storage 164

« Flash/SSD fast storage

» Mechanical slow storage

You expect your applications to use both types, so you create a StorageClass for each.

External tier Kubernetes StorageClass name CSI plugin
SSD sc-fast csixyz
Mechanical sc-slow csixyz

You need to deploy a new application that needs 100GB of fast storage. To accomplish
this, you create a YAML file defining a Pod and a PVC. The Pod requests a volume via
the PVC, and the PVC defines a 100GB volume based on the sc-fast SC.

You deploy the app by sending the YAML file to the API server. The SC controller
observes the new PVC and instructs the CSI plugin to provision a 100GB SSD volume
on the external storage system. The external system creates the volume and reports back
to the CSI plugin, which then informs the SC controller and maps it to a PV. The Pod
can mount the PV and use it.

It’s OK if you don’t understand everything right now. The hands-on examples will
clarify everything.

Dynamic provisioning with Storage Classes

Storage classes are resources in the storage.k8s.i0/v1 API group. The resource
type is StorageClass, and you define them in regular YAML files. You can use the sc
shortname when using kubectt.

Note: You can run a kubectl api-resources command to see a full list of
API resources and their shortnames. It also shows each resource’s API group
and what its equivalent kind is.

As the name suggests, StorageClasses let you define different classes of storage that apps
can request. How you define your StorageClasses is up to you and will depend on the
types of storage you have available. For example, if you have a storage system with fast
and slow storage, as well as optional remote replication, you might define these four
classes:

« fast-local
« fast-replicated

 slow-local

11: Kubernetes storage 165

+ slow-replicated

Let’s look at an example.

A StorageClass YAML

The following YAML object defines a StorageClass called fast-local that will provision
encrypted SSD volumes capable of 10 IOPs per gigabyte from the Ireland AWS region.

kind: StorageClass
apiVersion: storage.k8s.io/v1l

metadata:

name: fast-local
provisioner: ebs.csi.aws.com <<==== AWS Elastic Block Store CSI plugin
parameters:

encrypted: true <<==== Create encrypted volumes

type: iol <<==== AWS SSD drives

iopsPerGB: "10" <<==== Performance requirement
allowedTopologies: <<==== Where to provision volumes and replicas

- matchLabelExpressions:
- key: topology.ebs.csi.aws.com/zone
values:
- eu-west-la <<==== Ireland AWS region

As with all Kubernetes YAML files, kind and apiVerison tell Kubernetes the type

and version of the object you're defining. metadata.name is an arbitrary string that
gives the object a friendly name, and the provisioner field tells Kubernetes which CSI
plugin to use. The parameters block defines the type of storage to provision, and the
allowedTopologies property lets you specify where replicas should go.

A few important things to note:

1. StorageClass objects are immutable — once you deploy them, you can’t modify
them

2. metadata.name should be meaningful, as it’s how you and other objects refer to
the class

3. The terms provisioner, plugin, and driver are sometimes used interchangeably

4. The parameters block is for plugin-specific values and is different for every plugin

Most storage systems have their own features, and it’s your responsibility to read the
documentation for your plugin and configure it correctly.

11: Kubernetes storage 166

Working with StorageClasses

The basic workflow for deploying and using a StorageClass is as follows:

1. Install and configure the CSI storage plugin
2. Create one or more StorageClasses
3. Deploy Pods with PVCs that reference those StorageClasses

The list assumes you have an external storage system connected to your Kubernetes
cluster. Most hosted Kubernetes services pre-install CSI drivers for the cloud’s native
storage backends, making it easier to consume them.

The following YAML snippet defines a Pod, a PVC, and an SC. You can define all three
objects in the same YAML file by separating them with three dashes (---).

apiVersion: vl
kind: Pod <<==== 1. Pod
metadata:
name: mypod
spec:
volumes:
- name: data
persistentVolumeClaim:
claimName: mypvc <<==== 2, Request volume via the "mypvc" PVC
containers:
<SNIP>
apiVersion: vl
kind: PersistentVolumeClaim
metadata:
name: mypvc <<==== 3, This is the "mypvc" PVC
spec:
accessModes:
- ReadWriteOnce

resources:
requests:
storage: 50Gi <<==== 4, Provision a 50Gi volume...
storageClassName: fast <<==== 5, ...based on the "fast" StorageClass

kind: StorageClass
apiVersion: storage.k8s.io/v1l

metadata:

name: fast <<==== 6. This is the "fast" StorageClass
provisioner: pd.csi.storage.gke.io <<==== 7., Use this CSI plugin
parameters:

type: pd-ssd <<==== 8. Provision this type of storage

The YAML is truncated and doesn’t include a full PodSpec. However, we can see the
main workflow if we step through the numbered points:

11: Kubernetes storage 167

. A normal Pod object

. The Pod requests a volume via the mypve PVC

. The file defines a PVC called mypvc

. The PVC provisions a 50Gi volume

. The volume will be provisioned from the fast StorageClass

. The file defines the fast StorageClass

. The StorageClass provisions volumes via the pd.csi.storage.gke.io CSI plugin

© NN N U AN

. The CSI plugin will provision fast (pd-ssd) storage from the Google Cloud’s
storage backend

Let’s look at a couple of additional settings before moving on to the demos.

Additional volume settings

StorageClasses give you many options to control how volumes are provisioned and
managed. We'll cover the following:

« Access mode

+ Reclaim policy

Access mode

Kubernetes supports three volume access modes:

« ReadWriteOnce (RWO)
+ ReadWriteMany (RWM)
« ReadOnlyMany (ROM)

ReadWiriteonce lets a single PVC bind to a volume in read-write (R/W) mode. Attempts
to bind it from multiple PVCs will fail.

ReadWriteMany lets multiple PVCs bind to a volume in read-write (R/W) mode. File and
object storage usually support this mode, whereas block storage usually doesn't.

ReadOnlyMany allows multiple PVCs to bind to a volume in read-only (R/O) mode.

It's also important to know that a PV can only be opened in one mode. For example, you
cannot bind a single PV to one PVC in ROM mode and another PVC in RWM mode.

11: Kubernetes storage 168

Reclaim policy

ReclaimPolicies tell Kubernetes what to do with a PV and associated external storage
when its PVC is released. Two policies currently exist:

» Delete

o Retain

Delete is the most dangerous and is the default for PVs created dynamically via
StorageClasses. It deletes the PV and associated external storage when the PVC is
released. This means deleting the PVC will delete the PV and the external storage. Use
with caution.

Retain will keep the PV and external storage when the PVC is deleted. This option is
safer, but you have to clean up and reclaim resources manually.

Before doing the demos, let’s summarize what you've learned about StorageClasses.

StorageClasses (SC) let you define tiers of storage that applications can use to create
volumes dynamically. You define them in regular YAML files that reference a plugin

and tie them to a particular type of storage on a particular external storage system. For
example, one SC might provision high-performance AWS SSD storage in the AWS Mumbai
Region, while another might provision slow AWS storage from a different AWS region. Once
deployed, the SC controller watches the API server for new PVCs referencing the

SC. Each time you create a PVC that matches the SC, the SC dynamically creates the
required volume on the external storage system and maps it to a PV that apps can mount
and use.

There’s always more detail, but you've learned enough to get you started.

Hands-on

This section walks you through using StorageClasses to dynamically provision volumes
on external systems. We'll split the demos as follows:

+ Use an existing StorageClass

« Create and use a new StorageClass

The demos will only work on Regional GKE clusters like the one we showed you how
to build in Chapter 3. This is because every cloud and every storage system has its own
CSI plugin and its own configuration options, and we can’t create examples for them all.
Don’t be upset if you don’t have a Regional GKE cluster, you'll still learn a lot by reading
through the demos.

11: Kubernetes storage 169

Use an existing StorageClass

The following command lists the pre-created SCs on a typical GKE Autopilot cluster.
The output is trimmed, and it’s OK if your cluster has less.

$ kubectl get sc

RECLAIM

NAME PROVISIONER POLICY VOLUMEBINDINGMODE
enterprise-multi.. filestore.csi.storage.gke.io Delete WaitForFirstConsumer
enterprise-rwx filestore.csi.storage.gke.io Delete WaitForFirstConsumer
premium-rwo pd.csi.storage.gke.io Delete WaitForFirstConsumer
premium-rwx filestore.csi.storage.gke.io Delete WaitForFirstConsumer
standard kubernetes.io/gce-pd Delete Immediate
standard-rwo (def) pd.csi.storage.gke.io Delete WaitForFirstConsumer
standard-rwx filestore.csi.storage.gke.io Delete WaitForFirstConsumer
zonal-rwx filestore.csi.storage.gke.io Delete WaitForFirstConsumer

Let’s examine the output.

First up, Kubernetes created these SCs automatically when you built the cluster. Most
hosted Kubernetes platforms pre-create at least one SC.

The standard-rwo class on the sixth line is the default class. This means it'll be used
by PVCs that don't explicitly specify a different SC. Default SCs are only useful in
development environments and when you don’t have specific storage requirements.
You should always specify an appropriate SC for your application requirements in
production environments.

The PROVISIONER column shows the CSI plugin used by each SC. Five of the SCs in the
output use the filestore.csi.storage.gke.io plugin to access Google Cloud’s NFS-based
Filestore storage. Two use the pd.csi.storage.gke.io plugin to access the Google Cloud’s
block storage. The standard SC uses the legacy in-tree kubernetes.io/gce-pd plugin
(non-CSI), and you shouldn’t use it.

Each one uses the Delete RECLAIM POLICY, meaning Kubernetes will automatically
delete and reclaim all storage resources whenever a PVC is deleted.

Setting VOLUMEBINDINGMODE to WaitForFirstConsumer tells Kubernetes not to create
the volume until a Pod tries to mount it. This guarantees Kubernetes will create the
external volume in the same region/zone as the Pod mounting it. Setting it to Immediate
allows you to pre-create volumes but doesn’t guarantee they’ll be in the same region or
zone as the Pods that will eventually mount them.

Run the following kubectl describe command to see detailed SC information.

11: Kubernetes storage 170

$ kubectl describe sc premium-rwo

Name: premium-rwo

IsDefaultClass: No

Annotations: components.gke.io/component-name=pdcsi,components.gke...
Provisioner: pd.csi.storage.gke.i0

Parameters: type=pd-ssd

AllowVolumeExpansion: True

MountOptions: <none>

ReclaimPolicy: Delete

VolumeBindingMode: WaitForFirstConsumer

Events: <none>

Let’s create a new PVC asking the built-in premium-rwo SC to provision a new
external volume.

List any existing PVs and PVCs so that you can easily identify the ones you're about to
create.

$ kubectl get pv

No resources found

$ kubectl get pvc

No resources found in default namespace.

The following PVC is from the pvc-gke-premium.yml file in the storage folder of the
book’s GitHub repo. It describes a PVC called pvc-prem that will provision a 10GB
volume via the premium-rwo StorageClass. It will only work if your GKE cluster has
a StorageClass called premium-rwo.

apiVersion: vl
kind: PersistentVolumeClaim
metadata:
name: pvc-prem
spec:
accessModes:
- ReadWriteOnce
storageClassName: premium-rwo
resources:
requests:
storage: 10Gi

Run the following command to create the PVC. Be sure to run it from the storage
folder.

$ kubectl apply -f pvc-gke-premium.yml
persistentvolumeclaim/pvc-prem created

11: Kubernetes storage 171

The following commands show the PVC was successfully created. However, it’s in

the pending state, and no PV has been created. This is because the premium-rwo
StorageClass uses the WaitForFirstConsumer binding mode. As such, it won’t provision
a volume and PV until a Pod claims it.

$ kubectl get pv
No resources found

$ kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
pvc-prem Pending premium-rwo 68s

The following snipped YAML defines a Pod that will mount the volume using the pvc-
prem PVC.

apiVersion: vl
kind: Pod
metadata:
name: volpod
spec:
volumes:
- name: data <<==== Create new volume called "data"
persistentVolumeClaim: <<==== based on the PVC
claimName: pvc-prem <<==== with this name
containers:

- name: ubuntu-ctr

volumeMounts: <<==== Mount the volume

- name: data called data (see above)
mountPath: /data <<==== to this directory

Run the following command to create the Pod. Doing this will trigger the creation of the
external volume and PV.

$ kubectl apply -f prempod.yml
pod/volpod created

Give the Pod a few seconds to start, then re-check the status of the PVC and PV.

11: Kubernetes storage 172

$ kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
pvc-prem Bound pvc-796afda3. .. 10Gi RWO premium-rwo 2m30s

$ kubectl get pv
NAME CAPACITY MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS
pvc-796af... 10Gi RWO Delete Bound default/pvc-prem premium-rwo

The PVC is bound, and an associated PV is created. If you check the Google Cloud
backend, you'll see a new persistent disk with the same name as the PV (see Google
Cloud Console > Compute Engine > Disks). You can also run a kubectl describe pod
volpod command to verify the Pod has used the PVC to mount the volume.

Delete the Pod and the PVC. The Pod will take a few seconds to delete gracefully.

$ kubectl delete pod volpod
pod "volpod" deleted

$ kubectl delete pvc pvc-prem
persistentvolumeclaim "pvc-prem" deleted

Deleting the PVC will also delete the PV and associated volume on the Google Cloud
backend. This is because the SC that created it has the ReclaimPolicy set to Delete.
Complete the following steps to verify this.

$ kubectl get pv
No resources found

Go to the Compute Engine > Disks tab of your Google Cloud Console and verify the
backend disk is gone.

Create and use a new StorageClass

In this section, you'll create a new StorageClass and use it to dynamically provision and
use a new volume.

You'll create the SC defined in the sc-gke-fast-repl.yml file in the storage folder
of the book’s GitHub repo. It defines an SC called sc-fast-repl with the following
properties:

« Fast SSD storage (type: pd-ssd)

+ Replicated (replication-type: regional-pd)

+ Create on demand (volumeBindingMode: WaitForFirstConsumer)
+ Keep data when the PVC is deleted (reclaimPolicy: Retain)

11: Kubernetes storage

apiVersion: storage.k8s.io/v1l
kind: StorageClass
metadata:

name: sc-fast-repl
provisioner: pd.csi.storage.gke.io
parameters:

type: pd-ssd

replication-type: regional-pd
volumeBindingMode: WaitForFirstConsumer
reclaimPolicy: Retain

Deploy the SC and verify it exists.

$ kubectl apply -f sc-gke-fast-repl.yml
storageclass.storage.k8s.io/sc-fast-repl created

$ kubectl get sc

RECLAIM
NAME PROVISIONER POLICY VOLUMEBINDINGMODE
premium-rwo pd.csi.storage.gke.io Delete WaitForFirstConsumer
sc-fast-repl pd.csi.storage.gke.1i0 Retain WaitForFirstConsumer

<Snip>

173

ALLOWVOLUME
EXPANSION
true

true

Once the SC is created, you can deploy the app and PVC defined in the vol-app.yml
file. It defines a 20Gi PVC called pvc2 based on the newly created sc-fast-repl SC. It also

defines a Pod that uses the PVC to claim and mount the volume.

apiVersion: vl

kind: PersistentVolumeClaim
metadata:

pvc2

<<==== (Create a new PVC

name: Call it pvc2
spec:
accessModes:
- ReadWriteOnce
storageClassName: sc-fast-repl <<==== Base it on this SC
resources:
requests:
storage:

20Gi <<==== Create a 20Gi vol

apiVersion: vl <<==== This Pod claims it
kind: Pod
metadata:
name: volpod
spec:
volumes:
data

persistentVolumeClaim:

- name:
Create from PVC
with this name

<<====

claimName:
<Snip>

pvc2

11: Kubernetes storage 174

Posting the file to the API server will create the Pod and the PVC. The PV and external
storage will also be created because the Pod is mounting the volume.

$ kubectl apply -f vol-app.yml
persistentvolumeclaim/pvc2 created
pod/volpod created

Use kubectl to check the PVC and PV exist. It will take a few seconds for the Pod to
start and kick off the external volume and PV creation.

Let’s summarize what just happened:

1. You created a new StorageClass called sc-fast-repl that provisions regional
persistent disks on the Google Cloud

2. The SC controller started watching the API server for new PVCs referencing the
sc-fast-repl SC

3. You deployed an app that created a PVC referencing the SC and asking for a 20GB
volume

4. The SC controller observed the PVC and worked with the CSI plugin to dynami-
cally create the external volume and PV

Congratulations. You've created your own StorageClass and used it to provision a
volume dynamically.

Clean up

Delete the Pod and the PVC using the same file that you used to create them.

$ kubectl delete -f vol-app.yml
persistentvolumeclaim "pvc2" deleted
pod "volpod" deleted

Even though you've deleted the Pod and the PVC, the PV, and external storage still exist!

This is because the SC created them with the Reta+in reclaim policy. This policy keeps
PVs, associated external volumes, and data after you delete PVCs.

Run the following command to delete the PV. Be sure to use the PV name from your
environment.

11: Kubernetes storage 175

$ kubectl delete pv pvc-f36b3771-6582-4830-ad43-fblfled3820c
persistentvolume "pvc-f36b3771-6582-4830-ad43-fb1fled3820c" deleted

Delete the external disk on the Google Cloud from within the Compute Engine > Disks
tab of your Google Cloud Console. The disk will show as not in use and have exactly the
same name as the PV you deleted on your cluster. Failure to delete it on the GKE backend
will incur unwanted charges!

Delete the sc-fast-repl StorageClass.

$ kubectl delete sc sc-fast-repl
storageclass.storage.k8s.i0 "sc-fast-repl" deleted

Chapter Summary

In this chapter, you learned that Kubernetes has a powerful storage subsystem that
allows applications to dynamically provision and use storage from various external
storage systems.

Each external storage system requires its own CSI plugin that creates external volumes
and exposes them inside Kubernetes.

Once you've installed the CSI plugin, you create StorageClass objects that map to a
type or tier of storage on the external system. The StorageClass controller operates in
the background, watching the API server for new PVC objects. Each time it sees one,
it creates the requested volume on the external system and maps it to a new PV on
Kubernetes. Pods can then use the PVC to mount the PV for use.

12: ConfigMaps and Secrets

Most business applications have two components:

+ The application

+ The configuration

Simple examples include web servers such as NGINX or httpd (Apache). Neither is
much use without a configuration. However, as soon as you add a configuration, they
become very useful.

In the past, we packaged the application and the configuration into a single easy-to-
deploy unit. We brought this pattern with us as we moved into the early days of cloud-
native microservices. However, it's an anti-pattern, and modern applications should be
decoupled from their configurations. Doing this brings the following benefits:

 Reuse
+ Simpler development and testing

« Simpler and less-disruptive changes

We'll explain all these and more as we go through the chapter.

Note: An anti-pattern is something that seems like a good idea but turns out
to be a bad idea.

The chapter is divided as follows:

« The big picture
+ ConfigMap theory
+ Hands-on with ConfigMaps

» Hands-on with Secrets

12: ConfigMaps and Secrets 177

The big picture

As previously mentioned, most applications comprise an application binary and a
configuration. Kubernetes lets you build and store them as separate objects and bring
them together at run time.

Consider a quick example.

Imagine you work for a company with three environments:

o Dev
o Test
« Prod

You perform initial testing in the dev environment, more extensive testing in the test
environment, and apps finally graduate to the prod environment. However, each
environment has its own network policies and security policies, as well as its own
unique credentials and certificates.

You currently package application binaries and their configurations together in the same
image, forcing you to perform all of the following for every application:

+ Build three images (one with the dev config, one with the test config, and one with
prod)

+ Store the images in three repositories (one for the dev image, one for test, and one
for prod)

+ Run different versions of each app in each of the three environments (the dev app
in the dev environment, test in test, prod in prod)

Every time you change the configuration of any app, even a small change like fixing a
typo, you have to build, test, store, and re-deploy three images — one for dev, one for
test, and one for prod.

It’s also harder to troubleshoot and isolate issues when every update includes the app
code and the config.

What it looks like in a decoupled world

Imagine you work for the same company, and they ask you to build a new web app.
However, the company now decouples applications so that app code and configurations
are stored separately.

You decide to base the new app on NGINX and create a hardened NGINX image that
other teams and applications can use by applying their own configurations. This means:

12: ConfigMaps and Secrets 178

* You only build a single image that you'll use across all three environments
+ You only store and protect that single image in a single repository

+ You run the same version of this image in all your environments

To make this work, you build a single image containing nothing more than the hardened
NGINX with no embedded configuration.

You then create three configurations for dev, test, and prod that you'll apply at run time.
Each one will configure the NGINX container with the policy settings and credentials
for the correct environment. Other teams and applications can reuse the same hardened
NGINX image for their own web apps by creating their own configurations.

In this model, you create and test a single version of NGINX, build it into a single
image, and store it in a single repository. You can grant all developers access to the
repository as it contains no sensitive data, and you can push changes to the application
and its configuration independently of each other. For example, if there’s a typo on the
homepage, you can fix it in the configuration and push that to existing containers in all
three environments. You no longer have to stop and replace every container in all three
environments.

Let’s see how Kubernetes makes this possible.

ConfigMap theory

Kubernetes has an API resource called a ConfigMap (CM) that lets you store configura-
tion data outside of Pods and inject it at run time.

ConfigMaps are first-class objects in the core API group. They're also vi1. This tells us a
few things:

1. They're stable (v1)
2. They’ve been around for a while (new stuff never goes in the core API group)
3. You can define and deploy them in YAML files

4. You can manage them with kubectl
You'll typically use ConfigMaps to store non-sensitive configuration data such as:

+ Environment variables
+ Configuration files such as web server configs and database configs
+ Hostnames

- Service ports

12: ConfigMaps and Secrets 179

« Account names

You should not use ConfigMaps to store sensitive data such as certificates and pass-
words, as Kubernetes makes no effort to protect their contents. For sensitive data, you
should use a combination of Kubernetes Secrets and 3rd-party tools.

You'll see how to use Secrets later in the chapter.

How ConfigMaps work

At a high level, a ConfigMap is a place to store configuration data that you can easily
inject into containers at run time. They're also transparent to applications, meaning you
don’t have to change your applications to work with them.

Let’s look a bit closer.

Behind the scenes, ConfigMaps are Kubernetes objects that hold a map of key-value
pairs:

+ Keys are an arbitrary name that can include alphanumerics, dashes, dots, and
underscores

+ Values can include anything, including full configuration files with multiple lines
and carriage returns

+ You separate keys and values with a colon — key:value
+ They’re also limited to 1MiB (1,048,576 bytes) in size

Here’s a ConfigMap with three simple entries.

kind: ConfigMap
apiVersion: vl
metadata:
name: epl
data:
Competition: epl
Season: 2022-2023
Champions: Manchester City

Here’s another example, but the value contains a complete configuration file this time.

12: ConfigMaps and Secrets 180

kind: ConfigMap
apiVersion: vl
metadata:
name: cm2
data:
test.conf:
env = plex-test
endpoint = 0.0.0.0:31001
char = utf8
vault = PLEX/test
log-size = 512M

Once you store data in a ConfigMap, you can use any of the following methods to inject
it into containers at run time:

1. Environment variables
2. Arguments to the container’s startup command

3. Files in a volume

Figure 12.1 shows how the pieces connect.

(o) i
key | = | val D 8
b env var > </app>

cmd

A

Figure 12.1

All three methods work with existing applications. However, the volume option is the
most flexible, whereas the startup command is the least. You'll see each in turn, but
before we do that, let’s quickly mention Kubernetes-native applications.

ConfigMaps and Kubernetes-native apps

Kubernetes-native applications know they’re running on Kubernetes and can talk to the
API server. This means they can directly access ConfigMap data via the API server
without needing environment variables or volumes. This can simplify things, but the
application will only run on Kubernetes (Kubernetes lock-in).

12: ConfigMaps and Secrets 181

Hands-on with ConfigMaps

You'll need a Kubernetes cluster and the lab files from the book’s GitHub repo if you
want to follow along.

$ git clone https://github.com/nigelpoulton/TheK8sBook.git
Cloning 1into 'TheK8sBook'...
Be sure to run all of the following commands from within the configmaps folder.

As with most Kubernetes resources, you can create ConfigMaps imperatively and
declaratively. We'll look at the imperative method first.

Creating ConfigMaps imperatively

You create ConfigMaps imperatively with the kubectl create configmap command.
However, you can shorten configmap to em, and the command accepts two sources of
data:

« Literal values on the command line (--from-1literal)
« Files (--from-file)
Run the following command to create a ConfigMap called testmap1 with two entries

from literal command-line values. Windows users should replace the backslashes at the
end of each line with backticks.

$ kubectl create configmap testmapl \
--from-literal shortname=A0S \
--from-literal longname="Agents of Shield"

Run the following command to see how Kubernetes stores map entries.

$ kubectl describe cm testmapl

Name: testmapl
Namespace: default
Labels: <none>

Annotations: <none>
Data

shortname:

AOS
longname:

12: ConfigMaps and Secrets 182

Agents of Shield
BinaryData

Events: <none>

You can see it’s just a map of key-value pairs dressed up as a Kubernetes object.

The following command uses the --from-file flag to create a ConfigMap from a file
called emfile.txt. The file contains a single line of text, and you'll need to run the
command from the configmaps folder of the book’s GitHub repo.

$ kubectl create cm testmap2 --from-file cmfile.txt
configmap/testmap2 created

You'll inspect this one in the next section.
Inspecting ConfigMaps

ConfigMaps are first-class API objects. This means you can inspect and query them like
any other API object.

List all ConfigMaps in the current Namespace.

$ kubectl get cm

AME DATA AGE
testmapl 2 11lm
testmap2 1 2m23s

The following kubectl describe command shows some interesting info about the
testmap2 map that you created from the local file:

+ The operation created a single map entry
+ The name of the key matches the name of the input file (cmfile.txt)

o The value stores the contents of the file

12: ConfigMaps and Secrets 183

$ kubectl describe cm testmap2

Name: testmap2

Namespace: default

Labels: <none>

Annotations: <none>

Data

cmfile.txt: <<==== key
Kubernetes FTW! <<==== value

BinaryData

Events: <none>

You can also run a kubectl get command with the -o yaml flag to see the entire object.

$ kubectl get cm testmapl -o yaml
apiVersion: vl
data:
longname: Agents of Shield
shortname: AOS
kind: ConfigMap
metadata:
creationTimestamp: "2024-01-09T14:16:03Z"
name: testmapl
namespace: default
resourceVersion: "20904"
uid: 87b03869-e29d-4744-b43b-cb6178bc61lfe

You should know that ConfigMaps have no concept of state (desired state and actual
state). This is why they have a data block instead of the usual spec and status blocks.

Let’s see how to create ConfigMaps declaratively before we use them to inject configura-
tion data into containers.

Creating ConfigMaps declaratively

The following YAML is from the multimap.yml file in the book’s GitHub repo and
defines two map entries: given and family. It has the usual kind, apiVersionand
metadata fields. However, as previously mentioned, it doesn’t have a spec section.
Instead, it has a data section where you define the map of key-value pairs.

12: ConfigMaps and Secrets 184

kind: ConfigMap
apiVersion: vl
metadata:

name: multimap
data:

given: Nigel

family: Poulton

Deploy it with the following command.

$ kubectl apply -f multimap.yml
configmap/multimap created

This next YAML object looks more complex than the previous one. However, it’s actu-
ally simpler, as it only has a single entry in the data block. It looks more complicated
because the value entry contains an entire configuration file.

kind: ConfigMap
apiVersion: vl
metadata:
name: test-config
data:
test.conf:
env = plex-test
endpoint = 0.0.0.0:31001
char = utf8
vault = PLEX/test
log-size = 512M

If you look closely, you'll see the pipe character (|) after the name of the key property.
This tells Kubernetes to treat everything after the pipe as a single literal value. Therefore,
the ConfigMap object is called test-config and has a single map entry as follows:

Object name Key Value

test-config test.conf env = plex-test
endpoint = 0.0.0.0:31001
char = utf8

vault = PLEX/test
log-size = 512M

Deploy it with the following command. It creates a new ConfigMap called test-config.

$ kubectl apply -f singlemap.yml
configmap/test-config created

Inspect it with the following command.

12: ConfigMaps and Secrets 185

$ kubectl describe cm test-config

Name: test-config
Namespace: default
Labels: <none>
Annotations: <none>

Data

test.conf:

env = plex-test

endpoint = 0.0.0.0:31001
char = utf8

vault = PLEX/test
log-size = 512M
BinaryData

Events: <none>

Injecting ConfigMap data into Pods and containers
There are three ways to inject ConfigMap data into containers:

+ As environment variables
+ As arguments to container startup commands

« As files in a volume

Let’s look at each.

ConfigMaps and environment variables

You can inject ConfigMap data into containers as environment variables. However, if
you make changes to the ConfigMap after deploying the container, they won’t appear in
the container.

Figure 12.2 shows the process. You create the ConfigMap. You then map its entries into
environment variables in the containers section of the Pod template. Finally, when
the container starts, the environment variables appear as standard Linux or Windows
environment variables, and apps consume them without even knowing a ConfigMap is
involved.

12: ConfigMaps and Secrets 186

A

spec:
containers:

L= pod
-name: firstname

valueFrom: l]]]]]]]]
| _» configMapKeyRef: | —|

L — name: multimap o
— Key: given . (nige)
Family = poulton | -

multimap

— -name: lastname —
valueFrom:
configMapKeyRef:
name: multimap
key: Family

-

Figure 12.2

You already have a ConfigMap called multimap with the following two entries:

- given=Nigel

+ family=Poulton

The following Pod manifest deploys a single container with two environment variables
that map the CM as follows:

« FIRSTNAME: Maps to the given entry in the CM
+ LASTNAME: Maps to the family entry in the CM

apiVersion: vl
kind: Pod
<Snip>
spec:
containers:
- name: ctrl
env:
- name: FIRSTNAME
valueFrom:
configMapKeyRef:
name: multimap
key: given
- name: LASTNAME

Environment variable called FIRSTNAME

based on

a ConfigMap

= called "multimap"

and populated by the value in the "given" field
Environment variable called LASTNAME

valueFrom: based on
configMapKeyRef: = a ConfigMap
name: multimap called "multimap"
key: family and populated by the value in the "family" field

<Snip>

12: ConfigMaps and Secrets 187

When the Pod is scheduled and the container is started, FIRSTNAME and LASTNAME will be
created as standard Linux environment variables, and applications can use them without
knowing anything about ConfigMaps.

Run the following commands to deploy a Pod from the envpod.yml.

$ kubectl apply -f envpod.yml
pod/envpod created

Run the following exec command to list environment variables in the container with the
“NAME” string in their name. This will list the FIRSTNAME and LASTNAME variables, and
you'll see they’re populated from the values in the ConfigMap.

Make sure the Pod is running before executing the following command. If you're on a
Windows machine, you'll need to replace the grep NAME argument with Select-String
-Pattern 'NAME'.

$ kubectl exec envpod -- env | grep NAME
HOSTNAME=envpod
FIRSTNAME=Nigel
LASTNAME=Poulton

As previously stated, environment variables are static. This means updates you make
to the ConfigMap won't show in the container and is the main reason not to use
environment variables.

ConfigMaps and container startup commands

The concept of using ConfigMaps with container startup commands is simple. You
specify the startup command for a container in the Pod template and then customize
it with variables.

The following Pod template is an extract from the startuppod.yml file. It describes a
single container called args1 based on the busybox image. It then defines and populates
two environment variables from the multimap ConfigMap. Finally, it references the
environment variables in the container’s startup command.

12: ConfigMaps and Secrets 188

spec:
containers:
- name: argsl
image: busybox

env:
- name: FIRSTNAME = Environment variable called FIRSTNAME
valueFrom: based on
configMapKeyRef: <<==== a ConfigMap
name: multimap <<==== called "multimap"
key: given <<==== and populated by the value in the "given" field
- name: LASTNAME <<==== Environment variable called LASTNAME
valueFrom: <<==== based on
configMapKeyRef: <<==== a ConfigMap
name: multimap <<==== called "multimap"
key: family <<==== and populated by the value in the "family" field

command: ["/bin/sh", "-c", "echo First name $(FIRSTNAME) last name S$(LASTNAME)"]

Figure 12.3 summarises how the environment variables are populated from the
ConfigMap and then referenced in the startup command.

multimap

given Family
ConfigMap - -
nigel poulton
Z AN
Env vars > FIR.STNAh./lE LA.STNAM E.
multimap.given multimap.family

Startup cmd —— [“/bin/sh",“-c",“echo First name[$(FIRSTNAME)|lastname($(LASTNAME)]']

Figure 12.3 - Mapping ConfigMap entries to startup commands

Start a new Pod from the startuppod.yml file. The Pod will start, print First name
Nigel last name Poulton to the container’s logs and then quit (succeed). It might take
a few seconds for the Pod to start and execute.

$ kubectl apply -f startuppod.yml
pod/startup-pod created

Run the following command to inspect the logs from the container and verify it printed
First name Nigel last name Poulton.

12: ConfigMaps and Secrets 189

$ kubectl logs startup-pod -c argsl
First name Nigel last name Poulton

Describing the Pod will show the following data about the environment variables.

$ kubectl describe pod startup-pod
<Snip>
Environment:
FIRSTNAME: <set to the key 'given' of config map 'multimap'>
LASTNAME: <set to the key 'family' of config map 'multimap'>
<Snip>

As you've seen, using ConfigMaps with container startup commands is an extension
of environment variables. As such, it suffers from the same limitation — updates to the
map don’t get reflected in running containers.

If you ran the startup-pod, it should be in the completed state. This is because its
startup command completed, causing the Pod to succeed. Delete it with kubectl
delete pod startup-pod.

ConfigMaps and volumes

Using ConfigMaps with volumes is the most flexible option. You can reference entire
configuration files, and updates get reflected in running containers. The updates may
take a minute or so to appear in the container.

The high-level process of using volumes to inject ConfigMap data into containers is as
follows:

1. Create the ConfigMap

2. Define a ConfigMap volume in the Pod template

3. Mount the ConfigMap volume into the container

4. ConfigMap entries will appear as files inside the container

Figure 12.4 shows the process.

pod uﬂmmﬂ
multimap
[etc/name
S— . (Jgiven
»| ConfigMap > A
vol {7 Family

Figure 12.4 - Mapping ConfigMap entries through a volume

You've already deployed the multimap ConfigMap, and it has the following values:

12: ConfigMaps and Secrets 190

- given=Nigel
+ family=Poulton

The following YAML defines a Pod called cmvol with the following configuration:

+ spec.volumes creates a volume called volmap based on the multimap ConfigMap

+ spec.containers.volumeMounts mounts the volmap volume to /etc/name

apiVersion: vl

kind: Pod

metadata:
name: cmvol

spec:
volumes:
- name: volmap <<==== Create a volume called "volmap"
configMap: <<==== based on the ConfigMap

name: multimap <<==== called "multimap"
containers:
- name: ctr
image: nginx
volumeMounts: <<==== These lines mount the
- name: volmap = the "volmap" volume into the
mountPath: /etc/name container at "/etc/name"

Run the following command to deploy the cmvol Pod as described in the previous
YAML.

$ kubectl apply -f cmpod.yml
pod/cmvol created

Wait for the Pod to enter the running phase and then run the following kubectl exec
command to list the files in the container’s /etc/name/ directory.

$ kubectl exec cmvol -- 1ls /etc/name
family
given

You can see the container has two files matching the ConfigMap entries. Feel free to
run additional kubectl exec commands to cat the contents of the files and ensure they
match the values in the ConfigMap.

Now, let’s prove that changes to the map get reflected in the container.

Use kubectl edit to edit the ConfigMap and change any value in the data block. The
command will open the YAML object in your default editor, which is usually vi on Mac

12: ConfigMaps and Secrets 191

and Linux, and usually notepad.exe on Windows. If you're uncomfortable using vi, you
can manually edit the YAML file in a different editor and use kubectl apply to re-post
it to the API server.

The following code block is annotated to show which lines to change.

$ kubectl edit cm multimap

Please edit the object below. Lines beginning with a '#' will be <ignored,
and an empty file will abort the edit. If an error occurs while saving
this file will be reopened with the relevant failures.
#
apiVersion: vl
data:
City: Macclesfield <<==== changed
Country: UK <<==== changed
kind: ConfigMap
metadata:
<Snip>

Save your changes and check if the updates appear in the container. It may take a minute
for the changes to appear.

$ kubectl exec cmvol -- 1s /etc/name

City

Country

$ kubectl exec cmvol -- cat /etc/name/Country
UK

Congratulations, the contents of the multimap ConfigMap have surfaced in the
container’s filesystem via a ConfigMap volume, and you've tested making updates.

Hands-on with Secrets

Secrets are almost identical to ConfigMaps — they hold application configuration data
that Kubernetes injects into containers at run time. However, Secrets are designed to
hold sensitive data such as passwords, certificates, and OAuth tokens.

Are Kubernetes Secrets secure?

The quick answer to this question is no. But here’s the slightly longer answer...

12: ConfigMaps and Secrets 192

Despite being designed for sensitive data, Kubernetes does not encrypt Secrets in the
cluster store. It only obscures them as base-64 encoded values, which anyone can decode
without a key. Fortunately, most service meshes encrypt network traffic, and you can
configure encryption-at-rest with EncryptionConfiguration objects. However, many
people use tools such as HashiCorp’s Vault!? for a more complete and secure secrets
management solution.

We'll focus on the basic secrets management functionality provided natively by Kuber-
netes as it’s still useful if augmented with 3rd-party tools.

A typical secrets workflow looks like this:

1. You create the Secret and it gets persisted to the cluster store as an un-encrypted
object

2. You schedule a Pod that uses the Secret

3. Kubernetes transfers the un-encrypted Secret over the network to the node
running the Pod

4. The kubelet on the node starts the Pod and its containers

5. The container runtime mounts the Secret into the container via an in-memory
tmpfs filesystem and decodes it from base64 to plain text

6. The application consumes it

7. When you delete the Pod, Kubernetes deletes the copy of the Secret on the node (it
keeps the copy in the cluster store)

Even if you encrypt the Secret in the cluster store and have a service mesh that encrypts
it while in-flight on the network, Kubernetes always mounts it in the container as plain
text so the app can consume it without having to decrypt or decode it.

Also, using in-memory tmpfs filesystems means that Secrets are never persisted to disk
on cluster nodes.

To cut a long story short, Secrets aren’t very secure. However, you can take extra steps to
make them secure.

An obvious use case for Secrets is a TLS termination proxy for use across your various
environments. Figure 12.5 shows a single image configured with three different Secrets
for three different environments. Kubernetes loads the appropriate Secret into each
container at run time.

10https://www.vaultproject.io/

12: ConfigMaps and Secrets 193

@

Prod Secret

—O

Test Secret

Pml 0

Dev Dev Secret

Generic Test
reusable image S

(¢ 2 L)
Build time Run time

Figure 12.5 - Injecting Secrets at run time

Creating Secrets

Before proceeding with this section, remember that Secrets are not encrypted in the
cluster store, not encrypted in-flight on the network, and not encrypted when surfaced
in a container. Even if you implement solutions that encrypt them in the cluster store
and on the network, they always surface as plain text in containers so that applications
can use them.

As with all API resources, you can create Secrets imperatively and declaratively.

Run the following command to create a new Secret called creds. Remember to replace
the backslash with a backtick if you're on Windows.

$ kubectl create secret generic creds --from-literal user=nigelpoulton \
--from-literal pwd=Password123

You learned earlier that Kubernetes obscures Secrets by encoding them as base64 values.
Check this with the following command.

12: ConfigMaps and Secrets 194

$ kubectl get secret creds -o yaml
apiVersion: vl
kind: Secret
data:
pwd: UGFzc3dvecmQxMjM=
user: bmlnZWxwb3VsdG9u
<Snip>

The username and password values are both base64 encoded. Run the following
command to decode them. You'll need the base64 utility installed on your system for
the command to work. If you don’t have it, you can use an online decoder.

$ echo UGFzc3dvcmQxMjM= | base64 -d
Password123

The decoding operation completed successfully without a key, proving that base64
encoding is not secure.

The following YAML object is from the tkb-secret.yml file in the configmaps folder. It
describes a Secret called tkb-secret with two base64-encoded entries.

apiVersion: vl
kind: Secret
metadata:
name: tkb-secret
labels:
chapter: configmaps
type: Opaque
data: <<==== Change to "stringData" for plain text
username: bmlnZWxwb3VsdGOu
password: UGFzc3dvcmQxMjM=

If you want to add plain text entries, rename the data block to stringbata. However,
despite allowing you to enter values in plain text, they'll still be stored in base64 format,
and subsequent kubectl commands will retrieve them as base64.

Deploy it to your cluster. Be sure to run the command from the configmaps folder.

$ kubectl apply -f tkb-secret.yml
secret/tkb-secret created

Run kubectl get and kubectl describe commands to inspect it.

12: ConfigMaps and Secrets 195

Using Secrets in Pods

Secrets work like ConfigMaps, meaning you can inject them into containers as environ-
ment variables, command line arguments, or volumes. As with ConfigMaps, the most
flexible way is a volume.

The following YAML describes a single-container Pod with a Secret volume called secret-
vol based on the tkb-secret you created in the previous step. It mounts secret-vol into
the container at /etc/tkb.

apiVersion: vl
kind: Pod
metadata:
name: secret-pod
labels:
topic: secrets
spec:
volumes:
- name: secret-vol

A
A
I
I
1
0]

Volume name
Volume type
Populate volume with this Secret

A
A
I
I
I
1]

secret:

secretName: tkb-secret <<
containers:
- name: secret-ctr
image: nginx

volumeMounts:
- name: secret-vol <<==== Mount the volume defined above
mountPath: "/etc/tkb" <<==== qnto this path

Secret volumes are resources in the Kubernetes API, and Kubernetes automatically
mounts them as read-only to prevent containers and applications from accidentally
mutating them.

Deploy the Pod with the following command. This will cause Kubernetes to transfer the
unencrypted Secret over the network to the kubelet on the node running the Pod. From
there, the container runtime will mount it into the container via a tmpfs mount.

$ kubectl apply -f secretpod.yml
pod/secret-pod created

The following command shows the Secret is mounted in the container as two files at
/etc/tkb — one file for each entry in the Secret.

12: ConfigMaps and Secrets 196

$ kubectl exec secret-pod -- 1s /etc/tkb
password
username

If you inspect the contents of either file, you'll see they’re mounted in plain text so that
applications can easily consume them.

$ kubectl exec secret-pod -- cat /etc/tkb/password
Password123

Remember that a complete secrets management solution requires additional tools to
encrypt Secrets at rest and in flight.

Clean up

Use kubectl get to list the Pods, ConfigMaps and Secrets deployed in the chapter, and
delete them with kubectl delete.

Chapter Summary

ConfigMaps and Secrets are the Kubernetes-native way of decoupling applications and
associated configuration data.

Both are first-class objects in the Kubernetes API, you can create them imperatively and
declaratively, and you can inspect them with kubect1.

ConfigMaps are designed for application configuration parameters and even entire
configuration files, whereas Secrets are for sensitive data.

You can inject both into containers at run time via environment variables, container
start command parameters, and volumes. Volumes are the preferred method as they
allow you to update the map, and your updates show up in running containers.

Kubernetes does not encrypt Secrets in the cluster store or when in transit on the
network.

13: StatefulSets

In this chapter, you'll learn how to use StatefulSets to deploy and manage stateful
applications on Kubernetes.

For the purposes of this chapter, we're defining a stateful application as one that creates
and saves valuable data. Examples include databases, key-value stores, and applications
that save data about client sessions and use it for future sessions.

We'll divide the chapter as follows:

+ StatefulSet theory
« Hands-on with StatefulSets

The theory section introduces how StatefulSets work and what they offer stateful
applications. But don’t worry if you don’t understand everything at first, you'll cover
it all again in the hands-on section.

StatefulSet theory

It’s helpful to compare StatefulSets with Deployments. Both are resources in the Kuber-
netes API and follow the standard Kubernetes controller architecture — control loops
that reconcile observed state with desired state. Both manage Pods and add self-healing,
scaling, rollouts, and more.

However, StatefulSets offer the following three features that Deployments do not:

+ Predictable and persistent Pod names
» Predictable and persistent DNS hostnames

+ Predictable and persistent volume bindings

These three properties form a Pod’s state, and we sometimes refer to them as a Pod’s
sticky ID. StatefulSets ensure all three persist across failures, scaling operations, and
other scheduling events.

As a quick example, failed Pods managed by a StatefulSet will be replaced by new Pods
with the exact same Pod name, the exact same DNS hostname, and the exact same
volumes. This is true even if Kubernetes starts the replacement Pod on a different cluster

13: StatefulSets 198

node. This makes StatefulSets useful for applications that require unique, reliable Pods
and volumes.

The following YAML defines a simple StatefulSet called tkb-sts with three replicas
running the mongo:latest image. You post this to the API server, it gets persisted to
the cluster store, the scheduler assigns the replicas to worker nodes, and the StatefulSet
controller ensures observed state matches desired state.

apiVersion: apps/vl
kind: StatefulSet
metadata:
name: tkb-sts
spec:
selector:
matchLabels:
app: mongo
serviceName: "tkb-sts"
replicas: 3
template:
metadata:
labels:
app: mongo
spec:
containers:
- name: ctr-mongo
image: mongo:latest

That’s the big picture. Let’s take a closer look before walking through an example.

StatefulSet Pod naming

Every Pod created by a StatefulSet gets a predictable name. In fact, Pod names are at
the core of how StatefulSets start, Self-heal, scale, and delete Pods. They’re also vital for
attaching volumes.

The format of StatefulSet Pod names is <StatefulSetName>-<Integer>. The integer

is a zero-based index ordinal, which is a fancy way of saying number starting from zero.
Assuming the previous YAML snippet, the first Pod will be called tkb-sts-0, the second
tkb-sts-1, and the third tkb-sts-2.

StatefulSets should also have valid DNS names, so no exotic characters.

Ordered creation and deletion

A critical difference between StatefulSets and Deployments is the way they create Pods.

13: StatefulSets 199

+ StatefulSets create one Pod at a time and wait for it to be running and ready before
starting the next

+ Deployments use a ReplicaSet controller to start all Pods at the same time, which
can result in race conditions

If we assume the previous YAML again, tkb-sts-0 will be started first and must be
running and ready before the StatefulSet controller starts tkb-sts-1. The same applies

to subsequent Pods — tkb-sts-1 needs to be running and ready before tkb-sts-2 starts etc.
See Figure 13.1

Sl :
e tkb-sts -3 replicas

Waiting For Waiting For
@ running & ready @ running & ready @
» »
pod i pod 8 pod

tkb-sts-0 tkb-sts-1 tkb-sts-2

Figure 13.1

Note: Running and ready are terms used to indicate all containers in a Pod are
running and the Pod is ready to service requests.

The same startup rules govern StatefulSet scaling operations. For example, scaling from
3 to 5 replicas will start a new Pod called tkb-sts-3 and wait for it to be running and
ready before creating tkb-sts-4. Scaling down follows the same rules in reverse — the
controller terminates the Pod with the highest index ordinal and waits for it to fully
terminate before terminating the Pod with the next highest number.

Knowing the order in which Pods will be scaled down, and knowing that Kubernetes
will not terminate them in parallel can be vital for stateful apps. For example, clustered
apps can potentially lose data if multiple replicas terminate simultaneously. StatefulSets
guarantee this will never happen.

Finally, it’s worth noting that the StatefulSet controller does its own self-healing and
scaling. This is architecturally different from Deployments, which use the ReplicaSet
controller for these operations.

Deleting StatefulSets

There are two important things to know about deleting StatefulSets.

13: StatefulSets 200

Firstly, deleting a StatefulSet object does not terminate its Pods in an orderly manner.
This means you should scale a StatefulSet to O replicas before deleting it.

You can also use terminationGracePeriodSeconds to further control how Pods are
terminated. It's common to set this to at least 10 seconds so that applications can flush
any buffers and safely commit writes that are still in flight.

StatefulSets and Volumes

Volumes are an important part of a StatefulSet Pod’s sticky ID (state).

When StatefulSets create Pods, they also create any volumes the Pods require. To help
with this, they give the volumes special names that Kubernetes uses to connect them
to the correct Pods. Figure 13.2 shows a StatefulSet called tkb-sts requesting three
Pods, each with a single volume. You can see how Kubernetes uses the volume names
to connect them to the right Pods.

S
E.;Jts tkb-sts - 3 replicas
tkb-sts-0 tkb-sts-1 tkb-sts-2
vol-tkb-sts-0 vol-tkb-sts-1 vol-tkb-sts-2
Figure 13.2

Despite being associated with specific Pod replicas, volumes are still decoupled from
Pods via the normal Persistent Volume Claim system. This means volumes have separate
lifecycles, allowing them to survive Pod failures and Pod termination operations. For
example, when a StatefulSet Pod fails or is terminated, its associated volumes are
unaffected. This allows replacement Pods to connect the surviving volumes and data,
even if Kubernetes schedules the replacement Pods to different cluster nodes.

The same thing happens during scaling operations. If a scale-down operation deletes
a StatefulSet Pod, subsequent scale-up operations attach new Pods to the surviving
volumes.

13: StatefulSets 201

This behavior can be a lifesaver if you accidentally delete a StatefulSet Pod, especially if
it’s the last replical

Handling failures

The StatefulSet controller observes the state of the cluster and reconciles observed state
with desired state.

The simplest example is a Pod failure. If you have a StatefulSet called tkb-sts with five
replicas and the tkb-sts-3 replica fails, the controller starts a new Pod with the same
name and attaches it to the surviving volumes.

Node failures can be more complex, and some older Kubernetes setups require manual
intervention to replace Pods running on failed nodes. This is because it’s hard for
Kubernetes to know if a node has failed or if it’s a transient event, such as a failed
power supply, and the node will reboot. If a “failed” node recovers after Kubernetes has
replaced its Pods, you'll end up with identical Pods trying to write to the same volume.
This can result in data corruption.

Newer Kubernetes versions handle these situations better and quicker than older
versions.

Network ID and headless Services

We've already said that StatefulSets are for applications that need Pods to be predictable
and long-lived. This might involve applications connecting to specific Pods rather than
letting the Service perform round-robin load balancing across all Pods. To make this
possible, StatefulSets use a headless Service to create reliable and predictable DNS names
for every Pod. Other apps can then query DNS (the service registry) for the full list of
Pods and make direct connections.

The following YAML snippet shows a headless Service called mongo-prod listed in the
StatefulSet YAML as the governing Service.

apiVersion: vl
kind: Service <<==== Service
metadata:
name: mongo-prod
spec:
clusterIP: None <<==== Make it a headless Service
selector:
app: mongo
env: prod

apiVersion: apps/vl

13: StatefulSets 202

kind: StatefulSet <<==== StatefulSet
metadata:

name: sts-mongo
spec:

serviceName: mongo-prod <<==== Governing Service

Let’s explain the terms headless Service and governing Service.

A headless Service is a regular Kubernetes Service object without a ClusterIP address
(spec.clusterIP set to None). It becomes a StatefulSet’s governing Service when you list
it in the StatefulSet config under spec.serviceName.

When you combine a headless Service with a StatefulSet like this, the Service creates
DNS SRV and DNS A records for every Pod matching the Service’s label selector. Other
Pods and apps can then query DNS and get the names and IPs of all the StatefulSet Pods.
You'll see this in action later, but developers must code applications to query DNS like
this.

That covers most of the theory. Let’s walk through an example and see how everything
comes together.

Hands-on with StatefulSets

In this section, you'll deploy a working StatefulSet.

The demos are designed and tested on Google Kubernetes Engine (GKE) and a local
Docker Desktop cluster. If your cluster is on a different cloud, you'll have to use a
different StorageClass. We'll tell you when to do this.

If you haven'’t already done so, run the following command to clone the book’s GitHub
repo.

$ git clone https://github.com/nigelpoulton/TheK8sBook.git

Run all remaining commands from within the statefulsets folder.

You're about to deploy the following three objects:

1. A StorageClass
2. A headless Service
3. A StatefulSet

To make things easier to follow, you'll deploy and inspect each object individually.
However, it’s possible to group them into a single YAML file and deploy them with a
single command (see app.yml in the statefulsets folder of the repo).

13: StatefulSets 203

Deploy the StorageClass

StatefulSets need to create volumes dynamically. To do this, they need:

+ A StorageClass (SC)
« A PersistentVolumeClaim (PVC)

The following YAML is from the gep-sc.yml file and defines a StorageClass object
called flash that dynamically provisions SSD volumes on the Google Cloud using the
GKE persistent disk CSI driver. It only works on GKE or GCP clusters. If you're using a
Docker Desktop cluster, you should use the dd-sc.ym1 file instead. If your cluster is on a
different cloud, you can do either of the following:

+ Create a new StorageClass called flash for your own cloud — you'll need to
create this yourself and configure the provisioner and parameters sections
appropriately

+ Use one of your cluster’s existing StorageClasses and change the StorageClass
name in the PVC in a later step

apiVersion: storage.k8s.io/v1l
kind: StorageClass

metadata:
name: flash <<==== The PVC references this name
provisioner: pd.csi.storage.gke.io <<==== GKE Persistent Disk CSI plugin

volumeBindingMode: WaitForFirstConsumer

allowVolumeExpansion: true

parameters: <<==== GKE/GCP-specific settings
type: pd-ssd

Deploy the StorageClass. Use the dd-sc.ym1 file if you're using a local Docker Desktop
cluster.

$ kubectl apply -f gcp-sc.yml
storageclass.storage.k8s.i0/flash created

List your cluster’s StorageClasses to make sure yours is in the list.

13: StatefulSets 204

$ kubectl get sc

VOLUME ALLOWVOLUME
NAME PROVISIONER RECLAIMPOLICY BINDINGMODE EXPANSION
flash pd.csi.storage.gke.1i0 Delete WaitForFirstConsumer true

Your StorageClass is present, and you'll use it later to create new volumes dynamically.

Create a governing headless Service

It’s helpful to visualize Service objects with a head and a tail. The head is the stable
ClusterIP address, and the tail is the list of Pods it forwards traffic to. A headless Service
is just a Service object without a ClusterIP address.

The primary purpose of headless Services is to create DNS SRV records for StatefulSet
Pods. Clients query DNS for individual Pods and send queries directly to those Pods
instead of via the Service’s ClusterIP. This is why headless Services don’t have a
ClusterIP.

The following YAML is from the headless-svc.ym1 file and describes a headless
Service called dullahan with no IP address (spec.clusterIP: None).

apiVersion: vl
kind: Service <<==== Normal Kubernetes Service
metadata:
name: dullahan
labels:
app: web
spec:
ports:
- port: 80
name: web
clusterIP: None <<==== Make this a headless Service
selector:
app: web

The only difference from a regular Service is that a headless Service has its clusterIP
set to None.

Run the following command to deploy the headless Service to your cluster.

$ kubectl apply -f headless-svc.yml
service/tkb-sts created

Make sure it exists.

13: StatefulSets 205

$ kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT (S) AGE
dullahan ClusterIP None <none> 80/TCP 11s

Deploy the StatefulSet

Now that you have a StorageClass and a headless Service, you can deploy the StatefulSet.
The following YAML is from the sts.yml file and defines the StatefulSet.

apiVersion: apps/vl
kind: StatefulSet
metadata:
name: tkb-sts
spec:
replicas: 3
selector:
matchLabels:
app: web
serviceName: "dullahan"
template:
metadata:
labels:
app: web
spec:
terminationGracePeriodSeconds: 10
containers:
- name: ctr-web
image: nginx:latest
ports:
- containerPort: 80
name: web
volumeMounts:
- name: webroot
mountPath: /usr/share/nginx/html
volumeClaimTemplates:
- metadata:
name: webroot
spec:
accessModes: ["ReadWriteOnce"]
storageClassName: "flash"
resources:
requests:
storage: 10Gi

There’s a lot to take in, so let’s step through the important parts.

The name of the StatefulSet is tkb-sts and will be used to name all Pods and associated
volumes.

13: StatefulSets 206

Kubernetes will read the spec.replicas field and create 3 replicas called tkb-sts-0, tkb-
sts-1, and tkb-sts-2. It will also create them in order and wait for each one to be running
and ready before starting the next.

The spec.serviceName field designates the governing Service. This is the name of the
headless Service you created in the previous step and will create the DNS SRV records
for each StatefulSet replica. We call it the governing Service because it’s in charge of the

DNS subdomain used by the StatefulSet. More on this later.

The remainder of the spec.template section defines the Pod template. This is where
you define things like which container image to use and which ports to expose.

Last but most certainly not least is the spec.volumeClaimTemplates section. Kuber-
netes uses this to create unique PVCs for each StatefulSet Pod. As it’s requesting three
replicas, Kubernetes will create three unique Pods based on the spec.template section
and three unique PVCs based on the spec.volumeClaimTemplates section. It also
ensures the Pods and PVCs get the appropriate names to be linked together.

The following YAML shows the volume claim template from the example. It defines a
claim template called webroot requesting 10GB volumes from the flash StorageClass.

volumeClaimTemplates:
- metadata:
name: webroot
spec:
accessModes: ["ReadWriteOnce"]
storageClassName: "flash"
resources:
requests:
storage: 10Gi

If your cluster isn’t on the Google Cloud and you're using one of your cloud’s built-in
StorageClasses, you'll need to edit the sts.ymt file and change the storageClassName
field. You'll be OK if you created your own StorageClass and called it flash.

Run the following command to deploy the StatefulSet.

$ kubectl apply -f sts.yml
statefulset.apps/tkb-sts created

Watch the StatefulSet as it ramps up to three replicas. It'll take a minute or so for all
three Pods and associated PVCs to create.

13: StatefulSets 207

$ kubectl get sts --watch

NAME READY AGE
tkb-sts 0/3 14s
tkb-sts 1/3 30s
tkb-sts 2/3 60s
tkb-sts 3/3 90s

Notice how it took ~30 seconds to start the first replica. Once that was running and
ready, it took another 30 seconds to start the second and another 30 for the third. This
is the StatefulSet controller starting each replica in turn and waiting for them to be
running and ready before starting the next.

Now, check the PVCs.

$ kubectl get pvc

NAME STATUS VOLUME CAPACITY MODES STORAGECLASS AGE
webroot-tkb-sts-0 Bound pvc-1146...f274 10Gi RWO flash 100s
webroot-tkb-sts-1 Bound pvc-3026...6bcbh 10Gi RWO flash 70s
webroot-tkb-sts-2 Bound pvc-2ce7...e56d 10Gi RWO flash 40s

You've got three new PVCs, and each one was created at the same time as one of the
Pod replicas. If you look closely, you'll see that each PVC name includes the name of the
volume claim template, the StatefulSet, and the associated Pod replica.

volumeClaimTemplate name Pod Name PVC Name

webroot tkb-sts-0 webroot-tkb-sts-0
webroot tkb-sts-1 webroot-tkb-sts-1
webroot tkb-sts-2 webroot-tkb-sts-2

Congratulations, your StatefulSet is running and managing three Pods and three
volumes.

Testing peer discovery

Let’s explain how DNS hostnames and DNS subdomains work with StatefulSets.

All Kubernetes objects get a name within the cluster address space. You can specify a
custom address space when you build your cluster, but most use the cluster.local
DNS domain. Within this domain, Kubernetes constructs DNS subdomains as follows:

e <object-name>.<service-name>.<namespace>.svc.cluster.local
You currently have three Pods called tkb-sts-0, tkb-sts-1, and tkb-sts-2 in the default

Namespace governed by the dullahan headless Service. This means the Pods will have
the following fully qualified DNS names that are predictable and reliable:

13: StatefulSets 208

¢ tkb-sts-0.dullahan.default.svc.cluster.local
¢ tkb-sts-1.dullahan.default.svc.cluster.local
¢ tkb-sts-2.dullahan.default.svc.cluster.local

It’s the job of the headless Service to register these Pods and their IPs against the
dullahan.default.svc.cluster.local name.

You'll test this by deploying a jump Pod with the dig utility pre-installed. You'll then
exec onto the Pod and use dig to query DNS for SRV records for the Service.

Run the following command to deploy the jump Pod from the jump-pod.ym1 file.

$ kubectl apply -f jump-pod.yml
pod/jump-pod created

Exec onto the Pod.

$ kubectl exec -it jump-pod -- bash
root@jump-pod: /#

Your terminal prompt will change to indicate it’s connected to the jump Pod. Run the
following dig command from within the jump-pod.

dig SRV dullahan.default.svc.cluster.local

<Snip>

53 QUESTION SECTION:

sdullahan.default.svc.cluster.local. IN SRV

;5 ANSWER SECTION:

dullahan.default.svc.cluster.local. 30 IN SRV... tkb-sts-1l.dullahan.default.svc.cluster.local.
dullahan.default.svc.cluster.local. 30 IN SRV... tkb-sts-0.dullahan.default.svc.cluster.local.
dullahan.default.svc.cluster.local. 30 IN SRV... tkb-sts-2.dullahan.default.svc.cluster.local.
5; ADDITIONAL SECTION:

tkb-sts-0.dullahan.default.svc.cluster.local. 30 IN A 10.60.0.5
tkb-sts-2.dullahan.default.svc.cluster.local. 30 IN A 10.60.1.7
tkb-sts-1.dullahan.default.svc.cluster.local. 30 IN A 10.60.2.12

<Snip>

The output shows that clients asking about dullahan.default.svc.cluster.local
(QUESTION SECTION) will get DNS names (ANSWER SECTION) and IPs (AD-
DITIONAL SECTION) of the three StatefulSet Pods. For clarity... The ANSWER
SECTION maps requests for dullahan.default.svc.cluster.local to the three Pods,
and the ADDITIONAL SECTION maps the Pod names to IPs.

13: StatefulSets 209

Scaling StatefulSets

Each time Kubernetes scales up a StatefulSet, it creates new Pods and PVCs. However,
when scaling down, Kubernetes only terminates Pods. This means future scale-up
operations only need to create new Pods and connect them back to the original PVCs.
Kubernetes and the StatefulSet controller handle all of this without your help.

You currently have three StatefulSet Pods and three PVCs. Edit the sts.ym1 file, change
the replica count from 3 to 2, and save your changes. When you've done that, run the
following command to re-post the updated configuration to the cluster. You'll have to
type exit if you're still logged on to the jump Pod.

$ kubectl apply -f sts.yml
statefulset.apps/tkb-sts configured

Check the StatefulSet and verify the Pod count has reduced to 2.
$ kubectl get sts tkb-sts

NAME READY AGE

tkb-sts 2/2 12h

$ kubectl get pods

NAME READY STATUS RESTARTS AGE
tkb-sts-0 1/1 Running 0] 12h
tkb-sts-1 1/1 Running 0 12h

You've successfully scaled the number of Pods down to 2. If you look closely, you'll see
that Kubernetes deleted the one with the highest index ordinal and that you still have 3
PVCs. Remember, scaling a StatefulSet down does not delete PVCs.

Verify this.

$ kubectl get pvc

NAME STATUS VOLUME CAPACITY MODES STORAGECLASS AGE
webroot-tkb-sts-0 Bound pvc-5955...d71c 10Gi RWO flash 12h
webroot-tkb-sts-1 Bound pvc-d62c...v701 10Gi RWO flash 12h
webroot-tkb-sts-2 Bound pvc-2e2f...5f95 10Gi RWO flash 12h

The status for all three is still showing as Bound even though the tkb-sts-2 Pod no longer
exists. If you run a kubectl describe against the webroot-tkb-sts-2 PVC, you'll see the
Used by field shows as <none>.

The fact all three PVCs still exist means that scaling back up to 3 replicas will only
require a new Pod. The StatefulSet controller will create the new Pod and connect it to
the surviving PVC.

Edit the sts.yml file again, increment the number of replicas back to 3, and save your
changes. When done, run the following command to re-post the YAML file to the API
server.

13: StatefulSets 210

$ kubectl apply -f sts.yml
statefulset.apps/tkb-sts configured

Give it a few seconds to deploy the new Pod and verify with the following command.

$ kubectl get sts tkb-sts
NAME READY AGE
tkb-sts 3/3 12h

You're back to 3 Pods. Describe the new tkb-sts-2 Pod and verify it mounted the
webroot-tkb-sts-2 volume. Replace the grep ClaimName argument with Select-
String -Pattern 'ClaimName' if you're using Windows.

$ kubectl describe pod tkb-sts-2 | grep ClaimName
ClaimName: webroot-tkb-sts-2

Congratulations, the new Pod automatically connected to the correct volume.

It’s worth noting that Kubernetes puts scale-down operations on hold if any of the Pods
are in a failed state. This protects the resiliency of the app and the integrity of any data.

It’s also possible to change how the StatefulSet controller starts and stops Pods by
tweaking its spec.podManagementPolicy property.

The default setting is OrderedReady and enforces the behavior of starting one Pod at a
time and waiting for the previous Pod to be running and ready before starting the next.
Changing the value to Parallel will cause the StatefulSet to act more like a Deployment
where Pods are created and deleted in parallel. For example, scaling from 2 > 5 Pods will
instantly create all three new Pods, whereas scaling down from 5 > 2 will delete three
Pods in parallel. StatefulSet naming rules are still enforced, as the setting only applies to
scaling operations and does not impact rollouts and rollbacks.

Rollouts

StatefulSets support rolling updates (a.k.a. rollouts). You update the image version in the
YAML file and re-post it to the API server, and the controller replaces the old Pods with
new ones. However, it always starts with the highest numbered Pod and works down
through the list, one at a time, until all Pods are on the new version. The controller also
waits for each new Pod to be running and ready before replacing the one with the next
lowest index ordinal.

For more information, run a kubectl explain sts.spec.updateStrategy command.

13: StatefulSets 211

Test a Pod failure

The simplest way to test a failure is to delete a Pod manually. The StatefulSet controller
will notice observed state vary from desired state and start a new Pod to reconcile. It will
also connect it to the same PVC and volume.

Let’s test it.
Confirm you have three healthy Pods in your StatefulSet.

$ kubectl get pods

NAME READY STATUS AGE
tkb-sts-0 1/1 Running 12h
tkb-sts-1 1/1 Running 12h
tkb-sts-2 1/1 Running 9m49s

Let’s delete the tkb-sts-0 Pod and see if the StatefulSet controller automatically
recreates it.

$ kubectl delete pod tkb-sts-0
pod "tkb-sts-0" deleted

$ kubectl get pods --watch

NAME READY STATUS RESTARTS AGE
tkb-sts-1 1/1 Running 0 12h
tkb-sts-2 1/1 Running [0] 12h
tkb-sts-0 0/1 Terminating 0] 12h
tkb-sts-0 0/1 Pending [0} Os
tkb-sts-0 0/1 ContainerCreating [0} Os
tkb-sts-0 1/1 Running 0 8s

Placing a --watch on the command lets you see the StatefulSet controller notice the
terminated Pod and create the replacement. This was a clean failure, and the StatefulSet
controller immediately created the replacement Pod.

You can see the new Pod has the same name as the failed one, but does it have the same
PVC?

Run the following command to confirm that Kubernetes connected the new Pod to
the original PVC (webroot-tkb-sts-0). Don’t forget to replace the grep ClaimName
argument with Select-String -Pattern 'ClaimName' if you're on Windows.

$ kubectl describe pod tkb-sts-0 | grep ClaimName
ClaimName: webroot-tkb-sts-0

It worked.

13: StatefulSets 212

Recovering from potential node failures is a lot more complex and depends on your Ku-
bernetes version and setup. Modern Kubernetes clusters are far better at automatically
replacing Pods from failed nodes, whereas older versions require manual intervention.
This was to prevent Kubernetes from misdiagnosing transient events as catastrophic
node failures.

Deleting StatefulSets

Earlier in the chapter, you learned that Kubernetes doesn’t terminate Pods in order
when you delete a StatefulSet. Therefore, if your applications are sensitive to ordered
shutdown, you should scale the StatefulSet to zero before deleting it.

Scale your StatefulSet to O replicas and confirm the operation. It may take a few seconds
to scale all the way down to 0.

$ kubectl scale sts tkb-sts --replicas=0
statefulset.apps/tkb-sts scaled

$ kubectl get sts tkb-sts

NAME READY AGE
tkb-sts 0/0 13h

You can delete the StatefulSet as soon as it gets to zero replicas.

$ kubectl delete sts tkb-sts
statefulset.apps "tkb-sts" deleted

Feel free to exec onto the jump-pod and run another dig to prove that Kubernetes also
deleted the SRV records from the cluster DNS.

Clean up

You've already deleted the StatefulSet and its Pods. However, the jump Pod, headless
Service, volumes, and StorageClass still exist. If you've been following along, you can
delete them with the following commands. Failure to do this will incur unexpected
cloud costs.

Delete the jump Pod.
$ kubectl delete pod jump-pod

Delete the headless Service.

13: StatefulSets 213

$ kubectl delete svc dullahan

Delete the PVCs. This will delete the associated PVs and backend storage on the Google
Cloud. If you used your own StorageClass you should check your storage backend to
confirm the external volumes also get deleted.

$ kubectl delete pvc webroot-tkb-sts-0 webroot-tkb-sts-1 webroot-tkb-sts-2

Delete the StorageClass.

$ kubectl delete sc flash

Chapter Summary

In this chapter, you learned how to use StatefulSets to deploy and manage applications
that need to persist data and state.

StatefulSets can self-heal, scale up and down, and perform rollouts. Rollbacks require
manual attention.

Each StatefulSet Pod gets a predictable and persistent name, DNS hostname, and its
own unique volumes. These stay with the Pod for its entire lifecycle, including failures,
restarts, scaling, and other scheduling operations. In fact, StatefulSet Pod names are
integral to scaling operations and connecting them to the right storage volumes.

Finally, StatefulSets are only a framework. Applications need to be designed and written
to take advantage of the way they work.

14: APl security and RBAC

Kubernetes is API-centric and the AP is served through the API server. In this chapter,
you'll follow a typical API request as it passes through various security-related checks.

The chapter is divided as follows:

+ API security big picture
« Authentication
« Authorization (RBAC)

« Admission control

See Chapter 15 for an in-depth look at the APIL.

API security big picture

All of the following make CRUD-style requests to the API server (create, read, update,
delete):

+ Operators and developers using kubectl
« Pods

« Kubelets

« Control plane services

+ Kubernetes-native apps

Figure 14.1 shows the flow of a typical API request passing through the standard checks.
The flow is the same, no matter where the request originates.

gﬂ»@—%’\@p—» b.—>°

Subject API authN authz Admission
(user, group, server control
service acct)

Figure 14.1

14: API security and RBAC 215

Consider a quick example where a user called grant-ward is trying to create a Deploy-
ment called hive in the terran Namespace.

User grant-ward issues a kubectl apply command to create the Deployment in the
terran Namespace. The kubectl command-line tool generates a request to the API
server with the user’s credentials embedded. The connection between kubectl and
the API server is secured by TLS. As soon as the request reaches the API server, the
authentication module determines whether the request originates from grant-ward or
an imposter. Assuming it is grant-ward, the authorization module (RBAC) determines
whether grant-ward has permission to create Deployments in the terran Namespace.
If the request passes authentication and authorization, admission controllers ensure

the Deployment object meets policy requirements. The request is executed only after
passing authentication, authorization, and admission control checks.

The process is similar to flying on a commercial plane. You travel to the airport and
authenticate yourself with a photo ID, usually your passport. Assuming you pass the
passport authentication, you then present a ticket authorizing you to board the plane. If
you pass authentication and are authorized to board, admission controls may then check
and apply airline policies such as restricting hand luggage and prohibiting alcohol in the
cabin. After all that, you can finally take your seat and fly to your destination.

Let’s take a closer look at authentication.

Authentication

Authentication is about proving your identity. You might see or hear it shortened to
authN, pronounced “auth en”.

Credentials are at the heart of authentication, and all requests to the API server include
credentials. It’s the responsibility of the authentication layer to verify them. If verifica-
tion fails, the API server returns an HTTP 401 and denies the request. If it succeeds, the
request moves on to authorization.

The authentication layer in Kubernetes is pluggable, and popular modules include client
certs, webhooks, and integration with external identity management systems such as Active
Directory (AD) and cloud-based Identity Access Management (IAM). In fact, Kubernetes

does not have its own built-in identity database. Instead, it forces you to use an external
system. This avoids creating yet another identity management silo.

Out-of-the-box, most Kubernetes clusters support client certificates, but you'll want to
integrate with your chosen cloud or corporate identity management system in the real
world. Most hosted Kubernetes services automatically integrate with the underlying
cloud’s identity management system.

14: API security and RBAC 216

Checking your current authentication setup

Your cluster details and user credentials are stored in a kubeconfig file. Tools like kubectl
read this file to determine which cluster to send commands to and which credentials to
use. The file is usually stored in the following locations:

« Windows: C:\Users\<user>\.kube\config
« Linux/Mac: /home/<user>/.kube/config

Here’s what a kubeconfig file looks like. As you can see, it defines a cluster and a user,
combines them into a context, and sets the default context for kubectl commands. The
output is snipped to fit the page.

apiVersion: vl
kind: Config

clusters: <<==== Cluster block defining one or more clusters and certs
- cluster:
name: prod-shield <<==== Th1is block defines a cluster called "prod-shield"
server: https://<url-or-ip-address-of-api-server>:443 <<==== This 1is the cluster's URL

certificate-authority-data: LSOtLS1C...LSOtCg== <<==== Cluster's certificate
users: <<==== Users block defining one or more users and credentials
- name: njfury <<==== User called njfury

user:

as-user-extra: {}

token: eyJhbGciOiISUzIINiIsImtpZCI6I1ZwMz1. ..SZY3uUQ <<==== User's credentials
contexts: <<==== Context block. A context is a cluster + user
- context:

This block defines a context called "shield-admin"
= Cluster

name: shield-admin

cluster: prod-shield

user: njfury <<==== User
namespace: default
current-context: shield-admin <<==== Context used by kubectl

You can see it’s divided into four top-level sections:

+ Clusters

« Users

« Contexts

+ Current-context

The clusters section defines one or more Kubernetes clusters. Each has a friendly
name, an API server endpoint, and the public key of its certificate authority (CA).

The users section defines one or more users. Each user requires a name and token. The
token is often an X.509 certificate signed by the cluster’s CA (or a CA trusted by the
cluster).

14: API security and RBAC 217

The contexts section combines users and clusters, and the current-context is the
cluster and user that kubectl will use for all commands.

Assuming the previous kubeconfig, all kubectl commands will go to the prod-shield
cluster and authenticate as the njfury user. The authentication module on the cluster
determines if the user genuinely is njfury.

If your cluster integrates with an external IAM system, it'll hand off authentication to
that system.

Assuming authentication is successful, requests progress to the authorization phase.

Authorization (RBAC)

Authorization happens immediately after successful authentication, and you'll some-
times see it shortened to authZ (pronounced “auth zee”).

Kubernetes authorization is pluggable, and you can run multiple authZ modules on a
single cluster. However, most clusters use RBAC. Also, if your cluster has multiple au-
thorization modules, as soon as any module authorizes a request, it moves immediately
to admissions control.

This section covers the following:

» RBAC big picture

+ Users and permissions

Cluster-level users and permissions

+ Pre-configured users and permissions

RBAC big picture

The most common authorization module is RBAC (Role-Based Access Control). At the
highest level, RBAC is about three things:

1. Users
2. Actions

3. Resources

Which users can perform which actions against which resources.

The following table shows a few examples.

14: API security and RBAC 218

User (subject) Action Resource Effect

Bao create Pods Bao can create Pods

Kalila list Deployments Kalila can list Deployments

Josh delete ServiceAccounts Josh can delete
ServiceAccounts

RBAC is enabled on most Kubernetes clusters and is a least-privilege deny-by-default
system. This means everything is locked down, and you need to create allow rules to open
things up. In fact, Kubernetes doesn’t support deny rules, it only supports allow rules.
This might seem small, but it makes Kubernetes RBAC much simpler to implement and
troubleshoot.

Users and Permissions

Two concepts are vital to understanding Kubernetes RBAC:

 Roles
+ RoleBindings

Roles define a set of permissions, and RoleBindings bind them to users.

The following resource manifest defines a Role object. It’s called read-deployments
and grants permission to get, watch, and list Deployment objects in the shield
Namespace.

apiVersion: rbac.authorization.k8s.1i0/v1
kind: Role
metadata:

namespace: shield

name: read-deployments

rules:

- verbs: ["get", "watch", "list"] <<==== Allowed actions
apiGroups: ["apps"] <<==== on resources
resources: ["deployments"] <<==== of this type

However, Roles don’t do anything until you bind them to users.

The following RoleBinding binds the previous Role to a user called sky.

14: API security and RBAC 219

apiVersion: rbac.authorization.k8s.i0/v1
kind: RoleBinding
metadata:
name: read-deployments
namespace: shield
subjects:
- kind: User
name: sky <<==== Name of the authenticated user
apiGroup: rbac.authorization.k8s.1i0
roleRef:
kind: Role
name: read-deployments <<==== This is the Role to bind to the user
apiGroup: rbac.authorization.k8s.i0

Deploying both objects to your cluster will allow a user called sky to run commands
such as kubectl get deployments -n shield.

The username listed in the RoleBinding has to be a string and has to match a successfully
authenticated username.

Looking closer at rules

Role objects have the following three properties that define which actions are allowed
against which objects:

« verbs
« apiGroups

e resources

The verbs field lists permitted actions, whereas the apiGroups and resources fields
identify which objects the actions are permitted on. The following snippet from the
previous Role YAML allows read access (get, watch and list) against Deployment
objects.

rules:

- verbs: ["get", "watch", "list"]
apiGroups: ["apps"]
resources: ["deployments"]

The following table shows some possible apiGroup and resources combinations.

14: API security and RBAC 220

apiGroup resource Kubernetes API path

77 pods /api/v1/namespaces/{namespace}/pods

7 secrets /api/v1/namespaces/{namespace}/secrets

“storage k8s.io” storageclass /apis/storage.k8s.io/v1/storageclasses

“apps” deployments /apis/apps/v1/namespaces/{namespace}/deployments

An empty set of double quotes (“”) in the apiGroups field indicates the core API group.
You need to specify all other API groups as a string enclosed in double-quotes.

The following table lists the complete set of verbs Kubernetes supports for object access.
It also demonstrates the REST-based nature of the API by mapping the verbs to standard
HTTP methods and HTTP response codes.

Kubernetes verb(s) HTTP method Common responses

create POST 201 created, 403 Access Denied
get, list, watch GET 200 OK, 403 Access Denied
update PUT 200 OK, 403 Access Denied
patch PATCH 200 OK, 403 Access Denied
delete DELETE 200 OK, 403 Access Denied

Run the following command to show all API resources and supported verbs. The output
is useful when you're building rule definitions.

$ kubectl api-resources --sort-by name -o wide

NAME APIGROUP KIND VERBS

deployments apps Deployment [create delete ... get list patch update watch]
ingresses networking.k8s.i0 Ingress [create delete ... get list patch update watch]
pods Pod [create delete ... get list patch update watch]
secrets Secret [create delete get list patch update watch]
services Service [create delete get list patch update watch]
<Snip>

When building rules, you can use the asterisk (*) to refer to all API groups, all resources,
and all verbs. For example, the following rule grants all actions on all resources in every

API group. It’s just for demonstration purposes, and you probably shouldn’t create rules
like this.

rules:

- verbs: ["*"]
resources: ["x"]
apiGroups: ["x'"]

Cluster-level users and permissions

So far, you've seen Roles and RoleBindings. However, Kubernetes has four RBAC
objects:

14: API security and RBAC 221

+ Roles

» RoleBindings

+ ClusterRoles

+ ClusterRoleBindings

Roles and RoleBindings are namespaced objects. This means you apply them to specific
Namespaces. On the other hand, ClusterRoles and ClusterRoleBindings are cluster-wide
objects and apply to all Namespaces. All four are defined in the same API sub-group, and
their YAML structures are almost identical.

A powerful pattern is to use ClusterRoles to define roles at the cluster level and then use
RoleBindings to bind them to specific Namespaces. This lets you define common roles
once and re-use them in specific Namespaces, as shown in Figure 14.2.

crole,

Figure 14.2 - Combining ClusterRoles and RoleBindings

The following YAML defines the read-deployments role from earlier, but this time at
the cluster level. You can then use this in selected Namespaces via RoleBindings — one
RoleBinding per Namespace.

14: API security and RBAC 222

apiVersion: rbac.authorization.k8s.i0/v1
kind: ClusterRole <<==== Cluster-scoped role
metadata:
name: read-deployments
rules:
- verbs: ["get", "watch", "list"]
apiGroups: ["apps"]
resources: ["deployments"]

If you look closely at the YAML, the only difference with the earlier one is that this
one has its kind property set to ClusterRole and doesn’t have a metadata.namespace

property.
Pre-created users and permissions

Most clusters have pre-created roles and bindings to help with initial configuration and
getting started.

The following example shows how Docker Desktop’s Kubernetes cluster use Cluster-
Roles and ClusterRoleBindings to grant cluster admin rights to the user configured
in your kubeconfig file. You can follow along if you're using the Docker Desktop
Kubernetes cluster we showed you how to build in Chapter 3. Other clusters will do
things slightly differently, but the principles will be similar, and this example will give
you a general idea of how things work.

Docker Desktop configures your kubeconfig file with an admin user that uses a client
certificate to authenticate with Kubernetes.

Run the following command to see the user entry in your kubeconfig file. The output is
trimmed for the book.

$ kubectl config view

<Snip>

users:

- name: docker-desktop

user:

client-certificate-data: DATA+OMITTED
client-key-data: DATA+OMITTED

<Snip>

The user entry is called docker-desktop. However, this isn’t the username that kubectl
uses when it authenticates with Kubernetes. The username kubectl uses is embedded
within the client certificate.

Run the following long command to decode the username and group memberships from
the embedded client certificate in your kubeconfig file. The command only works on

14: API security and RBAC 223

Linux-style systems, and you'll need jq utility installed. You'll also need to make sure the
current context of your kubeconfig is set to your Docker Desktop cluster.

$ kubectl config view --raw -o json \
| jg ".users[] | select(.name==\"docker-desktop\")" \
| jg -r '.user["client-certificate-data"]' \
| base64 -d | openssl x509 -text | grep "Subject:"

Subject: O = system:masters, CN = docker-for-desktop

The output shows that kubectl commands will authenticate as the docker-for-desktop
user that is a member of the system:masters group. The certificate is signed by the
cluster’s CA.

Note: Kubeconfig files list users in CN property of a client certificate, and
groups in the 0 property.

Let’s switch our focus to the cluster side and see how Kubernetes uses ClusterRoles and
ClusterRoleBindings to grant the docker-for-desktop user permissions on the cluster.
Remember that the docker-for-desktop user is a member of the system:masters group.

Run the following command to see what access the built-in cluster-admin ClusterRole
has.

$ kubectl describe clusterrole cluster-admin
Name: cluster-admin
Labels: kubernetes.io/bootstrapping=rbac-defaults
Annotations: rbac.authorization.kubernetes.io/autoupdate: true
PolicyRule:

Resources Non-Resource URLs Resource Names Verbs

The PolicyRule section shows this Role has access to all verbs on all resources in all
Namespaces. This is the equivalent of root and is a powerful and dangerous set of
permissions.

Run the following command to see if the ClusterRole is referenced in any Cluster-
RoleBindings.

14: API security and RBAC 224

$ kubectl get clusterrolebindings | grep cluster-admin

NAME ROLE

cluster-admin ClusterRole/cluster-admin

The cluster-admin ClusterRole is bound to a ClusterRoleBinding with the same name.
If you describe the cluster-admin ClusterRoleBinding, you'll see it maps to all users that
are members of the system:masters group.

$ kubectl describe clusterrolebindings cluster-admin

Name: cluster-admin

Labels: kubernetes.io/bootstrapping=rbac-defaults
Annotations: rbac.authorization.kubernetes.io/autoupdate: true
Role:

Kind: ClusterRole
Name: cluster-admin
Subjects:
Kind Name Namespace

Group system:masters <<==== Bind to authenticated members of this group

That’s a lot to take in, so this summary might help.

As shown in Figure 14.3, Docker Desktop configures your kubeconfig file with a client
certificate signed by the cluster’s certificate authority (CA). The certificate identifies a
user called docker-for-desktop that is a member of the system:masters group. Docker
Desktop Kubernetes clusters have a ClusterRoleBinding called cluster-admin that binds
users authenticated as members of the system:masters group to a ClusterRole, also
called cluster-admin. This cluster-admin ClusterRole has admin rights to all objects

in all Namespaces.

14: API security and RBAC 225

‘%‘ All access
to
~ kubeconfig File =————— Members of all oib[{ects
system:masters all Namespaces
) - crole
docker-for-desktop cluster-admin cluster-admin
system:masters (ClusterRoleBinding) (ClusterRole)

Figure 14.3 - Mapping kubectl users to cluster admin

Summarising authorization

Authorization ensures authenticated users are allowed to execute actions. RBAC is a
popular Kubernetes authorization module that implements least privilege access based
on a deny-by-default model that denies all actions unless you create a rule that allows
them.

Kubernetes RBAC uses Roles and ClusterRoles to create permissions, and it uses
RoleBindings and ClusterRoleBindings to grant those permissions to users.

Once a request passes authentication and authorization, it moves to admission control.

Admission control

Admission control runs immediately after successful authentication and authorization
and is all about policies.

Kubernetes supports two types of admission controllers:

+ Mutating
« Validating

The names tell you a lot. Mutating controllers check for compliance and can modify
requests, whereas validating controllers check for compliance but cannot modify
requests.

14: API security and RBAC 226

Mutating controllers always run first, and both types only apply to requests attempting
to modify the state of the cluster. Read requests are not subjected to admission control.

As a quick example, you might have a production cluster with a policy that all new and
updated objects must have the env=prod label. A mutating controller can check new
and updated objects for the presence of the label and add it if it doesn’t exist. However,
a validating controller can only reject the request if the label doesn’t exist.

The following command on a Docker Desktop cluster shows the API server is config-
ured to use the NodeRestriction admission controller.

$ kubectl describe pod kube-apiserver-docker-desktop \
--namespace kube-system | grep admission

--enable-admission-plugins=NodeRestriction

Most real-world clusters will run a lot more admission controllers. The AlwaysPullIm-
ages admission controller is a great example. It’s a mutating controller that sets the
spec.containers.imagePullPolicy of all new Pods to Always. This prevents Pods
from using locally cached images and forces all images to be pulled from the registry.
This requires all nodes to have valid credentials for pulling images.

If any admission controller rejects a request, the request is immediately rejected without
checking other admission controllers. This means all admission controllers must
approve a request before it runs on the cluster.

As previously mentioned, there are lots of admission controllers, and they're becoming
more and more important in real-world production clusters.

Chapter summary

In this chapter, you learned that all requests to the API server include credentials and
must pass authentication, authorization, and then admission control checks. The
connection between the client and the API server is also secured with TLS.

The authentication layer validates the identity of requests, and most clusters support
client certificates. However, production clusters should use enterprise-grade Identity
and Access Management (IAM) solutions.

The authorization layer checks whether authenticated users have permission to carry
out specific actions. This layer is also pluggable, and the most common authorization
module is RBAC. RBAC comprises four objects that let you define permissions and
assign them to users.

Admission controllers kick in after authorization and are responsible for enforcing
policies. Validating admission controllers reject requests if they don’t meet policy

14: API security and RBAC 227

requirements, whereas mutating admission controllers can modify requests to meet
policy requirements.

15: The Kubernetes API

To master Kubernetes, you need to understand the API and how it works. However, it’s
large and complex, and it can be confusing if you're new to APIs and uncomfortable
with terms like RESTful. If that’s you, this chapter will blow away the confusion and get
you up to speed with the fundamentals of the Kubernetes API.

The chapter is divided as follows:

+ Kubernetes API big picture
+ The API server
+ The API

Let’s mention a few quick things before getting started.
I've included lots of jargon in this chapter so you get comfortable with it.

I highly recommend you complete the hands-on parts as they’ll help reinforce the
theory.

Finally, Pods, Services, StatefulSets, StorageClasses, and more are all resources in the
API. However, it's common to call them objects when deployed to a cluster. We'll use the
terms resource and object interchangeably.

Kubernetes API big picture

Kubernetes is API-centric — all resources are defined in the API, and all communication
goes through the API server.

Administrators and clients send requests to create, read, update, and delete objects like
Pods and Services. For the most part, you'll use kubectl to send these requests. How-
ever, you can craft them in code or generate them through API testing and development
tools. The point is, no matter how you generate requests, they always go to the API
server where they’re authenticated and authorized. They’ll be executed on the cluster

if they pass the auth tests. If it’s a create request, the object is deployed to the cluster and
persisted to the cluster store in its serialized state.

Figure 15.1 shows the high-level process and highlights the central nature of the API
and API server.

15: The Kubernetes API 229

r‘*
E Cluster store
L—0— @]

Client API
(kubectl, code, server SChed
other...) (authN/z) Scheduler
Figure 15.1

Let’s start busting some jargon.

JSON serialization

What does it mean to persist an object to the cluster store in its serialized state?

Serialization is the process of converting an object into a string, or stream of bytes,
so it can be sent over a network and persisted to a data store. The reverse process of
converting a string or stream of bytes into an object is deserialization.

Kubernetes serializes objects, such as Pods and Services, as JSON strings and sends them
over the network via HT'TP. The process happens in both directions:

+ Clients like kubectl serialize objects when posting them to the API server

+ The API server serializes responses back to clients

As well as serializing objects for transit over the network, Kubernetes also serializes
them for storage in the cluster store.

However, as well as JSON, Kubernetes also supports Protobuf as a serialization schema.
This is faster, more efficient, and scales better than JSON. But it’s not as user-friendly
when it comes to introspection and troubleshooting. At the time of writing, Kubernetes
typically uses JSON for communicating with external clients and Protobuf for internal
cluster traffic.

One final thing on serialization. When clients send requests to the API server, they use
the content-Type header to list the serialization schemas they support. For example, a
client that only supports JSON will specify Content-Type: application/json in the
HTTP header of all requests. Kubernetes will honor this with a serialized response in
JSON.

You'll see this in some of the examples.

15: The Kubernetes API 230

API analogy

Consider a quick analogy that might help you conceptualize the Kubernetes API

Amazon sells lots of stuff:

1. That stuff is stored in warehouses and exposed online on the Amazon website
2. You use tools such as browsers and apps to search the website and buy stuff

3. Third parties sell their own stuff through Amazon, and you use the same browser
and website

4. When you buy stuff through the website, it gets delivered to you, and you can start
using it

5. The Amazon website lets you track your stuff while it’s being prepared and
delivered

6. Once it’s delivered, you can use Amazon to order more or send stuff back

Well, Kubernetes is very similar.

Kubernetes has lots of resources (stuff) such as Pods, Services, and Ingresses:

1. These resources are defined in the API and exposed through the API server
2. You use tools like kubect1 to talk to the API server and request resources

3. Third parties even define their own resources in Kubernetes, and you use the same
kubectl and API server to request them

4. When you request a resource through the API server, it gets created on your
cluster, and you can start using it

5. The API server lets you watch it being created

6. Once it’s created, you can use the API server to create more and even delete stuff

Figure 15.2 shows the comparison, and you can see a feature-for-feature comparison in
the following table. However, remember that this is just an analogy, and not everything
matches perfectly.

15: The Kubernetes API 231

= | | &
AMZN Party K8s Party
q stuff stuff resources || resources Q
Warehouse/fulfilment K8s API
Deliver 1 1 Deploy
& &
track observe
> Web/catalog API server +“—>

! !
(] (]

Figure 15.2
Amazon Kubernetes
Stuff Resources/objects
Warehouse API
Browser kubectl
Amazon website API server

To recap. All deployable objects, such as Pods, Services, Ingresses and more, are defined
as resources in the API. If an object doesn’t exist in the API, you can’t deploy it. This is
the same with Amazon — you can only buy stuff listed on the website.

API resources have properties you can inspect and configure. For example, Pods have all
of the following properties you configure when deploying them (they have more than
we're showing):

+ metadata (name, labels, Namespace, annotations...)
« restart policy

« service account name

« runtime class

« containers

« volumes

This is the same as buying things on Amazon. For example, when buying a USB cable,
you can configure choices such as USB type, cable length, and even cable color.

To deploy a Pod, you send a Pod YAML file to the API server. Assuming the YAML is
valid, and you're authorized to create Pods, it gets deployed to the cluster. After that, you
can query the API server to get its current status. When it’s time to delete it, you send
the delete request to the API server.

15: The Kubernetes API 232

This is also the same as buying from Amazon. To buy the previously mentioned USB
cable, you input all the color, length, and type options and submit them to the Amazon
website. Assuming it’s in stock and you provide the funds, it gets shipped to you. After
that, you can use the website to track the shipment. If you need to return the item or
make a complaint, you do all that through the Amazon website.

That’s enough with analogies. Let’s take a closer look at the API server.

The API server

The API server exposes the API over a RESTful HTTPS interface. It acts as the front-
end to the API and is a bit like Grand Central station for Kubernetes — everything talks to
everything else via REST API calls to the API server. For example:

+ All kubectl commands go to the API server (creating, retrieving, updating, and
deleting objects)

« All kubelets watch the API server for new tasks and report the status to the API
server

« All control plane services communicate with each other via the API server

Let’s dig deeper and demystify more jargon.

The API server is a Kubernetes control plane service that some clusters run as a set of
Pods in the kube-system Namespace. If you build and manage your own clusters, you
need to ensure the control plane is highly available and has enough performance to
ensure the API server can respond to requests quickly. If you're using hosted Kubernetes,
the API server implementation, including performance and availability, is hidden.

The main job of the API server is to expose the API to clients inside and outside the
cluster. It uses TLS to encrypt the client connection, and it leverages authentication
and authorization mechanisms to ensure only valid requests are accepted and executed.
Requests from internal and external sources all have to pass through the same authenti-
cation and authorization.

The API is RESTful. This is jargon for a modern web API that accepts CRUD-style
requests via standard HT'TP methods. CRUD-style operations are simple create, read,
update, delete operations, and they map to the standard POST, GET, PUT, PATCH, and
DELETE HTTP methods.

The following table shows how CRUD operations, HTTP methods, and kubectl
commands match up. If you've read the chapter on API security, you'll know we use the
term verb to refer to CRUD operations.

15: The Kubernetes API 233

K8s CRUD verb HTTP method kubectl example

create POST $ kubectl create -f <filename>

get list, watch GET $ kubectl get pods

update PUT/PATCH $ kubectl edit deployment <deployment-name>
delete DELETE $ kubectl delete ingress <ig-name>

As you can see, CRUD verb names, method names, and kubectl sub-command names
don’t always match. For example, a kubectl edit command uses the update CRUD
verb and sends an HTTP PATCH request.

It's common for the API server to be exposed on port 443 or 6443, but you can configure
it to operate on whatever port you require.

Run the following command to see the address and port your Kubernetes cluster is
exposed on.

$ kubectl cluster-info
Kubernetes control plane is running at https://kubernetes.docker.internal:6443
CoreDNS 1is running at https://kubernetes.docker.internal:6443/api/vl...

A word on REST and RESTful

You'll hear the terms REST and RESTful a lot. REST is short for REpresentational State
Transfer and is the de facto standard for communicating with web-based APIs. Systems
that use REST, such as Kubernetes, are often referred to as RESTful.

REST requests comprise a verb and a path to a resource. Verbs relate to actions and map to
the standard HTTP methods you saw in the previous table. Paths are a URI path to the
resource in the APL

Terminology: We often use the term verb to refer to CRUD operations as
well as HTTP methods. Basically, any time we say verb, we're referring to an
action.

The following example shows a kubectl command and associated REST request to
list all Pods in the shield Namespace. The kubectl command converts the command
to the REST request, and notice how the REST request has the verb and path we just
mentioned.

$ kubectl get pods --namespace shield

GET /api/vl/namespaces/shield/pods

Run the following command to start a kubectl proxy session. This will expose the API
on your localhost adapter and handle all authentication. Feel free to use a different
port.

15: The Kubernetes API 234

$ kubectl proxy --port 9000 &
[1] 27533
Starting to serve on 127.0.0.1:9000

With the proxy running, you can use a tool like cur1 to form a request to the API server.

Run the following command to list all Pods in the shield Namespace. The command
issues an HTTP GET, and the URI is the path to Pods in the shield Namespace.

$ curl -X GET http://localhost:9000/api/vl/namespaces/shield/pods

"kind": "PodList",

"apiVersion": "v1",

"metadata": {
"resourceVersion": '"9524"

}7

"jtems": []

The command returned an empty list because there are no Pods in the shield Names-
pace. Try another request to list all Namespaces.

$ curl -X GET http://localhost:9000/api/vl/namespaces

"kind": "NamespacelList",
"apiVersion": "v1",
"metadata": {
"resourceVersion": "9541"
1
"items": [
{
"metadata": {
"name": "kube-system",
"uid": "f5d39dd2-ccfe-4523-b634-f48ba3135663",
"resourceVersion": "10",
<Snip>

As you learned earlier in the chapter, Kubernetes uses JSON as its preferred serialization
schema. This means the previous kubectl get pods --namespace shield command
will generate a request with the content type set to application/json. It will result in
HTTP 200 (OK) response code, and Kubernetes will respond with a serialized JSON list
of all Pods in the shield Namespace.

Run one of the previous curl commands again but add the -v flag to see the send
and receive headers. The following example is trimmed to fit the book and draw your
attention to the most important parts.

15: The Kubernetes API 235

$ curl -v -X GET http://localhost:9000/api/vl/namespaces/shield/pods
> GET /api/vl/namespaces/shield/pods HTTP/1.1 <<==== HTTP GET method to REST path of Pods
> Accept: x/x <<==== Accept all serialization schemas
>
< HTTP/1.1 200 OK <<==== Accepted request and starting response
< Content-Type: application/json <<==== Responding using JSON serialization
< X-Kubernetes-Pf-Flowschema-Uid: d50...
< X-Kubernetes-Pf-Prioritylevel-Uid: 828...
<
{ <<==== Start of response (serialized object)
"kind": "PodList",
"apiVersion": "v1",
"metadata": {
"resourceVersion'": "34217"
1
"items": []
}

Lines starting with > are header data sent by curl. Lines starting with < are header data
returned by the API server.

The > lines show curl sending a GET request to the /api/v1/namespaces/shield/pods
REST path and telling the API server it can accept responses using any valid serializa-
tion schema (Accept: x/x). The lines starting with < show the API server returning an
HTTP response code and using JSON. The X-Kubernetes lines are priority and fairness
settings specific to Kubernetes.

A word on CRUD

CRUD is an acronym for the four basic functions web APIs use to manipulate and per-
sist objects — Create, Read, Update, Delete. As previously mentioned, the Kubernetes
API exposes and implements CRUD-style operations via the common HTTP methods.

Let’s consider an example.

The following JSON is from the ns.json file in the api folder of the book’s GitHub repo.
It defines a new Namespace object called shield.

15: The Kubernetes API 236

"kind": "Namespace",

"apiVersion": "v1",

"metadata": {
"name": "shield",
"labels": {

"chapter": "api"

}

}

}

You can create it with the kubectl apply -f ns.json command, but don’t. You'll
create it in a later step.

Behind the scenes, kubectl would form a request to the API server using the HTTP
POST method. This is why you'll occasionally hear people refer to POSTing to the API
server. The POST method creates a new object of the specified resource type. In this
example, it would create a new Namespace called shield.

The following is a simplified example of the request header. The body will be the
contents of the JSON file.

Request header:

POST https://<api-server>/api/vl/namespaces
Content-Type: application/json
Accept: application/json

If the request is successful, the response will include a standard HTTP response code,
content type, and actual payload.

HTTP/1.1 200 (OK)
Content-Type: application/json
{

}

Run the following curl command to post the ns. json file to the API server. It relies
on you still having the kubectl proxy process running from earlier (kubectl proxy
--port 9000 &), and you'll need to run the command from the directory containing
the ns.json file. If the shield Namespace already exists, you'll need to delete it before
continuing.

Windows users will need to replace the backslash with a backtick and place a backtick
immediately before the @ symbol.

15: The Kubernetes API 237

$ curl -X POST -H "Content-Type: application/json" \
--data-binary @ns.json http://localhost:9000/api/vl/namespaces

"kind": "Namespace",
"apiVersion": "v1",
"metadata": {
"name": "shield",
<Snip>

The -x POST argument forces curl to use the HTTP POST method. The -H "Content-
Type..." tells the API server the request contains serialized JSON. The --data-binary
@ns.json specifies the manifest file, and the URI is the address the API server is exposed
on by kubectl proxy and includes the REST path.

You can verify the new Namespace was created by running a kubectl get namespaces
command.

NAME STATUS AGE
kube-system Active 47h
kube-public Active 4T7h
kube-node-lease Active 47h
default Active 47h
shield Active 14s

Now delete the Namespace by running a curl command specifying the DELETE HTTP
method.

$ curl -X DELETE \
-H "Content-Type: application/json" http://localhost:9000/api/vl/namespaces/shield

{
"kind": "Namespace",
"apiVersion": "v1",
"metadata": {
"name": "shield",
<Snip>
1,
"spec": {
"finalizers": [
"kubernetes"
]
}7
"status": {
"phase": "Terminating"
}
}

In summary, the API server exposes the API over a secure RESTful interface that lets
you manipulate and query the state of objects on the cluster. It runs on the control plane,

15: The Kubernetes API 238

which needs to be highly available and have enough performance to service requests
quickly.

The API

The API is where all Kubernetes resources are defined. It’s large, modular, and RESTful.

When Kubernetes was originally created, the API was monolithic, and all resources
existed in a single global namespace. However, as Kubernetes grew, we split the APl into
smaller, more manageable groups.

Figure 15.3 shows a simplified view of the API with resources divided into groups.

@— https://<cluster-url>:443/api

\ core apps

y-1-1-% @Q@
090 0

-(rbac.authorization.k8s.io }. . networking.k8s.i0)--------

900 600

Figure 15.3 - Simplified view of Kubernetes API

The image shows the API with four groups. There are more than four, but the picture
only shows four for simplicity.

There are two types of API group:

+ The core group

+ The named groups

The core API group

Resources in the core group are mature objects that were created in the early days of
Kubernetes before we divided the API into groups. They tend to be fundamental objects
such as Pods, Nodes, Services, Secrets, and ServiceAccounts. They're located in the

15: The Kubernetes API 239

API below the /api/v1 REST path. The following table lists some example paths for
resources in the core group.

Resource REST Path

Pods /api/v1/namespaces/{namespace}/pods/
Services /api/v1/namespaces/{namespace}/services/
Nodes /api/v1/nodes/

Namespaces /api/v1/namespaces/

Notice that some objects are namespaced and some aren’t. Namespaced objects have
longer REST paths as you have to include two additional segments — . ./names-
paces/{namespace}/... For example, listing all Pods in the shield Namespace requires
the following path.

GET /api/vl/namespaces/shield/pods/

Expected HTTP response codes for read requests are 200: OK or 401: Unauthorized.

On the topic of REST paths, GVR stands for group, version, and resource, and can be
a good way to remember the structure of API REST paths. Figure 15.4 shows a simple
example, but namespaced objects have longer paths.

Group Ver Resource
/apis/storage.k8s.io/vl/storageclasses

Figure 15.4

You shouldn’t expect any new resources to be added to the core group. We always add
new resources to named groups.

Named API groups

The named API groups are the future of the API, and all new resources get added to
named groups. Sometimes, we refer to them as sub-groups.

Each of the named groups is a collection of related resources. For example, the apps
group defines resources such as Deployments, StatefulSets, and DaemonSets that
manage application workloads. Likewise, we define Ingresses, Ingress Classes, and
Network Policies in the networking.k8s.io group. Notable exceptions to this pattern
are older resources in the core group that came along before the named groups existed.
For example, Pods and Services are both in the core group. However, if we invented
them today, we’'d probably put Pods in the apps group and Services in the network-
ing.k8s.1i0 group.

15: The Kubernetes API 240

Resources in the named groups live below the /apis/{group-name}/{version}/ REST
path. The following table lists some examples.

Resource Path

Ingress /apis/networking.k8s.io/v1/namespaces/fnamespace}/ingresses/
ClusterRole /apis/rbac.authorization.k8s.io/v1/clusterroles/

StorageClass /apis/storage.k8s.io/v1/storageclasses/

Notice how the URI paths for named groups start with /apis (plural) and include the
name of the group. This differs from the core group that starts with /ap1 (singular)
and doesn’t include a group name. In fact, in some places, you'll see the core API group
referred to by empty double quotes (“”). This is because no thought was given to groups
when the API was first designed — everything was “just in the API’.

Dividing the API into smaller groups makes it more scalable and easier to navigate and
extend.

Inspecting the API

The following commands are good ways to see API-related info in your clusters.

The kubectl api-resources command lists all the API resources and groups your
cluster supports. It also shows resource shortnames and whether they are namespaced
or cluster-scoped. The output has been tweaked to fit the book and show a mix of
resources from different groups.

$ kubectl api-resources

NAME SHORTNAMES APIVERSION NAMESPACED KIND
namespaces ns vl false Namespace
nodes no vl false Node

pods po vl true Pod
deployments deploy apps/vl true Deployment
replicasets rs apps/vl true ReplicaSet
statefulsets sts apps/vl true StatefulSet
cronjobs cj batch/v1l true CronJob

jobs batch/v1 true Job
ingresses ing networking.k8s.i0/v1l true Ingress
networkpolicies netpol networking.k8s.i0/v1 true NetworkPolicy
storageclasses sc storage.k8s.io/v1 false StorageClass

The next command shows which API versions your cluster supports. It doesn't list
which resources belong to which APIs, but it’s good for finding out whether your cluster
has things like alpha APIs enabled. Notice how some API groups have multiple versions
enabled, such as beta and a stable, or vl and v2.

15: The Kubernetes API 241

$ kubectl api-versions
admissionregistration.k8s.io/vl
apiextensions.k8s.io/v1l

apps/vl

<Snip>

autoscaling/vl

autoscaling/v2

vl

The next command is more complicated and only lists the kind and vers-ion fields for
supported resources. The output is trimmed to give you an idea of what you get. It does
not work on Windows.

$ for kind in ‘kubectl api-resources | tail +2 | awk '{ print $1 }'"; \
do kubectl explain $kind; done | grep -e "KIND:" -e "VERSION:"

KIND: Binding
VERSION: v1

KIND: ComponentStatus
VERSION: vl

<Snip>

KIND: HorizontalPodAutoscaler
VERSION: autoscaling/v2
KIND: CronJob
VERSION: batch/vl

KIND: Job

VERSION: batch/v1

<Snip>

You can run the following commands if you still have the kubectl proxy session from
earlier.

Run the following command to list all API versions available below the core API group.

$ curl http://localhost:9000/api
{
"kind": "APIVersions",
"versions": [
I|Vll|
1,
"serverAddressByClientCIDRs": [
{
"clientCIDR": "0.0.0.0/0",
"serverAddress": "172.21.0.4:6443"

Run this command to list all named API and groups. The output is trimmed to save
space.

15: The Kubernetes API 242

$ curl http://localhost:9000/apis

"kind": "APIGroupList",
"apiVersion": "v1",
"groups": [
<Snip>
{
"name": "apps",
"versions": [
{
"groupVersion": "apps/v1",
"version": "v1"
}

])

"preferredVersion": {
"groupVersion": "apps/v1",
"version": "v1"

}

}}
<Snip>

You can list specific object instances or lists of objects on your cluster. The following
command returns a list of all Namespaces on a cluster.

$ curl http://localhost:9000/api/vl/namespaces

"kind": "NamespacelList",
"apiVersion": "v1",
"metadata": {
"resourceVersion": '"35234"
}}
"items": [
{
"metadata": {
"name": "kube-system",
"uid": "05fefal3-cbec-458b-aece-d65eb1972dfb",
"resourceVersion": "4",
"creationTimestamp": "2021-12-29T12:32:482Z",
"labels": {
"kubernetes.io/metadata.name": "kube-system"
1,
"managedFields": [
{
"manager": "Go-http-client",
"operation": "Update",
"apiVersion": "v1",
<Snip>

Feel free to poke around. You can put the same URI paths into a browser and API tools
like Postman.

15: The Kubernetes API 243

Leave the kubectl proxy process running, as you'll use it again later in the chapter.

Alpha beta and stable

Kubernetes has a strict process for accepting new API resources. New resources come
in as alpha, progress through beta, and eventually graduate as Generally Available (GA). We
sometimes refer to GA as stable.

Alpha resources are experimental and should be considered hairy and scary. Expect
bugs, expect features to be dropped without warning, and expect lots of things to change
when they move into beta. A lot of clusters turn off alpha APIs by default.

A new resource called xyz in the apps API group that goes through two alpha versions
will have the following API names:

« /apis/apps/vlalphal/xyz
« /apis/apps/vlalpha2/xyz

The phase after alpha is beta.

Beta resources are considered pre-release and are starting to look like the final GA
product. However, you should expect small changes when promoted to GA. Most
clusters enable beta APIs by default, and some people use beta resources in production.
However, that’s not a recommendation, you need to make those decisions yourself.

The same xyz resource in the apps API group that progresses through two beta versions
will be served through the following APIs:

« /apis/apps/vlbetal/xyz
« /apis/apps/vlbeta2/xyz

The final phase after beta is Generally Available (GA), sometimes referred to as stable.

GA resources are considered production-ready, and Kubernetes has a strong long-term
commitment to them.

Most GA resources are vi. However, some have continued to evolve and progressed

to v2. If you want to create a v2 version of a resource, you have to put it through the
same incubation and graduation process. For example, the xyz resource in the apps API
would go through the same alpha and beta process before reaching v2

« /apis/apps/v2alphal/xyz
* <Snip>

« /apis/apps/v2betal/xyz

15: The Kubernetes API 244

* <Snip>

« /apis/apps/v2/xyz
Examples of paths to stable resources include the following:

« /apis/networking.k8s.io/v1/ingresses
« /apis/batch/v1/cronjobs
« /apis/autoscaling/v2/horizontalpodautoscalers

You can normally deploy an object via one AP], then read it back and manage it using
a more recent API. For example, you can deploy an object via a vibeta2 API and then
update and manage it later through the stable vi1 API.

Resource deprecation

As mentioned in the previous section, alpha and beta objects will experience a lot of
changes before being promoted to GA. However, once an object is GA, it doesn’t change,
and Kubernetes is strongly committed to maintaining long-term usability and support.

At the time of writing, Kubernetes has the following commitments to beta and GA
resources:

+ Beta: Resources in beta have a 9-month window to either release a newer beta
version or graduate to GA. This is to prevent resources from staying permanently
in beta. For example, the Ingress resource remained in beta for over 15 Kubernetes
releases!

» GA: GA resources are expected to be long-lived. When deprecated, Kubernetes
will continue to serve and support GA objects for 12 months or three releases,
whichever is longest.

Recent versions of Kubernetes return deprecation warning messages whenever you
use a deprecated resource. For example, deploying an Ingress from the old extension-
s/vibetal APl resulted in the following deprecation warning while the vibeta1 API
was deprecated.

$ kubectl apply -f deprecate.yml
Warning: extensions/vlbetal Ingress is deprecated in v1.14+, unavailable in v1.22+;
Use networking.k8s.io/vl Ingress

15: The Kubernetes API 245

Extending the API

Kubernetes ships with a collection of built-in controllers that deploy and manage built-
in resources. However, you can extend Kubernetes by adding your own resources and
controllers.

An example of third parties extending the Kubernetes API can be seen in the storage
space where vendors expose advanced features, such as snapshot schedules, via custom
resources in the Kubernetes API. In this model, storage is surfaced inside of Kubernetes
via CSI drivers, Pods consume it via built-in Kubernetes resources such as Storage-
Classes and PersistentVoumeClaims, but advanced features such as snapshot scheduling
can be managed via custom API resources and controllers. The reason for doing this is
so that custom features can be deployed and managed in Kubernetes via kubectl and
regular YAML files, etc.

The high-level pattern for extending the API involves two main things:

« Create your custom resource

« Write your custom controller

Kubernetes has a CustomResourceDefinition (CRD) object that lets you create new

resources in the API that look, smell, and feel like native Kubernetes resources. You

create your custom resource as a CRD and then use kubectl to create instances and
inspect them just like you do with native resources. Your custom resources even get
their own REST paths in the APL.

The following YAML is from the crd.yml file in the api folder of the book’s GitHub
repo. It defines a new cluster-scoped custom resource called books in the nigelpoul-
ton.com API group served via the v1 path.

apiVersion: apiextensions.k8s.io/vl
kind: CustomResourceDefinition

metadata:
name: books.nigelpoulton.com
spec:
group: nigelpoulton.com <<==== Named API group
scope: Cluster <<==== Can be "Namespaced" or "Cluster"
names:
plural: books <<==== All resources need a plural and singular name
singular: book <<==== Singular names are used on CLI and command outputs
kind: Book <<==== kind property used in YAML files
shortNames:
- bk <<==== Short name used by kubectl
versions: <<==== Resources can be served by multiple API versions
- name: vl
served: true <<==== If set to false, "v1" will not be served

storage: true <<==== Store instances of the object as this version

15: The Kubernetes API 246

schema: <<==== This block defines the resource's properties
openAPIV3Schema:
type: object
properties:
spec:
type: object
properties:
<Snip>

If you haven’t already done so, run the following command to clone the book’s GitHub
repo.

$ git clone https://github.com/nigelpoulton/TheK8sBook.git

Change into the api directory.

$ cd TheK8sBook/api

If you're following along, deploy the custom resource with the following command.

$ kubectl apply -f crd.yml
customresourcedefinition.apiextensions.k8s.i0/books.nigelpoulton.com created

Congratulations, the new resource exists in the API and you can deploy objects from it.
This resource will be served on the following REST path.

apis/nigelpoulton.com/v1l/books/

Verify it exists in the APIL. Replace the grep books argument with Select-String -
PAttern 'books' if you're using Windows.

$ kubectl api-resources | grep books
NAME SHORTNAMES APIGROUP NAMESPACED KIND
books bk nigelpoulton.com false Book

$ kubectl explain book
KIND: Book
VERSION: nigelpoulton.com/v1l
DESCRIPTION:
<empty>
FIELDS:
<Snip>

The following YAML is from the kena.yml file in the api folder and defines a new Book
object called kena. Notice how the fields in the spec section match the names and types
defined in the custom resource.

15: The Kubernetes API 247

apiVersion: nigelpoulton.com/vl
kind: Book
metadata:
name: kcna
spec:
bookTitle: "The KCNA Book"
topic: Certifications
edition: 1

Deploy it with the following command.

$ kubectl apply -f kcna.yml
book.nigelpoulton.com/kcna created

You can now list and describe it with the usual commands. The following command uses
the resource’s bk shortname.

$ kubectl get bk
NAME TITLE EDITION
kcna The KCNA Book. 1

Finally, you can use tools like curl to query the new API group and resource.

The following commands start a kubectl proxy process and list all resources under the
new nigelpoulton.com named group. You don’t need to start another proxy if the one
from earlier in the chapter is still running.

$ kubectl proxy --port 9000 &
[1] 14784
Starting to serve on 127.0.0.1:9000

$ curl http://localhost:9000/apis/nigelpoulton.com/v1/
{
"kind": "APIResourcelList",
"apiVersion": "v1",
"groupVersion": "nigelpoulton.com/v1l",
"resources": [
{
"name": "books",
"singularName": "book",
"namespaced": false,
"kind": "Book",
"verbs": [
"delete",
"deletecollection",
"get",
"list",

15: The Kubernetes API 248

"patch",
""create",
"update",
"watch"
1,
"shortNames": [
llbk”

:I,
"storageVersionHash": "F2QdXaP5vh4="

This is all good and interesting. But custom resources don’t do anything useful until you
create a custom controller to do something with them. Writing your own controllers is
beyond the scope of this chapter, but you've learned a lot about the Kubernetes API and
how it works.

Clean up

If you've been following along, you'll have all the following resources that need cleaning
up:

* kubectl proxy process

+ kcna book resource

+ books.nigelpoulton.com custom resource (CRD)

Run one of the following commands to get the process ID (PID) of the kubectl proxy
process.

// Linux and Mac command

$ ps | grep kubectl proxy
PID TTY TIME CMD
27533 ttys001 0:03.13 kubectl proxy --port 9000

// Windows command

> tasklist | Select-String -Pattern 'kubectl'
Image Name PID Session Name Session#

kubectl.exe 19776 Console 1

Run one of the following commands to kill it, and remember to use the PID from your
system.

15: The Kubernetes API 249

// Linux and Mac command

$ kill -9 27533
[1] + 27533 killed kubectl proxy --port 9000

// Windows command

> taskkill /F /PID 19776
SUCCESS: The process with PID 19776 has been terminated.

Run the following command to delete the kena book object.

$ kubectl delete book kcna
book.nigelpoulton.com "kcna" deleted

Now delete the books.nigelpoulton.com CRD.

$ kubectl delete crd books.nigelpoulton.com
customresourcedefinition.apiextensions.k8s.i0 "books.nigelpoulton.com" deleted

Chapter summary

Now that you've read the chapter, all of the following should make sense. But don’t
worry if some of it is still confusing. APIs can be hard to understand, and the Kubernetes
APl is large and complex.

Anyway, here goes...

Kubernetes is an API-driven platform, and the API is exposed internally and externally
via the API server.

The API server runs as a control plane service, and all internal and external clients
interact with the API via the API server. This means your control plane needs to be
highly available and high-performance. If it’s not, you risk slow API responses or
entirely losing access to the API.

The Kubernetes API is a modern resource-based RESTful API that accepts CRUD-

style operations via uniform HTTP methods such as POST, GET, PUT, PATCH, and
DELETE. It’s divided into named groups for convenience and extensibility. Older
resources created in the early days of Kubernetes exist in the original core group, which
you access via the /api/v1 REST path. All newer objects go into named groups. For
example, newer network resources are defined in the networking.k8s.1i0 sub-group
available at the /apis/networking.k8s.i0/v1/ REST path.

15: The Kubernetes API 250

Resources in the Kubernetes API are usually objects. However, they can also be lists or
operations. The vast majority are objects, so we sometimes use the terms resources and
objects to mean the same thing. It's common to refer to their API definitions as resources
or resource definitions, whereas running instances on a cluster are often referred to as
objects. For example, the Pod resource exists in the core API group, and there are five Pod
objects running in the default Namespace.

All new resources enter the API as alpha, progress through beta, and eventually graduate
to GA. Alpha resources are subject to change and are disabled in many clusters. Beta
resources are more reliable and contain features expected to make it into the GA version.
Most clusters enable beta resources by default, but you should be cautious about using
them in production. GA resources are considered production-grade, and Kubernetes has

a strong commitment to them that is backed by a clear deprecation policy guaranteeing
support for at least 12 months, or three versions, after the deprecation announcement.

Finally, the Kubernetes API is becoming the de facto cloud API, with many third-
party technologies extending it so they can expose their own technologies through it.
Kubernetes makes it easy to extend the API through CustomResourceDefinitions that
make your custom resources look and feel like native Kubernetes resources.

Hopefully, that made sense, but don’t worry if you're still unsure about some of it. I
recommend you play around with as many of the examples as possible. You should also
consider reading the chapter again tomorrow — it’s normal for new concepts to take a
while to learn.

If you liked this chapter, or any other chapter in the book, jump over to Amazon and
show the book some love with a quick review. The cloud-native gods will smile on you

-)

16: Threat modeling Kubernetes

Security is more important than ever, and Kubernetes is no exception. Fortunately,
there’s a lot you can do to secure Kubernetes, and you'll see some ways in the next
chapter. However, before doing that, it’s a good idea to model some of the common
threats.

Threat modeling

Threat modeling is the process of identifying vulnerabilities so you can put measures in
place to prevent and mitigate them. This chapter introduces the popular STRIDE model
and shows how you can apply it to Kubernetes.

STRIDE defines six potential threat categories:

+ Spoofing

« Tampering

» Repudiation

+ Information disclosure
+ Denial of service

+ Elevation of privilege
While the model is good and provides a structured way to asses things, no model
guarantees to cover all threats.

For the rest of this chapter, we’ll look at each of the six threat categories. For each one,
we'll give a quick description and then look at some of the ways it applies to Kubernetes.

The chapter doesn'’t try to cover everything. The goal is to give you ideas and get you
started.

Spoofing

Spoofing is pretending to be somebody else with the aim of gaining extra privileges.

Let’s look at some of the ways Kubernetes prevents different types of spoofing.

16: Threat modeling Kubernetes 252

Securing communications with the API server

Kubernetes comprises lots of small components that work together. These include the
API server, controller manager, scheduler, cluster store, and others. It also includes node
components such as the kubelet and container runtime. Each has its own privileges that
allow it to interact with and modify the cluster. Even though Kubernetes implements a
least-privilege model, spoofing the identity of any of these can cause problems.

If you read the RBAC and API security chapter, you'll know that Kubernetes requires

all components to authenticate via cryptographically signed certificates (mTLS). This is
good, and Kubernetes makes it easy by automatically rotating certificates. However, you
must consider the following:

1. A typical Kubernetes installation auto-generates a self-signed certificate authority
(CA) that issues certificates to all cluster components. While this is better than
nothing, it’s not enough for production environments on its own.

2. Mutual TLS (mTLS) is only as secure as the CA issuing the certificates. Compro-
mising the CA can render the entire mTLS layer ineffective. With this in mind, it’s
vital you keep the CA secure!

A good practice is to ensure that certificates issued by the internal Kubernetes CA are
only used and trusted within the Kubernetes cluster. This requires careful approval of
certificate signing requests, as well as ensuring the Kubernetes CA doesn’t get added as a
trusted CA for any systems outside the cluster.

As mentioned in previous chapters, all internal and external requests to the API server
are subject to authentication and authorization checks. As a result, the API server needs
a way to authenticate (trust) internal and external sources. A good way to do this is to
have two trusted key pairs:

+ One for authenticating internal systems

+ A second for authenticating external systems

In this model, you'd use the cluster’s self-signed CA to issue keys to internal systems.
You'd then configure Kubernetes to trust one or more trusted 3rd-party CAs for
external systems.

Securing Pod communications

As well as spoofing access to the cluster, there’s also the threat of spoofing app-to-app
communications. In Kubernetes, this can be when one Pod spoofs another. Fortunately,
Pods can have certificates to authenticate their identity.

16: Threat modeling Kubernetes 253

Every Pod has an associated ServiceAccount that is used to provide an identity for the Pod.
This is achieved by automatically mounting a service account token into every Pod as a
Secret. Two points to note:

1. The service account token allows access to the API server
2. Most Pods probably don'’t need to access the API server

With these two points in mind, you should set automountServiceAccountToken to
false for Pods that don’t need to communicate with the API server. The following Pod
manifest shows how to do this.

apiVersion: vl

kind: Pod

metadata:
name: service-account-example-pod

spec:
serviceAccountName: some-service-account
automountServiceAccountToken: false <<==== This line
<Snip>

If the Pod does need to talk to the API server, the following non-default configurations
are worth exploring:

* expirationSeconds

* audience

These let you force a time when the token will expire and restrict the entities it works
with. The following example, inspired from the official Kubernetes docs, sets an expiry
period of one hour and restricts it to the vault audience in a projected volume.

apiVersion: vl
kind: Pod
metadata:
name: nginx
spec:
containers:
- image: nginx
name: nginx
volumeMounts:
- mountPath: /var/run/secrets/tokens
name: vault-token
serviceAccountName: my-pod
volumes:
- name: vault-token
projected:
sources:

16: Threat modeling Kubernetes 254

- serviceAccountToken:
path: vault-token

expirationSeconds: 3600 <<==== This line
audience: vault <<==== And this one
Tampering

Tampering is the act of changing something in a malicious way to cause one of the
following:

+ Denial of service: Tampering with the resource to make it unusable
+ Elevation of privilege: Tampering with a resource to gain additional privileges

Tampering can be hard to avoid, so a common countermeasure is to make it obvious
when something has been tampered with. A common non-Kubernetes example is
packaging medication — most over-the-counter drugs are packaged with tamper-proof
seals that make it obvious if the product has been tampered with.

Tampering with Kubernetes components

Tampering with any of the following Kubernetes components can cause problems:

o etcd

+ Configuration files for the API server, controller-manager, scheduler, etcd, and
kubelet

« Container runtime binaries
« Container images
« Kubernetes binaries

Generally speaking, tampering happens either in transit or at rest. In transit refers to data
while it is being transmitted over the network, whereas at rest refers to data stored in
memory or on disk.

TLS is a great tool for protecting against in-transit tampering as it provides built-in
integrity guarantees that warn you when data has been tampered with.

The following recommendations can also help prevent tampering with data when it is at
rest in Kubernetes:

« Restrict access to the servers that are running Kubernetes components, especially
control plane components

16: Threat modeling Kubernetes 255

« Restrict access to repositories that store Kubernetes configuration files

+ Only perform remote bootstrapping over SSH (remember to keep your SSH keys
safe)

+ Always run SHA-2 checksums against downloads

+ Restrict access to your image registry and associated repositories

This isn’t an exhaustive list. However, implementing it will significantly reduce the
chances of your data being tampered with while at rest.

As well as the items listed, it’s good production hygiene to configure auditing and
alerting for important binaries and configuration files. If configured and monitored
correctly, these can help detect potential tampering attacks.

The following example uses a common Linux audit daemon to audit access to the
docker binary. It also audits attempts to change the binary’s file attributes.

$ auditctl -w /usr/bin/docker -p wxa -k audit-docker

We'll refer to this example later in the chapter.

Tampering with applications running on Kubernetes

Malicious actors will also target application components, as well as infrastructure
components.

A good way to prevent a live Pod from being tampered with is setting its filesystems
to read-only. This guarantees filesystem immutability and you can configure it via the
securityContext section of a Pod manifest file.

You can make a container’s root filesystem read-only by setting the readonlyRoot-
Filesystem property to true. You can do the same for other container filesystems via
the allowedHostPaths property.

The following YAML shows how to configure both settings in a Pod manifest. In the
example, the allowedHostPaths section makes sure anything mounted beneath /test
will be read-only.

16: Threat modeling Kubernetes

apiVersion: vl
kind: Pod
metadata:
name: readonly-test
spec:
securityContext:
readOnlyRootFilesystem: true
allowedHostPaths:
- pathPrefix: "/test"
readOnly: true
<Snip>

Repudiation

256

<<==== R/0 root filesystem
<<==== Make anything below
<<==== this mount point
<<==== read-only (R/0)

At a very high level, repudiation creates doubt about something. Non-repudiation provides
proof about something. In the context of information security, non-repudiation is
proving certain individuals carried out certain actions.

Digging a little deeper, non-repudiation includes the ability to prove:

+ What happened

» When it happened

« Who made it happen
+ Where it happened

+ Why it happened

+ How it happened

Answering the last two can be the hardest and usually requires the correlation of several

events over a period of time.

Auditing Kubernetes API server events can help answer these questions. The following
is an example of an API server audit event (you may need to enable auditing on your API

server).

16: Threat modeling Kubernetes 257

"kind":"Event",
"apiVersion":"audit.k8s.io/v1",
"metadata":{ "creationTimestamp":"2022-11-11T10:10:00Z2" },
"level":"Metadata",
"timestamp":"2022-11-11T10:10:00Z",
"auditID":"7eOcbccf-8d8a-4f5f-aefb-60b8af2d2ad5",
"stage":"RequestReceived",
"requestURI":"/api/vl/namespaces/default/persistentvolumeclaims",
"verb":"list",
"user": {
"username":"fname.lname@example.com",
"groups":["system:authenticated"]
}7
"sourceIPs":["123.45.67.123"],
"objectRef": {
"resource":"persistentvolumeclaims",
"namespace":"default",
"apiVersion":"v1"
}7
"requestReceivedTimestamp":"2022-11-11T10:10:00.123456Z",
"stageTimestamp":"2022-11-11T10:10:00.123456Z"

The API server isn’t the only component you should audit for non-repudiation. At a
minimum, you should collect audit logs from container runtimes, kubelets, and the ap-
plications running on your cluster. You should also audit non-Kubernetes infrastructure,
such as network firewalls.

As soon as you start auditing multiple components, you'll need a centralized location to
store and correlate events. A common way to do this is deploying an agent to all nodes
via a DaemonSet. The agent collects logs (runtime, kubelet, application, etc) and ships
them to a secure central location.

If you do this, the centralized log store must be secure. If it isn’t, you won’t be able to
trust the logs, and their contents can be repudiated.

To provide non-repudiation relative to tampering with binaries and configuration files,
it might be useful to use an audit daemon that watches for write actions on certain files
and directories on your Kubernetes control plane nodes and worker nodes. For example,
earlier in the chapter you saw a way to enable auditing of changes to the docker binary.
With this enabled, starting a new container with the docker run command will generate
an event like this:

16: Threat modeling Kubernetes 258

type=SYSCALL msg=audit(1234567890.123:12345): arch=abcl23 syscall=59 success=yes \
exit=0 a0=12345678abcal=0 a2=abcl12345678 a3=a items=1 ppid=1234 pid=12345 auid=0 \
uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=ptsO ses=1 comm="docker" \
exe="/usr/bin/docker" subj=system_u:object_r:container_runtime_exec_t:s0O \
key="audit-docker" type=CWD msg=audit(1234567890.123:12345): cwd="/home/firstname"\
type=PATH msg=audit(1234567890.123:12345): item=0 name="/usr/bin/docker"\

inode=123456 dev=fd:00 mode=0100600 ouid=0 ogid=0 rdev=00:00...

When combined and correlated with Kubernetes’ audit features, audit logs like this
create a comprehensive and trustworthy picture that cannot be repudiated.

Information Disclosure

Information disclosure is when sensitive data is leaked. Common examples include
hacked data stores and APIs that unintentionally expose sensitive data.

Protecting cluster data

The entire configuration of a Kubernetes cluster is stored in the cluster store (usually
etcd). This includes network and storage configuration, passwords, the cluster CA, and
more. This makes the cluster store a prime target for information disclosure attacks.

As a minimum, you should limit and audit access to the nodes hosting the cluster store.
As you'll see in the next paragraph, gaining access to a cluster node can allow the logged-
on user to bypass some security layers.

Kubernetes 1.7 introduced encryption of Secrets but doesn’t enable it by default. Even
when this becomes the default, the data encryption key (DEK) is stored on the same node
as the Secret! This means gaining access to a node lets you to bypass encryption. This is
especially worrying on nodes that host the cluster store (etcd nodes).

Fortunately, Kubernetes 1.11 enabled a beta feature that lets you store key encryption
keys (KEK) outside your Kubernetes cluster. These types of keys are used to encrypt
and decrypt data encryption keys and should be safely guarded. You should seriously
consider Hardware Security Modules (HSM) or cloud-based Key Management Stores
(KMS) for storing your key encryption keys.

Keep an eye on upcoming versions of Kubernetes for further improvements to encryp-
tion of Secrets.

Protecting data in Pods

As previously mentioned, Kubernetes has an API resource called a Secret that is the
preferred way to store and share sensitive data such as passwords. For example, a front-

16: Threat modeling Kubernetes 259

end container accessing an encrypted back-end database can have the key to decrypt
the database mounted as a Secret. This is far better than storing the decryption key in a
plain-text file or environment variable.

It is also common to store data and configuration information outside of Pods and
containers in Persistent Volumes and ConfigMaps. If the data on these is encrypted, you
should store the keys for decrypting them in Secrets.

Despite all of this, you must consider the caveats outlined in the previous section
relative to Secrets and how their encryption keys are stored. You don’t want to do the
hard work of locking the house but leaving the keys in the door.

Denial of Service

Denial of Service (DoS) is about making something unavailable.

There are many types of DoS attacks, but a well-known variation is overloading

a system to the point it can no longer service requests. In the Kubernetes world, a
potential attack might be overloading the API server so that cluster operations grind to a
halt (even internal systems use the API server to communicate).

Let’s look at some potential Kubernetes systems that might be targets of DoS attacks, as
well as some ways to protect and mitigate them.

Protecting cluster resources against DoS attacks

It’s a time-honored best practice to replicate essential services on multiple nodes for
high availability (HA). Kubernetes is no different, and you should run multiple control
plane nodes in an HA configuration for your production environments. Doing this
prevents any control plane node from becoming a single point of failure. In relation to
certain types of DoS attacks, an attacker may need to attack more than one control plane
node to have a meaningful impact.

You should also replicat3 control plane nodes across availability zones. This may
prevent a DoS attack on the network of a particular availability zone from taking down
your entire control plane.

The same principle applies to worker nodes. Having multiple worker nodes not only
allows the scheduler to spread your applications over multiple availability zones, but it
may also render DoS attacks on any single node or zone ineffective (or less effective).

You should also configure appropriate limits for the following:

- Memory

16: Threat modeling Kubernetes 260

« CPU
« Storage

Limits like these can help prevent essential system resources from being starved,
therefore preventing potential DoS.

Limiting Kubernetes objects can also be a good practice. This includes limiting things such
as the number of ReplicaSets, Pods, Services, Secrets, and ConfigMaps in a particular
Namespace.

Here’s an example manifest that limits the number of Pod objects in the skippy Names-
pace to 100.

apiVersion: vl
kind: ResourceQuota
metadata:

name: pod-quota

namespace: skippy
spec:

hard:

pods: "100"

One more feature — podPidsLimit — restricts the number of processes a Pod can
create.

Assume a Pod is the target of a fork bomb attack where a rogue process attempts to
bring the system down by creating enough processes to consume all system resources.
If you've configured the Pod with pedPidsLimit to restrict the number of processes
the Pod can create, you'll prevent it from exhausting the node’s resources and confine
the attack’s impact to the Pod. Kubernetes will normally restart a Pod if it exhausts its
podPidsLimit.

This also ensures a single Pod doesn’t exhaust the PID range for all the other Pods on
the node, including the kubelet. However, setting the correct value requires a reasonable
estimate of how many Pods will run simultaneously on each node, and you can easily
over or under-allocate PIDs to each pod without a ballpark estimate.

Protecting the API Server against DoS attacks

The API server exposes a RESTful interface over a TCP socket. This makes it a target for
botnet-based DoS attacks.

The following may be helpful in either preventing or mitigating such attacks:

+ Highly available control plane nodes — multiple replicas of the API server running
on multiple nodes across multiple availability zones

16: Threat modeling Kubernetes 261

+ Monitoring and alerting on API server requests based on sane thresholds

+ Using things like firewalls to limit API server exposure to the internet

As well as botnet DoS attacks, an attacker may also attempt to spoof a user or other
control plane service to cause an overload. Fortunately, Kubernetes has robust authen-
tication and authorization controls to prevent spoofing. However, even with a robust
RBAC model, you must safeguard access to accounts with high privileges.

Protecting the cluster store against DoS attacks

Kubernetes stores cluster configuration in etcd. This makes it vital that etcd be available
and secure. The following recommendations help accomplish this:

+ Configure an HA etcd cluster with either 3 or 5 nodes
+ Configure monitoring and alerting of requests to etcd

+ Isolate etcd at the network level so that only members of the control plane can
interact with it

A default installation of Kubernetes installs etcd on the same servers as the rest of the
control plane. This is fine for development and testing. However, large production
clusters should seriously consider a dedicated etcd cluster. This will provide better
performance and greater resilience.

On the performance front, etcd is the most common choking point for large Kubernetes
clusters. With this in mind, you should perform testing to ensure the infrastructure

it runs on is capable of sustaining performance at scale — a poorly performing etcd

can be as bad as an etcd cluster under a sustained DoS attack. Operating a dedicated
etcd cluster also provides additional resilience by protecting it from other parts of the
control plane that might be compromised.

Monitoring and alerting of etcd should be based on sane thresholds, and a good place to
start is by monitoring etcd log entries.

Protecting application components against DoS attacks

Most Pods expose their main service on the network, and without additional controls
in place, anyone with access to the network can perform a DoS attack on the Pod.
Fortunately, Kubernetes provides Pod resource request limits to prevent such attacks
from exhausting Pod and node resources. As well as these, the following will be helpful:

« Define Kubernetes Network Policies to restrict Pod-to-Pod and Pod-to-external
communications

16: Threat modeling Kubernetes 262

« Utilize mutual TLS and API token-based authentication for application-level
authentication (reject any unauthenticated requests)

For defense in depth, you should also implement application-layer authorization
policies that implement the least privilege.

Figure 16.1 shows how these can be combined to make it hard for an attacker to
successfully DoS an application.

Check whether network policies
allow this outbound connection

Network Layer Initialize communication
policy
enforcement

Check whether network policies <:
allow this inbound connection

Transport Layer Mutual TLS handshake

Authentication @ @

Application Layer Check whether authorization policies allow
authorization this service-to-service communication

Figure 16.1

Elevation of privilege

Privilege escalation is gaining higher access than what is granted. The aim is to cause
damage or gain unauthorized access.

Let’s look at a few ways to prevent this in a Kubernetes environment.

Protecting the API server

Kubernetes offers several authorization modes that help safeguard access to the API
server. These include:

« Role-based Access Control (RBAC)
« Webhook
« Node

16: Threat modeling Kubernetes 263

You should run multiple authorizers at the same time. For example, it’s common to use
the RBAC and node authorizers.

RBAC mode lets you restrict API operations to sub-sets of users. These users can be
regular user accounts or system services. The idea is that all requests to the API server
must be authenticated and authorized. Authentication ensures that requests come from
a validated user, whereas authorization ensures the validated user can perform the
requested operation. For example, can Mia create Pods? In this example, Mia is the user,
create is the operation, and Pods is the resource. Authentication makes sure that it really
is Mia making the request, and authorization determines if she’s allowed to create Pods.

Webhook mode lets you offload authorization to an external REST-based policy engine.
However, it requires additional effort to build and maintain the external engine. It also
makes the external engine a potential single point of failure for every request to the API
server. For example, if the external webhook system becomes unavailable, you may be
unable to make any requests to the API server. With this in mind, you should be rigorous
in vetting and implementing any webhook authorization service.

Node authorization is all about authorizing API requests made by kubelets (Nodes). The
types of requests made to the API server by kubelets are obviously different from those
generally made by regular users, and the node authorizer is designed to help with this.

Protecting Pods

The following few sections will look at a few technologies that help reduce the risk of
elevation of privilege attacks against Pods and containers. We'll look at the following:

» Preventing processes from running as root
+ Dropping capabilities
« Filtering syscalls

« Preventing privilege escalation

As you proceed through these sections, it’s important to remember that a Pod is just an
execution environment for one or more containers. Some of the terminology used will
refer to Pods and containers interchangeably, but usually we will mean container.

Do not run processes as root

The root user is the most powerful user on a Linux system and is always User ID 0 (UID
0). This means running application processes as root is almost always a bad idea as it
grants the application process full access to the container. This is made even worse by
the fact the root user of a container sometimes has unrestricted root access to the host
system as well. If that doesn’t make you afraid, nothing will!

16: Threat modeling Kubernetes 264

Fortunately, Kubernetes allows you to force container processes to run as unprivileged
non-root users.

The following Pod manifest configures all containers that are part of this Pod to run
processes as UID 1000. If the Pod has multiple containers, all container processes will
run as UID 1000.

apiVersion: vl
kind: Pod
metadata:
name: demo
spec:
securityContext: <<==== Applies to all containers in this Pod
runAsUser: 1000 <<==== Non-root user
containers:
- name: demo
image: example.io/simple:1.0

The runAsUser property is one of many settings that fall under the category of PodSecuri-
tyContext (spec.securityContext).

It’s possible for two or more Pods to be configured with the same runAsuser UID. When
this happens, the containers from both Pods will run with the same security context and
potentially have access to the same resources. This might be fine if they are replicas of
the same Pod. However, there’s a high chance this will cause problems if they’re not
replicas. For example, two different containers with R/W access to the same volume

can cause data corruption (both writing to the same dataset without coordinating write
operations). Shared security contexts also increase the possibility of a compromised
container tampering with a dataset it shouldn’t have access to.

With this in mind, it is possible to use the securityContext.runAsUser property at the
container level instead of at the Pod level:

apiVersion: vl
kind: Pod
metadata:
name: demo
spec:
securityContext: <<==== Applies to all containers in this Pod
runAsUser: 1000 <<==== Non-root user
containers:
- name: demo
image: example.io/simple:1.0
securityContext:
runAsUser: 2000 <<==== Qverrides the Pod-level setting

This example sets the UID to 1000 at the Pod level but overrides it at the container level
so that processes in the demo container run as UID 2000. Unless otherwise specified, all
other containers in the Pod will use UID 1000.

16: Threat modeling Kubernetes 265

A couple of other things that might help get around the issue of multiple Pods and
containers using the same UID include:

 User namespaces
+ Maintaining a map of UID usage

User namespaces is a Linux kernel technology that allows a process to run as root within
a container but run as a different user outside the container. For example, a process
can run as UID O (the root user) inside the container but get mapped to UID 1000

on the host. This can be a good solution for processes that need to run as root inside
the container. However, you should check if it is fully-supported by your version of
Kubernetes and your container runtime.

Capability dropping

While most applications don’t need the complete set of root capabilities, they usually
require more capabilities than a typical non-root user.

What we need, is a way to grant the exact set of privileges a process requires in order to
run. Enter capabilities.

Time for a quick bit of background.

We've already said the root user is the most powerful user on a Linux system. However,
its power is a combination of lots of small privileges that we call capabilities. For example,
the SYS_TIME capability allows a user to set the system clock, whereas the NET_ADMIN
capability allows a user to perform network-related operations such as modifying the
local routing table and configuring local interfaces. The root user holds every capability
and is, therefore, extremely powerful.

Having a modular set of capabilities allows you to be extremely granular when granting
permissions. Instead of an all-or-nothing (root —vs— non-root) approach, you can grant
a process the exact set of capabilities required.

There are currently over 30 capabilities, and choosing the right ones can be daunting.
With this in mind, many container runtimes implement a set of sensible defaults that
allow most processes to run without leaving all the doors open. While sensible defaults
like these are better than nothing, they’re often not good enough for production
environments.

A common way to find the absolute minimum set of capabilities an application requires,
is to run it in a test environment with all capabilities dropped. This causes the applica-
tion to fail and log messages about the missing permissions. You map those permissions
to capabilities, add them to the application’s Pod spec, and run the application again. You
rinse and repeat this process until the application runs properly with the minimum set
of capabilities.

16: Threat modeling Kubernetes 266

As good as this is, there are a few things to consider.

Firstly, you must perform extensive testing of each application. The last thing you want
is a production edge case that you hadn’t accounted for in your test environment. Such
occurrences can crash your application in production!

Secondly, every application revision requires the same extensive testing against the
capability set.

With these considerations in mind, it is vital that you have testing procedures and
production release processes that can handle all of this.

By default, Kubernetes implements your chosen container runtime’s default set of
capabilities (E.g., containerd). However, you can override this as part of a container’s
securityContext field.

The following Pod manifest shows how to add the NET_ADMIN and CHOWN capabilities to a
container.

apiVersion: vl
kind: Pod
metadata:
name: capability-test
spec:
containers:
- name: demo
image: example.io/simple:1.0
securityContext:
capabilities:
add: ["NET_ADMIN", "CHOWN"]

Filter syscalls

Seccomp, short for secure computing, is similar in concept to capabilities but works by
filtering syscalls rather than capabilities.

The way an application asks the Linux kernel to perform an operation is by issuing a
syscall. seccomp lets you control which syscalls a particular container can make to the
host kernel. As with capabilities, you should implement a least privilege model where
the only syscalls a container can make are the ones it needs in order to run.

Seccomp went GA in Kubernetes 1.19, and you can use it in different ways based on the
following seccomp profiles:

1. Non-blocking: Allows a Pod to run, but records every syscall to an audit log you
can use to create a custom profile. The idea is to extensively test your application
Pod in a dev/test environment. After that, you'll have a log file listing every syscall
the Pod needs in order to run. You then use this to create a custom profile that only
allows those syscalls (least privilege).

16: Threat modeling Kubernetes 267

2. Blocking: Blocks all syscalls. It’s extremely secure but prevents a Pod from doing
anything useful.

3. Runtime Default: Forces a Pod to use the seccomp profile defined by its container
runtime. This is a common place to start if you still need to create a custom profile.
Profiles that ship with container runtimes are designed to be a balance of usable
and secure. They're also thoroughly tested.

4. Custom: A profile that only allows the syscalls your application needs in order to
run. Everything else is blocked. It's common to extensively test your application
in dev/test environment with a non-blocking profile that records all syscalls to
an audit log. You then use this log to identify your app’s syscalls and build the
customized profile. The danger with this approach is that your app has some
edge cases you miss during testing. If this happens, your application can fail in
production when it hits an edge case and uses a syscall not captured during testing.

Custom profiles operate the least privilege model and are the preferred approach from a
security perspective.

Prevent privilege escalation by containers

The only way to create a new process in Linux is for one process to clone itself and then
load new instructions onto the new process. We're over-simplifying, but the original
process is called the parent process, and the copy is called the child process.

By default, Linux allows a child process to claim more privileges than its parent. This

is usually a bad idea. In fact, you'll often want a child process to have the same or

fewer privileges than its parent. This is especially true for containers, as their security
configurations are defined against their initial configuration and not against potentially
escalated privileges.

Fortunately, it’s possible to prevent privilege escalation through the securityContext
property of individual containers, as shown.

apiVersion: vl
kind: Pod
metadata:
name: demo
spec:
containers:
- name: demo
image: example.io/simple:1.0
securityContext:
allowPrivilegeEscalation: false <<==== This line

16: Threat modeling Kubernetes 268

Standardizing Pod Security with PSS and PSA

Modern Kubernetes clusters implement two technologies to help enforce Pod security
settings:

+ Pod Security Standards (PSS) are policies that specify required Pod security

settings

+ Pod Security Admission (PSA) enforces one or more PSS policies when Pods are
created

Both work together for effective centralized enforcement of Pod security — you choose
which PSS policies to apply, and PSA enforces them.

Pod Security Standards (PSS)

Every Kubernetes cluster gets the following three PSS policies that are maintained and
kept up-to-date by the community:

+ Privileged
» Baseline
« Restricted

Privileged is a wide-open allow-all policy.

Baseline implements sensible defaults. It's more secure than the privileged policy but
less secure than restricted.

Restricted is the gold standard that implements the current Pod security best practices.
Be warned though, it’s highly restricted, and lots of Pods will fail to meet its strict
requirements.

At the time of writing, you cannot tweak or modify any of these policies, and you cannot
import others or create your own.

Pod Security Admission (PSA)

Pod Security Admission (PSA) enforces your desired PSS policies. It works at the
Namespace level and is implemented as a validating admission controller.

PSA offers three enforcement modes:

+ Warn: Allows violating Pods to be created but issues a user-facing warning

16: Threat modeling Kubernetes 269

+ Audit: Allows violating Pods to be created but logs an audit event
+ Enforce: Rejects Pods if they violate the policy

It’s a good practice to configure every Namespace with at least the baseline policy
configured to either warn or audit. This allows you to start gathering data on which
Pods are failing the policy and why. The next step is to enforce the baseline policy and
start warning and auditing on the restricted policy.

Any Namespaces without a Pod Security configuration are a gap in your security
configuration, and you should attach a policy as soon as possible, even if it’s only
warning and auditing.

Applying the following label to a Namespace will apply the baseline policy to it. It will
allow violating Pods to run but will generate a user-facing warning.

pod-security.kubernetes.io/warn: baseline

The format of the label is <prefix>/<mode>: <policy> with the following options:

+ Prefix is always pod-security.kubernetes.io
+ Mode is one of warn, audit, or enforce

+ Policy is always one of privileged, baseline or restricted

PSAs operate as validating admission controllers, meaning they cannot modify Pods.
They also cannot have any impact on running Pods.

PSA examples

Let’s walk through some examples to show you Pod Security Admission in action. You'll
complete the following steps:

. Create a Namespace called psa-test

. Apply alabel to enforce the baseline PSS policy

. Attempt to deploy a Pod that runs a privileged container (will fail)

. Modify the Pod to conform to the PSS policy and re-deploy it (will work)
. Test the potential impact of switching to the restricted policy

. Switch to the restricted policy

N N U AN W N =

. Test any impact on existing Pods

You'll need kubectl, a Kubernetes cluster, and a local clone of the book’s GitHub repo if
you want to follow along. See Chapter 3 if you need these.

You can clone the book’s GitHub repo with the following command.

16: Threat modeling Kubernetes 270

$ git clone https://github.com/nigelpoulton/TheK8sBook

Be sure to run the following commands from the psa directory.

Run the following command to create a new Namespace called psa-test.

$ kubectl create ns psa-test

Add the pod-security.kubernetes.io/enforce=baseline label to the new Names-
pace. This will prevent the creation of any new Pods violating the baseline PSS policy.

$ kubectl label --overwrite ns psa-test \
pod-security.kubernetes.io/enforce=baseline

Verify the label was correctly applied.

$ kubectl describe ns psa-test

Name: psa-test

Labels: kubernetes.io/metadata.name=psa-test
pod-security.kubernetes.io/enforce=baseline <<==== Tlabel correctly applied

Annotations: <none>

Status: Active

The Namespace is created and the baseline policy enforced.

The following YAML is from the psa-pod.yml file and defines a privileged container
that violates the baseline policy.

apiVersion: vl
kind: Pod
metadata:
name: psa-pod
namespace: psa-test <<==== Deploy it to the new psa-test Namespace
spec:
containers:
- name: psa-ctr
image: nginx
securityContext:
privileged: true <<==== Violates the baseline policy

Deploy it with the following command.

16: Threat modeling Kubernetes 271

$ kubectl apply -f psa-pod.yml

Error from server (Forbidden): error when creating "psa-pod.yml": pods "psa-pod" s
forbidden: violates PodSecurity "baseline:latest": privileged (container "psa-ctr"
must not set securityContext.privileged=true)

The output shows the Pod creation was forbidden and lists the reason why.

Edit the psa-pod.yml and change the container’s securityContext.privileged to
false and save your changes.

apiVersion: vl
kind: Pod
<Snip>
spec:
containers:
- name: psa-ctr
image: nginx
securityContext:
privileged: false <<==== Change from true to false

Now try to deploy the Pod.

$ kubectl apply -f psa-pod.yml
pod/psa-pod created

It passed the requirements for the baseline policy and was successfully deployed.

You can use the --dry-run=server flag to test the impact of applying a PSS policy to a
Namespace. Using this flag will not apply the policy.

$ kubectl label --dry-run=server --overwrite ns psa-test \
pod-security.kubernetes.io/enforce=restricted

Warning: existing pods in namespace "psa-test" violate the new PodSecurity enforce
level "restricted:latest"

Warning: psa-pod: allowPrivilegeEscalation != false, unrestricted capabilities,
runAsNonRoot != true, seccompProfile
<Snip>

The output shows the psa-pod Pod fails to meet four policy requirements:

+ The allowPrivilegeEscalation property is not set to false
+ It’s running unrestricted capabilities

+ The runAsNonRoot field is not set to true

« It fails the seccompProfile test

Go ahead and apply the policy to the Namespace and see if it impacts the psa-pod that is
already running.

16: Threat modeling Kubernetes 272

$ kubectl label --overwrite ns psa-test \
pod-security.kubernetes.io/enforce=restricted

Warning: existing pods 1in namespace "psa-test" violate the new PodSecurity enforce level
"restricted:latest"

Warning: psa-pod: allowPrivilegeEscalation != false, unrestricted capabilities,
runAsNonRoot != true, seccompProfile

namespace/psa-test labeled

$ kubectl get pods --namespace psa-test

NAME READY STATUS RESTARTS AGE
psa-pod 1/1 Running 0 3m9s

You get the same warning message, but it doesn’t terminate existing Pods. This is
because PSA runs as an admission controller and, therefore, only acts on the creation
and modification of Pods.

Finally, it’s possible to configure multiple policies and modes against a single Names-
pace. In fact, it's a common practice to do this.

The following example applies three labels to the psa-test Namespace. They enforce the
baseline policy, and warn and audit against the restricted policy. This is a good way
to implement the baseline policy and prepare for restricted.

$ kubectl label --overwrite ns psa-test \
pod-security.kubernetes.io/enforce=baseline \
pod-security.kubernetes.io/warn=restricted \
pod-security.kubernetes.io/audit=restricted

You can run a kubectl describe ns psa-test command to ensure the labels were
applied.

Alternatives to Pod Security Admission

As previously mentioned, PSS and PSA have limitations. These include being imple-
mented as a validating admission controller and being unable to modify, import, or
create your own policies. If you need more than PSS and PSA can offer, you may want
to consider the following 3rd-party solutions:

« OPA Gatekeeper
« Kubewarden

+ Kyverno

Others also exist.

16: Threat modeling Kubernetes 273

Towards a more secure Kubernetes

As demonstrated by the following examples, Kubernetes is on a continual journey
towards better security.

Starting with Kubernetes v1.26, all binary artifacts and container images used to build
Kubernetes clusters are cryptographically signed.

The Kubernetes community maintains an official feed for all publicly announced
Kubernetes vulnerabilities (CVEs). Since v1.27, a JSON and RSS feed that auto-refreshes
when any new CVE is announced is available.

Starting from Kubernetes 1.27, all containers inherit a default seccomp profile from
the container runtime that implements sensible security defaults. This requires the --
seccomp-default on every kubelet.

Many cloud providers implement confidential computing services such as confidential
virtual machines and confidential containers that Kubernetes can leverage to secure data in
use by enabling memory encryption for container workloads, etc. Some cloud providers
even offer it as part of their hosted Kubernetes services.

An up-to-date third-party security audit of Kubernetes!! was published in April
2023 based on Kubernetes 1.24. It’s the second report of its kind and follows on from
the original in 2019. These are great tools for identifying potential threats to your
Kubernetes environments, as well as potential ways to mitigate them.

Finally, the Cloud Native Security Whitepaper!? is worth reading as a way to level up
and gain a more holistic perspective on securing cloud-native environments such as
Kubernetes.

Chapter summary

This chapter taught you how the STRIDE model can be used to threat-model Kuber-
netes. You stepped through the six threat categories and looked at some ways to prevent
and mitigate them.

You saw that one threat can often lead to another and that multiple ways exist to
mitigate a single threat. As always, defense in depth is a key tactic.

The chapter finished by discussing how Pod Security Admission is the preferred way to
implement Pod security defaults.

In the next chapter, you'll see some best practices and lessons learned from running
Kubernetes in production.

https://research.nccgroup.com/2023/04/17/public-report-kubernetes- 1-24-security-audit/
Zhttps://github.com/cncf/tag-security/tree/main/security-whitepaper/v2

17: Real-world Kubernetes security

The previous chapter showed you how to threat-model Kubernetes using the STRIDE
model. In this chapter, you'll learn about security-related challenges you'll likely
encounter when implementing Kubernetes in the real world.

The goal of the chapter is to show you things from the kind of high-level view a security
architect has. It does not give cookbook style solutions.

The chapter is divided into the following four sections:

« Security in the software delivery pipeline
+ Workload isolation
+ Identity and access management

« Security monitoring and auditing

Security in the software delivery pipeline

Containers revolutionized the way we build, ship, and run applications. Unfortunately,
this has also made it easier than ever to run dangerous code.

Let’s look at some ways you can secure the supply chain that gets application code from
a developer’s laptop onto production servers.

Image Repositories

We store images in public and private registries that we divide into repositories.

Public registries are on the internet and are the easiest way to push and pull images.
However, you should be very careful when using them:

1. You need to adequately protect the images you store on public registries

2. You should not trust the images you pull from public registries

Some public registries have the concept of official images and community images. As a
general rule, official images are safer than community images, but you should always do
your due diligence.

17: Real-world Kubernetes security 275

Official images are usually provided by product vendors and undergo vigorous vetting
processes to ensure quality. You should expect them to implement good practices, be
regularly scanned for vulnerabilities, and contain up-to-date patches and fixes. Some of
them may even be supported by the product vendor or the company hosting the registry.

Community images do not undergo rigorous vetting, and you should practice extreme
caution when using them.

With these points in mind, you should implement a standardized way for developers to
obtain and consume images. You should also make the process as frictionless as possible
so that developers don’t feel the need to bypass the process.

Let’s discuss a few things that might help.

Use approved base images

Most images start with a base layer and then add other layers to form a useful image.

Figure 17.1 shows an oversimplified example of an image with three layers. The base
layer has the core OS and filesystem components, the middle layer has the libraries and
dependencies, and the top layer has your app. The combination of the three is the image
and contains everything needed to run the application.

I App code] 4——Layer
I Libs/deps I <4¢—Layer

Linux OS stuff <4——Base layer

Figure 17.1 - Image layering

It’s usually a good practice to maintain a small number of approved base images. These
are usually derived from official images and hardened according to your corporate
policies and requirements. For example, you might create a limited number of approved
base images based on the official Alpine Linux image you've tweaked to meet your
requirements (patches, drivers, audit settings, and more).

Figure 17.2 shows three applications built on top of two approved base images. The app
on the left builds on top of your approved Alpine Linux base image, whereas the other
two apps are web apps that build on top of your approved Alpin+NGINX base image.

17: Real-world Kubernetes security 276

[Dependencies I I Web app 1] [Web app 2 l
Approved : Hardened : Hardened : Hardened :
base image(s) : Alpine : |_Alpine + NGINX | : :{__Alpine + NGINX

Figure 17.2 - Using approved base images

While you need to invest up-front effort to create your approved base images, they bring
all the following benefits:

« Standard set of drivers

+ Known patches

+ Standardized audit settings

+ Reduced software sprawl (less unofficial base images)

« Simplified testing (testing against a small set of known bases)

+ Simplified updates (Fewer base images to patch)

« Simplified troubleshooting (a well-understood and limited set of base images)

Having an approved set of base images also allows developers to focus on applications
without caring about OS-related stuff. It may also allow you to reduce the number of
support contracts and suppliers you have to deal with.

Manage the need for non-standard base images

As good as having a small number of approved base images is, you may still have
legitimate requirements for bespoke configurations. In these situations you'll, you'll
need good processes:

+ Identify why an existing approved base image cannot be used

¢ Determine whether an existing approved base image can be updated to meet
requirements (including if it's worth the effort)

+ Determine the support implications of bringing an entirely new image into the
environment

In most cases, you'll want to update an existing base image — such as adding a device
driver for GPU computing — rather than introducing an entirely new image.

17: Real-world Kubernetes security 277

Control access to images

There are several ways to protect your organization’s images.

A secure and practical option is to host your own private registries inside your own
firewalls. This allows you to control how registries are deployed, how they're replicated,
and how they’re patched. You can also create repositories and policies to fit your
organizational needs, and integrate them with existing identity management providers
such as Active Directory.

If you can’t manage your own private registries, you can host your images in private
repositories on public registries. However, not all public registries are equal, and you'll
need to take great care in choosing the right one and configuring it correctly.

Whichever solution you choose, you should only host images that are approved for use
within your organization. These will typically be from a trusted source and vetted by
your information security team. You should place access controls on repositories so that
only approved users can push and pull them.

Away from the registry itself, you should also:

» Restrict which cluster nodes have internet access, keeping in mind that your image
registry may be on the internet

+ Configure access controls that only allow authorized users and nodes to push to
repositories

If you're using a public registry, you'll probably need to grant your cluster nodes access
to the internet so they can pull images. In scenarios like this, it’s a good practice to limit
internet access to the addresses and ports your registries use. You should also implement
strict RBAC rules on the registry to control who can push and pull images from which
repositories. For example, you might restrict developers so they can only push and pull
against dev and test repositories, whereas you may allow your operations teams to push
and pull against production repos.

Finally, you may only want a subset of nodes (build nodes) to be able to push images. You
may even want to lock things down so that only your automated build systems can push
to specific repositories.

Moving images from non-production to production

Many organizations have separate environments for development, testing, and produc-
tion.

As a general rule, development environments have fewer rules and are places where
developers can experiment. This can involve non-standard images your developers
eventually want to use in production.

17: Real-world Kubernetes security 278

The following sections outline some measures you can take to ensure that only safe
images get approved for production.

Vulnerability scanning

Top of the list for vetting images before allowing them into production should be
vulnerability scanning. These services scan your images at a binary level and check their
contents against databases of known security vulnerabilities (CVEs).

You should integrate vulnerability scanning into your CI/CD pipelines and implement
policies that automatically fail builds and quarantine images if they contain particular
categories of vulnerabilities. For example, you might implement a build phase that
scans images and automatically fails anything using an image with known critical
vulnerabilities.

However, some scanning solutions are better than others and will allow you to create
highly customizable policies.

For example, a Python method that performs TLS verification might be vulnerable to

Denial of Service attacks when the Common Name contains a lot of wildcards. However,
if you never use Python in this way, you might not consider the vulnerability relevant
and want to mark it as a false positive. Not all scanning solutions allow you to do this.

Configuration as code

Scanning app code for vulnerabilities is widely accepted as good production hygiene.
However, scanning your Dockerfiles, Kubernetes YAML files, Helm charts, and other
configuration files is less widely adopted.

A well-publicized example of not reviewing configuration files was when an IBM data
science experiment embedded private TLS keys in its container images. This meant
attackers could pull the image and gain root access to the nodes hosting the containers.
The whole thing would've been easily avoided if they’d performed a security review
against their Dockerfiles.

There continue to be advancements in automating checks like these with tools that
implement policy as code rules.

Sign container images

Trust is a big deal in today’s world, and cryptographically signing content at every stage
in the software delivery pipeline is becoming the norm. Fortunately, Kubernetes and
most container runtimes support cryptographically signing and verifying images.

17: Real-world Kubernetes security 279

In this model, developers cryptographically sign their images, and consumers crypto-
graphically verify them when they pull them and run them. This gives the consumer
confidence theyre working with the correct image and that it hasn’t been tampered
with.

Figure 17.3 shows the high-level process for signing and verifying images.

&
< .
& &
(verify)
-0 [e
. . A
Publisher (developer) Consumer
Figure 17.3

Image signing and verification is usually implemented by the container runtime.

You should look at tools that allow you to define and enforce enterprise-wide signing
policies so it’s not left up to individual users.

Image promotion workflow

With everything we’ve covered so far, your build pipelines should include as many of the
following as possible:

. Policies forcing the use of signed images

. Network rules restricting which nodes can push and pull images
. RBAC rules protecting image repositories

. Use of approved base images

. Image scanning for known vulnerabilities

. Promotion and quarantining of images based on scan results

N N U AN W N =

. Review and scan infrastructure-as-code configuration files

There are more things you can do, and the list isn’t supposed to represent an exact
workflow.

17: Real-world Kubernetes security 280

Workload isolation

This section will show you some ways you can isolate workloads.

We'll start at the cluster level, switch to the runtime level, and then look outside the
cluster at infrastructure such as network firewalls.

Cluster-level workload isolation

Cutting straight to the chase, Kubernetes does not support secure multi-tenant
clusters. The only way to isolate two workloads is to run them on their own clusters
with their own hardware.

Let’s look a bit closer.

The only way to divide a Kubernetes cluster is by creating Namespaces. However, these
are little more than a way of grouping resources and applying things such as:

o Limits
* Quotas
« RBAC rules

Namespaces do not prevent compromised workloads in one Namespace from impacting
workloads in other Namespaces. This means you should never run hostile workloads on
the same Kubernetes cluster.

Despite this, Kubernetes Namespaces are useful, and you should use them. Just don’t use
them as security boundaries.

Namespaces and soft multi-tenancy

For our purposes, soft multi-tenancy is hosting multiple trusted workloads on shared
infrastructure. By trusted, we mean workloads that don’t require absolute guarantees
that one workload cannot impact another.

An example of trusted workloads might be an e-commerce application with a web
front-end service and a back-end recommendation service. As they’re part of the same
application, they’re not hostile. However, you might want each one to have its own
resource limits managed by different teams.

In situations like this, a single cluster with a Namespace for the front-end service and
another for the back-end service might be a good solution.

17: Real-world Kubernetes security 281

Namespaces and hard multi-tenancy

We'll define hard multi-tenancy as hosting untrusted and potentially hostile workloads
on shared infrastructure. However, as we said before, this isn’t currently possible with
Kubernetes.

This means workloads requiring a strong security boundary need to run on separate
Kubernetes clusters! Examples include:

+ Isolating production and non-production workloads
+ Isolating different customers

« Isolating sensitive projects and business functions

Other examples exist, but the take-home point is that workloads requiring strong
separation need their own clusters.

Note: The Kubernetes project has a dedicated Multitenancy Working Group
that’s actively working on multitenancy models. This means that future
Kubernetes releases might have better solutions for hard multitenancy.

Node isolation

There will be times when you have applications that require non-standard privileges,
such as running as root or executing non-standard syscalls. Isolating these on their own
clusters might be overkill, but you might justify running them on a ring-fenced subset
of worker nodes. Doing this will restrict compromised workloads from only impacting
other workloads on the same node.

You should also apply defense in depth principles by enabling stricter audit logging
and tighter runtime defense options on nodes running workloads with non-standard
privileges.

Kubernetes offers several technologies, such as labels, affinity and anti-affinity rules, and
taints, to help you target workloads to specific nodes.

Runtime isolation

Containers versus virtual machines used to be a polarizing topic. However, when it
came to workload isolation there is only ever one winner... virtual machines.

Most container platforms implement namespaced containers. This is a model where every
container shares the host’s kernel, and isolation is provided by kernel constructs, such
as namespaces and cgroups, that were never designed as strong security boundaries.

17: Real-world Kubernetes security 282

Docker, containerd, and CRI-O are popular examples of container runtimes and
platforms that implement namespaced containers.

This is very different from the hypervisor model, where every virtual machine gets
its own dedicated kernel and is strongly isolated from other virtual machines using
hardware enforcement.

However, it’s easier than ever to augment containers with security-related technologies
that make them more secure and enable stronger workload isolation. These technologies
include AppArmor, SELinux, seccomp, capabilities, and user namespaces, and most
container runtimes and hosted Kubernetes services do a good job of implementing
sensible defaults for them all. However, they can still be complex, especially when
troubleshooting.

You should also consider different classes of container runtimes. Two examples are
gVisor and Kata Containers, both of which provide stronger levels of workload
isolation and are easy to integrate with Kubernetes thanks to the Container Runtime
Interface (CRI) and Runtime Classes.

There are also projects that enable Kubernetes to orchestrate other workload types, such
as virtual machines, serverless functions, and WebAssembly.

While you might feel overwhelmed by some of this, you need to consider all of this when
determining the isolation levels your workloads require.

To summarize, the following workload isolation options exist:

1. Virtual Machines: Every workload gets its own dedicated kernel. It provides
excellent isolation but is comparatively slow and resource-intensive.

2. Namespaced containers: All containers share the host’s kernel. These are fast and
lightweight but require extra effort to improve workload isolation.

3. Run every container in its own virtual machine: Solutions like these attempt to
combine the versatility of containers with the security of VMs by running every
container in its own dedicated VM. Despite using specialized lightweight VM,
these solutions lose much of the appeal of containers, and they're not very popular.

4. Use different runtime classes: This allows you to run all workloads as containers,
but you target the workloads requiring stronger isolation to an appropriate
container runtime.

5. Wasm containers: Wasm containers package Wasm (WebAssembly) apps in OCI
containers that can execute on Kubernetes. These apps only use containers for
packaging and scheduling, at run time they execute inside a secure deny-by-default
Wasm host. See Chpater 9 for more detail.

17: Real-world Kubernetes security 283

Network isolation

Firewalls are an integral part of any layered information security system. The goal is
only to allow authorized communications.

In Kubernetes, Pods communicate over an internal network called the pod network.
However, Kubernetes doesn’t implement the pod network. Instead, it implements a plugin
model called the Container Network Interface (CNI) that allows 3rd-party vendors

to implement the pod network. Lots of CNI plugins exist, but they fall into two broad
categories:

+ Overlay
- BGP

Each has a different impact on firewall implementation and network security.

Kubernetes and overlay networking

Most Kubernetes environments implement the pod network as a simple flat overlay
network that hides any network complexity between cluster nodes. For example, you
might deploy your cluster nodes across ten different networks connected by routers, but
Pods connect to the flat pod network and communicate without needing to know any
of the complexity of the host networking. Figure 17.4 shows four nodes on two separate
networks and the Pods connected to a single overlay pod network.

Overlay 10.0.0.0/24

172.31.1.0/24 192.168.1.0/24

| L3infra

Figure 17.4

Overlay networks use VLXAN technologies to encapsulate traffic for transmission

over a simple flat Layer-2 network operating on top of existing Layer-3 infrastructure.
If that’s too much network jargon, all you need to know is that overlay networks
encapsulate packets sent by containers. This encapsulation hides the original source and
target [P addresses, making it harder for firewalls to know what’s going on. See Figure
17.5

17: Real-world Kubernetes security 284

D 1P: 172.12.34.57

(Encapsulated) node

@ New src: 172.12.34.56
Original src: 10.0.0.5 > > @
pod > Original dst: 10.0.0.9 / NI pod

New dst: 172.12.34.57

IP: 172.12.34.56

A 4

Figure 17.5 - Encapsulation on overlay network

Kubernetes and BGP

BGP is the protocol that powers the internet. However, at its core, it’s a simple and
scalable protocol that creates peer relationships that are used to share routes and
perform routing.

The following analogy might help. Imagine you want to send a birthday card to a friend
who you lost contact with and no longer have their address. However, your child has a
friend at school whose parents are still in touch with your old friend. In this situation,
you give the card to your child and ask them to give it to their friend at school. This
friend gives it to their parents, who deliver it to your friend.

BGP routing is similar and happens through a network of peers that help each other find
routes.

From a security perspective, the important thing is that BGP doesn’t encapsulate
packets. This makes things much simpler for firewalls. Figure 17.6 shows the same setup

using BGP. Notice how there’s no encapsulation.
D IP: 172.12.34.57
node

@ Pod Src: 10.0.0.5 @
_ I
6L\ — PANS @
10.0.0.5 10.0.0.9

Routing table Routing table
10.0.0.9 via 172.12.34.57 10.0.0.5 via 172.12.34.56

IP: 172.12.34.56

Figure 17.6 - No encapsulation on BGP network

17: Real-world Kubernetes security 285

How this impacts firewalls

We've already said that firewalls allow or disallow traffic flow based on source and
destination addresses. For example:

« Allow traffic from the 10.0.0.0/24 network
« Disallow traffic from the 192.168.0.0/24 network

Suppose your pod network is an overlay network. In that case, all traffic will be
encapsulated, and only firewalls that can open packets and inspect their contents will
be able to make useful decisions on whether to allow or deny traffic. You may want to
consider a BGP pod network if your firewalls can’t do this.

You should also consider whether to deploy physical firewalls, host-based firewalls, or a
combination of both.

Physical firewalls are dedicated network hardware devices that are usually managed
by a central team. Host-based firewalls are operating system (OS) features and are
usually managed by the team that deploys and manages your OSes. Both solutions
have pros and cons, and combining the two is often the most secure. However, you
should consider whether your organization has a long and complex procedure for
implementing changes to physical firewalls. If it does, it might not suit the nature of
your Kubernetes environment.

Packet capture

On the topic of networking and IP addresses, not only are Pod IP addresses sometimes
obscured by encapsulation, but they are also dynamic and can be recycled and re-used
by different Pods. We call this IP churn, and it reduces how useful IP addresses are

at identifying systems and workloads. With this in mind, the ability to associate IP
addresses with Kubernetes-specific identifiers such as Pod IDs, Service aliases, and
container IDs when performing things like packet capturing can be extremely useful.

Let’s switch tack and look at some ways of controlling user access to Kubernetes.

Identity and access management (IAM)

Controlling user access to Kubernetes is important in any production environment.
Fortunately, Kubernetes has a robust RBAC subsystem that integrates with existing
IAM providers such as Active Directory, other LDAP systems, and cloud-based IAM
solutions.

Most organizations already have a centralized IAM provider that’s integrated with
company HR systems to simplify employee lifecycle management.

17: Real-world Kubernetes security 286

Fortunately, Kubernetes leverages existing IAM providers instead of implementing its
own. This means new employees get an identity in the corporate IAM database, and
assuming you make them members of the appropriate groups, they will automatically
get permissions in Kubernetes. Likewise, when the employee leaves the organization, an
HR process will automatically remove their identity from the IAM database, and their
Kubernetes access will cease.

RBAC has been a stable Kubernetes feature since v1.8 and you should leverage its full
capabilities.

Managing Remote SSH access to cluster nodes

You'll do almost all Kubernetes administration via REST calls to the API server. This
means users should rarely need remote SSH access to Kubernetes cluster nodes. In fact,
remote SSH access to cluster nodes should only be for the following types of activity:

+ Node management activities that you cannot perform via the Kubernetes API
 Break the Glass activities, such as when the API server is down

+ Deep troubleshooting

Multi-factor authentication (MFA)

With great power comes great responsibility.

Accounts with root access to the API server and root access to cluster nodes are
extremely powerful and are prime targets for attackers and disgruntled employees. As
such, you should protect their use via multi-factor authentication (MFA). This is where a
user has to input a username and password, followed by a second stage of authentication.
For example:

+ Stage 1: Tests knowledge of a username and password

« Stage 2: Tests possession of something like a one-time password

You should also secure access to workstations and user profiles that have kubectl
installed.

Security monitoring and auditing

No system is 100% secure, and you should always plan for the eventuality that your
systems will be breached. When breaches happen, it’s vital you can do at least two
things:

17: Real-world Kubernetes security 287

1. Recognize that a breach has occurred

2. Build a detailed timeline of events that cannot be repudiated

Auditing is critical to both of these, and the ability to build a reliable timeline helps
answer the following post-event questions:

+ What happened

+ How did it happen
« When did it happen
+ Who did it

In extreme circumstances, this information can be called upon in court.

Good auditing and monitoring solutions also help identify vulnerabilities in your
security systems.

With these points in mind, you should ensure robust auditing and monitoring are high
on your list of priorities, and you shouldn’t go live in production without them.

Baseline best practices

There are various tools and checks that can help you ensure you provision your
Kubernetes environment according to best practices and company policies.

The Center for Information Security (CIS) publishes an industry-standard benchmark
for Kubernetes security, and Aqua Security (aquasec.com) has written an easy-to-use
tool called kube-bench'? to run the CIS tests against your cluster and generate reports.
Unfortunately, kube-bench can’t inspect the control plane nodes of hosted Kubernetes
services.

You should consider running kube-bench as part of the node provisioning process and
pass or fail node provisioning based on the results.

You can also use kube-bench reports as a baseline for use in the aftermath of incidents.
This allows you to compare the kube-bench reports from before and after the incident
and determine if and where any configuration changes occurred.

Container and Pod lifecycle events

Pods and containers are ephemeral objects that come and go all the time. This means
you'll see a lot of events announcing new ones and a lot of events announcing termi-
nated ones.

3https://github.com/aquasecurity/kube-bench

17: Real-world Kubernetes security 288

With this in mind, consider configuring log retention to keep the logs from terminated
Pods so they're available for inspection even after termination.

Your container runtime may also keep logs relating to container lifecycle events.

Forensic checkpointing

Forensics is the science of collecting and examining available evidence to construct a
trail of events, especially when you suspect malicious behavior.

The ephemeral nature of containers has made this challenging in the past. However,
recent technologies such as Checkpoint/Restore in Userspace (CRIU) are making it easier
to silently capture the state of running containers and restore them in a sandbox
environment for deeper analysis. At the time of writing, CRIU is an alpha feature in
Kubernetes, and the only runtime currently supporting it is CRI-O.

Application logs

Application logs are also important when identifying potential security-related issues.

However, not all applications send their logs to the same place. Some send them to their
container’s standard out (stdout) or standard error (stderr) streams where your logging tools
can pick them up alongside container logs. However, some send logs to proprietary log
files in bespoke locations. Be sure to research this for each application and configure
things so you don’t miss logs.

Actions performed by users

Most of your Kubernetes configuration and administration will be done via the API
server, where all requests should be logged. However, it’s also possible for malicious
actors to gain remote SSH access to control plane nodes and directly manipulate
Kubernetes objects. This may include access to the cluster store and etcd nodes.

We've already said you should limit SSH access to cluster nodes and bolster security
with multi-factor authentication (MFA). However, you should also log all SSH activity
and ship it to a secure log aggregator. You should also consider mandating that two
competent people be present for all SSH access to control plane nodes.

Managing log data

A key advantage of containers is application density — you can run a lot more applica-
tions on your servers and in your datacenters. This results in massive amounts of log

17: Real-world Kubernetes security 289

data and audit data that is overwhelming without specialized tools to sort and make
sense of it. Fortunately, advanced tools exist that not only store the data, but can use it
for proactive analysis as well as post-event reactive analysis.

Alerting for security-relevant events

As well as being useful for post-event analysis and repudiation, some events are
significant enough to warrant immediate investigation. Examples include:

« Privileged Pod creation by a human user: Privileged Pods can often gain root-level
access on the node, and you will typically have policies in place to prevent their
creation. On the rare occasions they are needed, they will usually be created by
automated processes with service accounts.

« Exec sessions by human users: Exec sessions grant shell-like access to containers and
are typically only used to troubleshoot issues. You should investigate exec sessions
that aren’t for troubleshooting and consider deleting them to prevent tampering.

« Attempts to access the cluster from the internet: It's a common practice to prevent
access to the control plane from the internet. As such, you should monitor for
successful and unsuccessful attempts to connect to the control plane from the
internet, and successful attempts will typically indicate a security misconfiguration
you should fix.

Migrating existing apps to Kubernetes

It can be useful to use a crawl, walk, then run strategy when migrating applications to
Kubernetes:

1. Crawl: Threat modeling your existing apps will help you understand their current
security posture. For example, which of your existing apps do and don’t communi-
cate over TLS.

2. Walk: When moving to Kubernetes, ensure the security posture of these apps
remains unchanged. For example, if an app doesn’t communicate over TLS, do not
change this as part of the migration.

3. Run: Start improving the security of applications after the migration. Start with
simple non-critical apps, and carefully work your way up to mission-critical
apps. You may also want to methodically deploy deeper levels of security, such as
initially configuring apps to communicate over one-way TLS and then eventually
over two-way TLS.

The key point is not to change the security posture of an app as part of migrating it to
Kubernetes. This is because performing a migration and making changes can make it
easier to misdiagnose issues — was it the security change or the migration?

17: Real-world Kubernetes security 290

Real-world example

An example of a container-related vulnerability that could’ve easily been prevented by
implementing some of the best practices we’ve discussed occurred in February 2019.
CVE-2019-5736 allowed a container process running as root to gain root access on the
worker node and all containers running on the host.

As dangerous as the vulnerability was, the following things covered in this chapter
would've prevented the issue:

+ Image vulnerability scanning
- Not running processes as root
+ Enabling SELinux

As the vulnerability has a CVE number, scanning tools would've found it and alerted
on it. Even if scanning platforms missed it, policies that prevent root containers and
standard SELinux policies would have prevented exploitation of the vulnerability.

Chapter summary

The purpose of this chapter was to introduce some of the real-world security considera-
tions affecting many Kubernetes.

We started by looking at ways to secure the software delivery pipeline and discussed
some image-related best practices. These included securing your image registries,
scanning images for vulnerabilities, and cryptographically signing and verifying images.
Then, we looked at some of the workload isolation options that exist at different layers
of the infrastructure stack. In particular, we looked at cluster-level isolation, node-level
isolation, and some of the different runtime isolation options. We discussed identity
and access management, including places where additional security measures might be
useful. We then talked about auditing and finished up with a real-world issue that could
have been avoided by implementing some of the best practices already covered.

Hopefully, you have enough to go away and start securing your own Kubernetes
clusters.

Terminology

This glossary defines some of the most common Kubernetes-related terms used in the
book. Ping me if you think I've missed anything important:

+ tkb@nigelpoulton.com

Term Definition (according to Nigel)

Admission controller Code that validates or mutates resources to enforce
policies. Runs as part of the API admission chain
immediately after authentication and authorization.

Annotation Object metadata that can be used to expose alpha or beta
capabilities or integrate with third-party systems.

API Application Programming Interface. In the case of
Kubernetes, all resources are defined in the API, which
is RESTful and exposed via the API server.

API group A set of related API resources. For example, networking
resources are usually located in the networking.k8s.10
API group.

API resource All Kubernetes objects, such as Pods, Deployments, and

Services, are defined in the API as resources.

API Server Exposes the API on a secure port over HT'TPS. Runs on
the control plane.

Cloud controller manager Control plane service that integrates with the
underlying cloud platform. For example, when creating
a LoadBalancer Service, the cloud controller manager
implements the logic to provision one of the underlying
cloud’s internet-facing load balancers.

Cloud native Aloaded term that means different things to different
people. Cloud native is a way of designing, building, and
working with modern applications and infrastructure. I
personally consider an application to be cloud native if it
can self-heal, scale on-demand, perform rolling updates,
and possibly rollbacks.

Terminology 292

Term Definition (according to Nigel)
Cluster A set of worker and control plane nodes that work
together to run user applications.

Cluster store Control plane feature that holds the state of the cluster
and apps. Typically, it is based on the etcd distributed
data store and runs on the control plane. It can be
deployed to its own cluster for higher performance and
higher availability.

ConfigMap Kubernetes object used to hold non-sensitive
configuration data. A great way to add custom
configuration data to a generic container at runtime
without editing the image.

Container Lightweight environment for running modern apps.
Each container is a virtual operating system with its
own process tree, filesystem, shared memory, and more.
One container runs one application process.

Container Network Interface (CNI) Pluggable interface enabling different network
topologies and architectures. 3rd-parties provide CNI
plugins that enable overlay networks, BGP networks,
and various implementations of each.

Container runtime Low-level software running on every cluster Node
responsible for pulling container images, starting
containers, stopping containers, and other low-level
container operations. Typically containerd, Docker, or
cri-o. Docker was deprecated in Kubernetes 1.20, and
support was removed in 1.24.

Container Runtime Interface (CRI) Low-level Kubernetes feature that allows container
runtimes to be pluggable. With the CRI, you can choose
the best container runtime for your requirements
(Docker, containerd, cri-o, kata, etc.)

Container Storage Interface (CSI) Interface enabling external 3rd-party storage systems to
integrate with Kubernetes. Storage vendors write a CSI
driver/plugin that runs as a set of Pods on a cluster and
exposes the storage system’s enhanced features to the
cluster and applications.

containerd Industry-standard container runtime used in most
Kubernetes clusters. Donated to the CNCF by Docker,
Inc. Pronounced “container dee”.

Terminology 293
Term Definition (according to Nigel)
Controller Control plane process running as a reconciliation loop

Control plane

control plane node

Cri-o

CRUD

Custom Resource Definition (CRD)

Data plane

Deployment

Desired state

Endpoints object

etcd

Ingress

monitoring the cluster and making the necessary
changes so the observed state of the cluster matches
desired state.

The brains of every Kubernetes cluster. Comprises the
API, API server, scheduler, all controllers, and more.
These components run on all control plane nodes of every
cluster.

A cluster node hosting control plane services. Usually, it
doesn’t run user applications. You should deploy 3 or 5
for high availability.

Container runtime. Commonly used in
OpenShift-based Kubernetes clusters.

The four basic Create, Read, Update, and Delete
operations used by many storage systems.

API resource used for adding your own resources to the
Kubernetes APL

The worker Nodes of a cluster that host user
applications.

Controller that deploys and manages a set of stateless
Pods. Performs rollouts and rollbacks, and can self-heal.
Uses a ReplicaSet controller to perform scaling and
self-healing operations.

What the cluster and apps should be like. For example,
the desired state of an application microservice might be
five replicas of xyz container listening on port 8080/tcp.
Vital to reconciliation.

Up-to-date list of healthy Pods matching a Service’s
label selector. Basically, it’s the list of Pods a Service will
send traffic to. Might eventually be replaced by
EndpointSlices.

The open-source distributed database used as the cluster
store on most Kubernetes clusters.

API resource that exposes multiple internal Services
over a single external-facing LoadBalancer Service.

Operates at layer 7 and implements path-based and

host-based HTTP routing.

Terminology

Term

294

Definition (according to Nigel)

Ingress class

Init container

JSON

KS8s

kubectl

Kubelet

Kube-proxy

Label

Label selector

Manifest file

API resource that allows you to specify multiple
different Ingress controllers on your cluster.

A specialized container that runs and completes before
the main app container starts. Commonly used to
check/initialize the environment for the main app
container.

JavaScript Object Notation. The preferred format for
sending and storing data used by Kubernetes.

Shorthand way to write Kubernetes. The “8” replaces the
eight characters between the “K” and the “s” of
Kubernetes. Pronounced “Kates”. The reason why

people say Kubernetes’ girlfriend is called Kate.

Kubernetes command line tool. Sends commands to the
API server and queries state via the API server.

The main Kubernetes agent running on every cluster
Node. It watches the API Server for new work
assignments and maintains a reporting channel back.

Runs on every cluster node and implements low-level
rules that handle traffic routing from Services to Pods.
You send traffic to stable Service names, and kube-proxy
makes sure the traffic reaches Pods.

Metadata applied to objects for grouping. Works with
label selectors to match Pods with higher-level
controllers. For example, Services send traffic to Pods
based on sets of matching labels.

Used to identify Pods to perform actions on. For
example, when a Deployment performs a rolling update,
it knows which Pods to update based on its label
selector — only Pods with labels matching the
Deployment’s label selector will be replaced and
updated.

YAML file that holds the configuration of one or more
Kubernetes objects. For example, a Service manifest file
is typically a YAML file that holds the configuration of a
Service object. When you post a manifest file to the API
Server, its configuration is deployed to the cluster.

Terminology

Term

295

Definition (according to Nigel)

Microservices

Namespace

Node

Observed state

Orchestrator

Persistent Volume (PV)

Persistent Volume Claim (PVC)

Pod

RBAC

A design pattern for modern applications. Application
features are broken into their own small applications
(microservices/containers) and communicate via APIs.
They work together to form a useful application.

A way to partition a single Kubernetes cluster into
multiple virtual clusters. Good for applying different
quotas and access control policies on a single cluster.
Not suitable for strong workload isolation.

Also known as worker node. The nodes in a cluster that
run user applications. Runs the kubelet process, a
container runtime, and kube-proxy.

Also known as current state or actual state. The most
up-to-date view of the cluster and running applications.
Controllers are always working to make observed state
match desired state.

A piece of software that deploys and manages apps.
Modern apps are made from many small microservices
that work together to form a useful application.
Kubernetes orchestrates/manages these, keeps them
healthy, scales them up and down, and more...
Kubernetes is the de facto orchestrator of microservices
apps based on containers.

Kubernetes object used to map storage volumes on a
cluster. External storage resources must be mapped to
PVs before they can be used by applications.

Like a ticket/voucher that allows an app to use a
Persistent Volume (PV). Without a valid PVC, an app
cannot use a PV. Combined with StorageClasses for
dynamic volume creation.

Smallest unit of scheduling on Kubernetes. Every
container running on Kubernetes must run inside a Pod.
The Pod provides a shared execution environment — [P
address, volumes, shared memory etc.

Role-based access control. Authorization module that
determines whether authenticated users can perform
actions against cluster resources.

Terminology 296

Term Definition (according to Nigel)

Reconciliation loop A controller process watching the state of the cluster via
the API Server, ensuring observed state matches desired
state. Moist controllers, such as the Deployment
controller, run as a reconciliation loop.

ReplicaSet Runs as a controller and performs self-healing and
scaling. Used by Deployments.

REST REpresentational State Trasfer. The most common
architecture for creating web-based APIs. Uses the
common HTTP methods (GET, POST, PUT, PATCH,
DELETE) to manipulate and store objects.

Secret Like a ConfigMap for sensitive configuration data. A
way to store sensitive data outside of a container image
and have it inserted into a container at runtime.

Service Capital “S”. Kubernetes object for providing network
access to apps running in Pods. By placing a Service in
front of a set of Pods, the Pods can fail, scale up and
down, and be replaced without the network endpoint
for accessing them changing. Can integrate with cloud
platforms and provision internet-facing load balancers.

Service mesh Infrastructure software that enables features such as
encryption of Pod-to-Pod traffic, enhanced network
telemetry, and advanced routing. Common service
meshes used with Kubernetes include Consul, Istio,
Linkerd, and Open Service Mesh. Others also exist.

Sidecar A special container that runs alongside and augments a
main app container. Service meshes are often
implemented as sidecar containers that are injected into
Pods and add network functionality.

StatefulSet Controller that deploys and manages stateful Pods.
Similar to a Deployment, but for stateful applications.

Storage Class (SC) Way to create different storage tiers/classes on a cluster.
You may have an SC called “fast” that creates
NVMe-based storage, and another SC called
“medium-three-site” that creates slower storage
replicated across three sites.

Volume Generic term for persistent storage.

Terminology 297
Term Definition (according to Nigel)
WebAssembly (Wasm) Secure sandboxed virtual machine format for executing
apps.
Worker node A cluster node for running user applications. Sometimes
called a “Node” or “worker”.
YAML Yet Another Markup Language. The configuration

language you normally write Kubernetes configuration
files in. It’s a superset of JSON.

Outro

Thanks for reading my book. You're now ready to thrive in the cloud-native world.

About the front cover

I love the front cover of this book, and I'm grateful to the hundreds of people who voted
on its design.

The YAML code on the left represents the technical nature of the book. The Kubernetes
wheel represents the main topic. The vertical symbols on the right are cloud-native
icons in the style of digital rain code from the Matrix movies. There’s also a hidden
message written in the Borg language from Star Trek.

A word on the book’s diagrams

There’s a great set of Kubernetes community icons available in the following GitHub
repo.

https://github.com/kubernetes/community/tree/master/icons

I like them and use them extensively in blogs and video courses. However, they didn’t
look great in printed copies of the book. As a result, I created my own similar set for use
in the book. It took a very long time to create them, so [hope you like them.

[am not trying to replace the community icons or say they aren’t good. They just didn’t
look good in printed editions of the book.

Outro 299

Connect with me

I'd love to connect with you and talk about Kubernetes and other cool tech.

You can reach me at all of the following:

« Twitter: twitter.com/nigelpoulton

« LinkedIn: linkedin.com/in/nigelpoulton

+ Mastodon: @nigelpoulton@hachyderm.io
+ Web: nigelpoulton.com

« YouTube: youtube.com/nigelpoulton

« Delete me

Feedback and reviews

Books live and die by reviews and ratings.

I've spent over a year writing this book and keeping it up-to-date. So, I'd love it if you
left a review on Amazon, Goodreads, or wherever you bought the book.

Feel free to email me at tkbenigelpoulton.com if you want to suggest content or fixes.

Index

placeholder just to create index

