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Preface (to the English translation)

The German version of this book appeared at the beginning of
2022 before the hype about the ChatCPT started. However, the
limits of Al were already clearly shown there, also using the
example of the ChatGPT and its precursors. Therefore, one
cannot resist the remark that many of the commentators could
have saved their dystopian or utopian remarks if they had read
our book beforehand. Nevertheless, on the background of the
analyses in this book, a summary about the ChatGPT has been
added (Sect. 5.3). Although we utilized the translation soft-
ware “DeepL,” the authors bear responsibility for any errors.
However, we retain the right to attribute any oversight of these
errors to Artificial Intelligence for not alerting us. In many cases,
the human authors corrected DeepL, because they have the better
background knowledge and understand the universal language of
mathematics.

Klaus Mainzer
Reinhard Kahle
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Preface (to the first German edition)

In 1972, when the American philosopher Hubert Dreyfus pub-
lished a bestseller entitled “What Computers Can’t Do. The
Limits of Artificial Intelligence”, he was in fact only pointing
out the limits of what we now call “symbolic AI”. These were
so-called expert systems, which combine the limited special-
ist knowledge of experts such as doctors and engineers in ‘rule-
based knowledge systems’. Dreyfus rightly pointed out the limits
of this approach to intuitive knowing: The first hours of driving
lessons can be taught in rules that are recorded in textbooks. But
then intuitive learning begins and training is needed to become
a really good driver. Anyone who has ever tried to perfect the
stroke of a golf ball by following rules knows immediately what
is meant.

After the paradigm of logic-based rule systems in the 1970s,
the training of neural networks, the so-called connection-
ist paradigm, emerged. The connectionist paradigm overcame
many of Dreyfus’ limitations. The philosopher therefore some-
what meekly gave a later edition of his book the title “What
Computers Still Can’t Do”.! Once again that one should be
careful with apodictic demarcations. They can only apply to
certain domains, systems, bodies of knowledge and preliminary
stages of development.

! There is a certain ambiguity in the word “Still”; it could be understood as
“not yet” or it come with the connotation “still, and never”.

Vii



viii Preface (to the first German edition)

Even these boundaries, however, are only partially of inter-
est. Still today, rule-based expert systems are highly elaborated
and successfully applied in industry (e.g. logistics in the auto-
motive industry) and medicine (e.g. control systems), without us
perceiving them as spectacular “Al”. The drawing of boundaries
therefore does not mean that systems are outdated, but that we
only know more precisely, what they can and cannot do.

Even more interesting are the limits that may arise from logic
and mathematics. In logic and mathematics there exist problems
which have not yet been solved or decided. Therefore, Al that
depends on such problems will have only provisional limits. It is
more interesting when we are dealing with problems that cannot
be decided in principle. What is undecidable in principle? In this
case, both natural and artificial intelligence reach their limits in
principle. But the key question is: How does natural intelligence
of mathematicians find solutions? An analysis of the mathemati-
cal background knowledge used by humans raises doubts as to
whether AI would ever be able to do this. But it cannot be ruled
out in principle.

Now one might think that these kinds of analyses are so
abstract that they are irrelevant for the practical application
of Al Let some nerds in their ivory towers deal with it! In the
meantime, the AI community will make a lot of money from
“this side” Al and will shake up industry and society! But in fact
the seemingly abstract mathematical questions we are referring,
are directly connected with, for example, security issues in cryp-
tography. This is not only when quantum computers are avail-
able! But their technical feasibility, together with the already
implemented quantum communication, concerns the question of
the mathematical limits of Al once again with additional explo-
siveness for practical applications. So let us enter the ivory tow-
ers of computer science, mathematics and philosophy, knowing
very well that, only in this way, we will find the hidden dangers
of technical civilisation as if under a magnifying glass.

Klaus Mainzer
Reinhard Kahle
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The Concept of Artificial
Intelligence

The term Al contains an explicit reference to the notion of intelli-
gence. However since intelligence (both in machines and in humans)
is a vague concept, although it has been studied at length by psy-
chologists, biologists, and neuroscientists, Al researchers use mostly
the notion of rationality, which refers to the ability to choose the best
action to take in order to achieve a certain goal, given certain criteria
to be optimized and the available resources.

European Commission’s High-Level Expert Group on Artificial
Intelligence [1].

Effective methods for problem-solving have been known since
ancient mathematics. In geometry, the construction of a figure
is split into elementary steps with compass and ruler. In arith-
metic and algebra, methods of solving equations are split into
elementary steps which, in principle, can be carried out by a
machine. Thus, one speaks of algorithms, which are named after
the Persian mathematician Al-Chwarizmi. Today, algorithms are
executed by computer programs. The question is, to what extend
steps cannot only be executed by a machine, but also found
independently.

Artificial intelligence (AI) is therefore measured against
human intelligence. According to the British logician and com-
puter pioneer Alan M. Turing [2], a technical system is called
“intelligent” if its answers and its way to solve problems can-
not be distinguished from a human being. Originally, Al was
oriented towards the rules and formulas of symbolic logic, which

© Springer-Verlag GmbH Germany, part of Springer Nature 2024 1
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2 1 The Concept of Artificial Intelligence

were translated into suitable computer programs. One, therefore,
also speaks of symbolic Al (Fig. 1.1). The underlying epistemo-
logical idea is that intelligence is primarily related to the ability
of the human mind to derive logical conclusions.

One example was automatic reasoning, in which Al pro-
grammes simulated logical reasoning in logic calculi [3]. On this
rule-based and symbolic basis, human planning, decision-mak-
ing and problem solving of human experts should also be simu-
lated in specialised fields of application. In corresponding expert
systems or knowledge-based systems, the specific knowledge of
an engineer or doctor, for example, is first translated into formal
rules which should trigger a specific action automatically when a
certain event occurs.

One product, which emerged from this approach is the pro-
gramming language Prolog (French: programmation en logique),
which still today enjoys a certain popularity, even though it is
effectively used only in the theoretical sphere. It has not been
able to establish itself in the industrial field for reasons that
are certainly related to the limits of Al to be discussed here. In
Prolog, (simple) rules can be formulated, for example, to store a
network of flight connections.

Degrees of
Intelligence

hybrid cognitive combination of learning algorithms
hybrid Al systems with logical and knowledge-based
systems
[ ]
subsymbolic Al sensor sys'tems machine learning with
(“perception”) data mass (Big Data)
symbolic Al logical systems automated proving and
(“reason”) knowledge-based systems
L]

Fig. 1.1 From symbolic and sub-symbolic to hybrid Al
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Example
reachable (X,Y) :- direct-flight(X,Y).
reachable (X,Y) :- direct-flight(X,Z), reachable(Z,Y).

directflight (NCY,DUB) .
directflight (DUB,GWY) .
directflight (DUB, ORK) .

Prolog is a query language in which, for the given example,
the question

?- reachable (NCY, GWY)
should return the answer Yes. 4

To the extent that this type of knowledge representation was
developed further, increasing problems of complexity arose—in
two different meanings of “complexity”: on the one hand, the
general complexity of, for example, the grammar of a language
is in general so complex that a simple translation into Prolog
rules turns out to be impracticable. On the other hand, problems
of computability complexity arise, for example, when querying
all theoretically possible flight connections—mathematically the
transitive closure of reachable (X, Y)—leads to calculation
times that are no longer acceptable. Because of these problems,
expert systems went out of fashion comparatively quickly.
However, it would be a misinterpretation to restrict research
in artificial intelligence in the second half of the twentieth cen-
tury to the field of expert systems. In particular SAT-solving has
emerged from the considerations on automatic theorem proving.
This SAT-solving has today far-reaching applications. In addi-
tion, motivated by the findings in neurological brain research,
neural networks have also been developed as simplified com-
puter simulations of the human nervous system, described with
the aid of neurons. From the beginning, this approach was
conceptually distinct from the rule-based systems, but hardly
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progressed beyond “toy applications‘“—not least due to the still
comparatively limited memory and computing power of the
available computers. These toy examples, although simulat-
ing neural networks in principle, did not yet allow any practical
applications.

In a simplified form, the research fields of classical or old Al,
as they emerged at the end of the twentieth century, can be sum-
marised as follows:

Classic or Old Al

e Expert systems
Prolog as a paradigmatic programming language.

o SAT-Solving
problem-solving methods for propositional logic which
solve complex problems that are just feasible in terms
of complexity theory

o Early neural networks
In the early phase of Al only of very limited complexity.

The early neural networks were already a response to the fact
that rule-based knowledge can never fully capture the intuitive
skills of an expert. Knowledge is based on manifold experiences
that are by no means symbolically represented in a textbook. An
experienced driver realizes situations and reacts intuitively on
the basis of a great deal of sensory data, without being aware of
the logical processes in detail. In the same way an experienced
doctor reacts in a critical situation as well as an experienced pilot
in the cockpit of an aircraft. Intuition is by no means a mysti-
cal magic box. Rather, the recognition of data patterns and the
estimation of expected probabilities can be trained and improved
through experience.

In this context, logical rules, as in symbolic Al, are replaced
by sensory data, in which statistical correlations and probabilities
are determined. Learning from data is studied mathematically
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in statistical learning theory. Its algorithms form the basis of
machine learning. From an epistemological point of view, these
learning processes from sensory perceptual data take place
unconsciously below conscious logical reasoning. This is why
one also speak of subsymbolic AI (Fig. 1.1). Mathematically, the
paradigm of logic is replaced by statistics and probability theory.
The powerful computer technology of the past few years made it
possible that machine learning with big data can now be imple-
mented technically. Therefore, machine learning leads to new
breakthroughs in the application of Al, e.g. in the development of
drugs and vaccines.

Accordingly, at the beginning of the twenty-first century,
a statistics-based or new Al has emerged, with the following
characteristics.

Statistics-based or new Al

e Machine learning
fed by
— Large amounts of data (“Big Data”)
and often based on a high number of layers in neural
networks, which enables
— deep learning.

It should be noted, however, that the term “deep” is not to be
understood in the sense of “profound”, but only emphasises
the aspect of a considerable extension of layers in the network
which are comparable to the layers in a human brain. This new
Al is thus a manifestation of subsymbolic Al and represents
essentially a tool assisting human perception in a form that is
optimised in many respects.

However, human intelligence can neither be reduced to the
logic of the mind nor to the data of perception. Epistemologically,
it depends on the connection between perception and under-
standing. In Al research, therefore, the future goal is to combine
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statistical learning algorithms with logical and knowledge-based
methods. The connection of symbolic and sub-symbolic Al is
also called hybrid AI (Fig. 1.1). Epistemologically, it corresponds
to a “hybrid” cognitive system like the human organism, in which
the (“unconscious”) processing of perceptual data is combined
with (“conscious”) logical reasoning. Hybrid Al is therefore
assigned higher degrees of intelligence than the reduction to sym-
bolic or subsymbolic Al. Nevertheless, all three forms of Al are
in practical use side by side, depending on the respective require-
ments of the field of application. In the automotive industry and
medicine, for example, we still find knowledge-based expert sys-
tems and machine learning for different applications. Hybrid Al
is already being developed in robotics.

This understanding of artificial intelligence, which has
moved remarkably far away from Turing’s imitation game,
is also officially propagated by the European Union. The
European Commission’s High-Level Expert Group on Artificial
Intelligence has published a report entitled “A Definition of Al:
Main Capabilities and Scientific Disciplines” with the following
“updated definition of AI” [1, p. 9]:

Artificial intelligence (AI) refers to systems designed by humans
that, given a complex goal, act in the physical or digital world by
perceiving their environment, interpreting the collected structured
or unstructured data, reasoning on the knowledge derived from
this data and deciding the best action(s) to take (according to pre-
defined parameters) to achieve the given goal. Al systems can also
be designed to learn to adapt their behaviour by analysing how the
environment is affected by their previous actions.

This definition is supplemented by a paragraph on Al as a sci-
entific discipline. Here, however, we consider the possible lim-
its of Al, as they arise for the various tasks mentioned in this
definition.
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Practical Limits

2.1  The Fate of Expert Systems

The view that machines cannot give rise to surprises is due, I believe,
to a fallacy to which philosophers and mathematicians are particu-
larly subject. This is the assumption that as soon as a fact is presented
to a mind all consequences of that fact spring into the mind simulta-
neously with it. It is a very useful assumption under many circum-
stances, but one too easily forgets that it is false.

AvrLaN TurRING, [1, p. 451].

Knowledge-based expert systems are computer programs that
store and accumulate knowledge about a specific field. They
automatically draw conclusions in order to offer solutions to
concrete problems in the field. In contrast to the human expert,
the knowledge of an expert system is limited to a specialised
information base without a general and structural knowledge
about the world [2].

In order to build an expert system, the knowledge of the
expert has to be put into rules, translated into a programming
language and processed with a problem-solving strategy. Expert
systems are, thus, a typical example of symbolic Al. The archi-
tecture of an expert system therefore consists of the following
components: Knowledge base, problem-solving component (der-
ivation system), explanation component, knowledge acquisition,
dialogue component. The coordination of these components is
shown in Fig. 2.1.

© Springer-Verlag GmbH Germany, part of Springer Nature 2024 9
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explanation dialogue knowledge acquisition|
components components components

Y'Y Y 7YY

v

y

derivation
system

!

facts knowledge base rules

Fig. 2.1 Architecture of a knowledge-based expert system

Knowledge is the key factor in the representation of an expert
system. A distinction is made between two types of knowledge.
One type of knowledge concerns the facts of the field of appli-
cation, which are recorded in textbooks and scientific journals.
Equally important is the practice in the respective field of applica-
tion. This is heuristic knowledge, on which judgement and every
successful problem-solving practice in the field of application are
based.

It is empirical knowledge, the art of successful guesswork that
a human expert acquired over many years of professional work.
The heuristic knowledge is the most difficult one to represent,
since the expert himself is usually not aware of it. Therefore, inter-
disciplinary trained knowledge engineers have to learn the expert
rules of the human experts, represent them in programming lan-
guages, and integrate them into a functional work program. This
component of an expert system is called knowledge acquisition.

The explanation component of an expert system has the task
of explaining the steps of the system to the user. The question
“How” aims at explaining facts or assertions that are derived by
the system. The question “Why” demands reasons for questions
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or commands of a system. The dialogue component concerns the
communication between expert system and user.

Knowledge representation is usually rule-based. For the
application in expert systems, rules are understood as if-then
statements where the precondition (premise) describes a situ-
ation in which an action has to be carried out. This can be a
deduction, according to which a statement is derived from a pre-
requisite. An example is when an engineer concludes from cer-
tain symptoms of an engine that an engine piston is defective.
However, a rule can also be understood as a set of instructions
for action in order to change a state. If, for example, a piston is
defective, then the engine must be switched off immediately and
the defective part must be replaced.

A rule-based system consists of a database with the valid
facts or states, the rules for deriving new facts or states and the
rule interpreter for controlling the derivation process. There are
two alternatives for linking the rules, which are called forward
reasoning and backward reasoning in Al (Fig. 2.2) [3, 4].

In forward reasoning, starting from an existing database, the
following is done: One rule is selected from those whose precon-
dition are fulfilled by the database. The action part of this rule is
executed and the database is updated. This process is repeated
until no more rules are applicable. The procedure is therefore
data-driven. In a preselection, the rule interpreter, as part of the

forward reasoning backward reasoning
(data driven) (goal driven)

Fig.2.2 Forward and backward reasoning
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respective expert system, initially determines systems of all exe-
cutable rules that can be derived from the database. Then a rule
is selected from this set according to certain criteria. Thus, a spe-
cific sequence, the structure of a rule, or additional knowledge
can be decisive.

In the case of backward reasoning, starting from a target, only
those rules are checked whose action part contains the target.
The procedure is therefore goal-driven. If parts of the precondi-
tion are unknown, they are requested or derived with other rules.
The backward reasoning is particularly suitable when facts of
the knowledge base are still unknown and, therefore, have to be
requested. The rule interpreter begins with the given goal. If the
goal in the database is unknown, the rule interpreter must first
decide whether the goal can be inferred or must be requested. If
a derivation is possible, all rules are executed whose action part
contains the target. Unknown parts must be requested or derived
as subgoals.

A qualified expert has a complex basic knowledge, which has
to be matched by a structured data structure in an expert sys-
tem. For such a structuring of knowledge, all statements about
an object are often summarised in a schematic data structure.
This is also called a frame according to M. Minsky. Historically,
Minsky draws on templates from linguistics for the representa-
tion of knowledge. The graphical notation of schemata through
semantic networks allows a clear representation of complex data
structures [5].

In everyday life, cognitive schemata are activated in different
situations. This can involve the recognition of typical objects,
typical events, or answers to typical questions. The respective
fillers of a concrete object are placed in the slots of the frame. In
the case of diagnostic tasks of a doctor, the patient’s symptoms
can, for instance, be classified in a general disease picture that is
represented by a frame.

Relations between objects are often represented by constraints.
These representations restrict the capabilities of a problem. One
can have constraints, e.g., in the solution of a technical problem
by an engineer as well as in the preparation of an administrative
planning task. If the problem is mathematised, constraints are



2.1 The Fate of Expert Systems 13

defined by mathematical equations and constraint networks are
represented by systems of equations [6].

Historically, DENDRAL was one of the first successful expert
systems, developed by E.A. Feigenbaum et al. at Stanford in the
late 1960s [7, 8]. It uses the special knowledge of a chemist in
order to find a suitable molecular structural formula for a chemi-
cal sum formula. In a first step, all the mathematically possible
spatial arrangements of the atoms for a given molecular sum
formula are determined. For example, for CyoHysN there are 43
million arrangements. Chemical knowledge about the bonding
topology, according to which, e.g., carbon atoms can be bound
many times, reduce the possibilities to 15 million. Knowledge
of mass spectrometry, heuristic knowledge of the most probable
stability of bonds, and nuclear magnetic resonance narrow down
the possibilities to the sought-after structural formula.

The problem-solving strategy that was used as a basis here
is obviously nothing other than the familiar “British Museum
algorithm”[9],' which was written in the programming language
LISP. The procedure is thus GENERATE_AND_TEST, where in
the GENERATE part the possible structures are systematically
generated, while the chemical topology, mass spectrometry,
chemical heuristics, and nuclear magnetic resonance each spec-
ify test predicates to limit the possible structural formulae.

For practical purposes, problem-solving types can be divided
into diagnostic, construction, and simulation tasks. Typical diag-
nostic tasks one finds in medical diagnostics, technical diag-
nostics such as quality control, repair diagnostics or process
monitoring, and object recognition. Therefore, DENDRAL also
solves a typical diagnostic problem by recognising the appropri-
ate molecular structure for a given molecular sum formula.

The first medical example of an expert system was MYCIN
developed at the University of Stanford in the mid-1970s [10,
11]. The MYCIN program was written for medical diagnosis, to
simulate a doctor with specialist medical knowledge of bacterial

I since it seemed to them as sensible as placing monkeys in front of type-

writers in order to reproduce all the books in the British Museum.”.
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infection. Methodologically, it is a deduction system with back-
ward reasoning. MYCIN's knowledge base on bacterial infec-
tions consists of about 300 production rules. In order to be able
to apply the knowledge, MYCIN works backwards. For each
of 100 possible hypotheses of diagnoses, MYCIN tries to find
simple facts that are confirmed by laboratory results or clinical
observations. Since MYCIN works in a field in which deductions
are hardly certain, a theory of plausible inference and probability
evaluation was linked to the deduction apparatus. This involves
so-called safety factors for each conclusion in an AND/OR tree.

In this context, F; denotes the safety factor that a user assigns
to a fact. C indicates the safety factor of a conclusion, A; the
degree of reliability assigned to a production rule. At the AND
and OR nodes, safety factors of the corresponding formula are
calculated. If the safety factor of a data entry is not greater than
0.2, it is considered unknown and receives the value 0. The pro-
gram thus calculates degrees of confirmation as a function of
more or less certain facts. MYCIN was developed independently
of its special database on infectious diseases and generalised for
various diagnostic diagnostic fields of application.

Practical limits of expert systems were gradually extended:
Experts are not characterized by the fact that they can distin-
guish between true and false with absolute certainty; thus, it is
not the task of an expert to provide a greater degree of accuracy
than actually achievable. A good expert is able to assess uncer-
tainties that may arise, for example, in the medical diagnosis in
symptom recognition or symptom evaluation. In expert systems,
therefore, the classical logic with the assumption of the bivalent
nature of the truth values (tertium non datur) is often not the ade-
quate approach. Instead, expert systems are based on additional
uncertainty values such as “certain”, “probable”, “possible”,
and others. It is a longstanding problem of methodology of sci-
ence that only logical conclusions are valid with certainty. For
example, the direct conclusion that infers the truth of B from the
assumptions of A — B and A. In this case, A is a sufficient con-
dition for B, while B is only necessary for A. Therefore, A cannot
be logically derived from A — B and B:
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In philosophy of science, statistical inference has been
studied as much as the inductive degrees of confirmation of a
hypothesis, which depend on the extent of confirmation [12]. As
a basic algorithm for the evaluation of a diagnosis in expert sys-
tems, the following procedure is suitable [13]:

1. Start with the Assumed (a priori) Probabilities of All
(possible) Diagnoses;

2. for each symptom, modify the (conditional) probabilities of
all diagnoses (according to the frequency of occurrence of a
symptom in the presence of a diagnosis);

3. select the most probable diagnosis. (Bayes's theorem is often
used as a general formula for calculating the most probable
diagnosis assuming certain symptoms).

Knowledge representations by experts must therefore take
uncertainty factors into account. The concepts used by experts
are by no means always sharply defined, and yet they are used.
Information about colour, elasticity etc. only makes sense with
reference to certain intervals. The limits of these intervals then
appear to be set arbitrarily. Whether a colour is still black or
already grey is considered quite fuzzy for a designer. In the phi-
losophy of science, therefore, the so-called “fuzzy logic” was
introduced [14]. Paradoxes are inevitable without appropriate
interpretation: if a pile of n straws is described as being large,
then a pile of n — 1 straws is also large. If one applies this con-
clusion in an iterated way, then consequently also the empty
heap must also be described as large.

The representation of knowledge in logic is based on the fic-
tion of a temporally unchangeable validity of its conclusions.
However, new information, that has not yet been taken into
account in the knowledge base, can render old derivations inva-
lid. Example: If P is a bird, then P can fly: Charly is a bird, but
also a penguin. Thus, while in classical logic the set of deriva-
tions increases with the growing set of presupposed facts (mono-
tonicity), the set of derivations could in fact be restricted as the
amount of new information grows over time (non-monotonicity).
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This non-monotonicity in reasoning and judgement must also be
assumed by an expert as a realistic situation, since a complete
and error-free collection of data is not possible, too time-con-
suming, or tedious for an upcoming problem to be solved.

For an expert system, changing input data of the knowledge
base requires that the evaluation of conclusions must be recal-
culated. For this reason, knowledge representation in databases
is provided with time stamps. In medical diagnostics, informa-
tion about the temporal change of a symptom is necessary.
Philosophy of science has done some pioneering work for logic
of temporal reasoning. By now, it is—consciously or uncon-
sciously—implemented by the designers of knowledge-based
expert systems [15].

The philosopher H. Dreyfus distinguishes a 5-stage model
from beginner to expert. This model is intended to underline
this insight [16]. At level 1, the beginner adopts rules that are
applied stubbornly without reference to the overall situation.
The learner driver learns to switch gears with fixed speed values,
the apprentice learns about the individual parts of an engine, the
player learns the basic rules of a game. At level 2, the advanced
beginner already makes occasional reference to situational char-
acteristics. The apprentice learns to take into account values of
certain materials based on experience, the learner driver learns
to switch gears based on engine noise, etc. At level 3, compe-
tence has already been achieved, and the apprentice has, so to
speak, passed the journeyman'’s examination. The apprentice has
learned to develop strategies to solve complex problems in the
specific field of application. The driver can coordinate the indi-
vidual rules for driving the vehicle in accordance with the reg-
ulations. According to Dreyfus, this means that the maximum
performance of an expert system has already been achieved.

The next levels of master and expert cannot be captured algo-
rithmically. Judgement is required that relates to the entire situa-
tion, the chess master who recognises complex position patterns
in a flash and compares them with known patterns, the racer who
intuitively senses the driving style, best suited to the engine and
the situation, the engineer who, on the basis of his experience,
hears from noise where the engine fault is located.
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How do you become a good management expert? Algorithmic
thinking, computer-aided problem analysis, the use of expert
systems help in the preparation phase. Expert systems lack, as
pointed out above, a general knowledge of the world and the
background. The sense of the whole as the basis for correct deci-
sions is not learned from a textbook or planning calculations.
After basic training a manager no longer learns through abstract
definitions and general textbook rules. He learns through con-
crete examples and cases from his own company as far as pos-
sible and is able to apply them to the situation. Concrete case
studies combined with a sense of the whole sharpen the future
manager’s ability to judge.

This is where we reach the practical limits of expert systems
based on symbolic Al. Learning from experience means learn-
ing from data. This is where machine learning with its statistical
learning theory enters. Expert systems are therefore still being
used. Their fate, however, is that no one sees them as spectac-
ular any more. They have long been part of everyday technical
or medical life, for example, without still being called “artificial
intelligence”.

2.2  Causality Versus Statistics

The larger the fire brigade operation, the greater the damage.
A simple statistical correlation.

Machine learning (subsymbolic Al) is currently changing the
nature of computer science dramatically. We rely more and more
on efficient algorithms because the complexity of our civilisa-
tional infrastructure would otherwise be impossible to manage:
Our brains are too slow and hopelessly overtaxed by the amount
of statistical data at hand. But how reliable are Al algorithms
based on statistical learning? In practical applications, learning
algorithms refer to models of neural networks, which are them-
selves extremely complex. They are fed with huge amounts of
data and trained. The number of parameters required for this
explodes exponentially. No one knows exactly what is going
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on in these “black boxes” in detail. It often remains a statistical
trial-and-error procedure. But how should questions of respon-
sibility be decided in the context of self-driving cars or in medi-
cine, for example, if the methodological foundation remains
obscure?

In statistical learning, dependencies and correlations should
be algorithmically derived from observational data [17, chap.
11.1]. For this purpose, we can imagine a scientific experi-
ment, in which a series of changing conditions (inputs) are fol-
lowed by corresponding results (outputs). In medicine, this
could be a patient who reacts to medication in a certain way.
We assume that the corresponding pairs of input and output
data are generated independently by the same unknown ran-
dom experiment. Statistically, therefore, we say that the finite
sequence of observation data (x1,y1),..., (x,,y,) With inputs
x; and outputs y; (i = 1,...,n) is realised by random variables
X1, Y1),..., Xy, Yp), which is based on an unknown probability
distribution Py y.

Algorithms are now to derive properties of the probability
distribution Px y. An example would be the expected probability
with which a corresponding output occurs for a given input. It
can also be a classification task: a set of data is to be divided into
two classes. With which probability an element of the data set
(input) belongs to one or the other class (output)? In this case,
we also speak of binary pattern recognition.

Example
A simple example explains the basics.

When a binary pattern is recognised, the data of a data
set X is distributed over two possible classes, which are des-
ignated+1 and —1 respectively. This allocation is described
by a function f: X — Y with ¥ = 41, —1. In the statistical
learning of a binary pattern the task is, to determine from
a class F of functions the assignment f for which the error
deviation or the expected error is minimal. We also speak of
the risk minimisation of statistical learning [18]:
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1
R[f] = / ) = yldPx.y (x, )

As the probability distribution Py y for all values is unknown,
this formula and thus the sought-after pattern recognition
with minimum error deviation cannot be calculated. We only
have the finitely many empirically observed assignments
x1,¥1), ..., (xn, yn) available. We therefore restrict ourselves
to empirical risk minimisation.

For this purpose we determine step by step for each
assignment function f of class F the empirical training error
when learning from a sample with size n:

, 1 &1
Remp[f] = n ; Elf(xi) — il

This creates a sequence of functions of the class F with
improved training error. The central question is whether pat-
tern recognition with a minimum possible error deviation can
be determined by this procedure. Mathematically formulated,
the problem is thus, whether the sequence of functions in the
class F, determined in this way, converges to a function with
a minimum error deviation.

In fact, it can be proved that such convergence or learn-
ing success is only guaranteed for small subclasses. An exam-
ple is the Vapnik—Chervonenkis (VC) dimension, with which
the capacity and size of such function classes can be deter-
mined [19]. With high probability, the risk is not greater than
the empirical risk (plus a term that grows with the size of the
function class). 4

The current success of machine learning seems to confirm the
thesis that it is important to have data sets as large as possible,
which can be processed with ever-increasing computer power.
The detected regularities then depend only on the probability
distribution of the statistical data.



20 2 Practical Limits

Statistical learning attempts to construct a probabilistic
model from a finite number of data of results (e.g. random exper-
iments) and observations (Fig. 2.3).

Conversely, statistical reasoning attempts to derive properties
of observed data from an assumed statistical model (Fig. 2.3).

Data correlations can provide clues to facts, but do not have
to. Let us imagine a series of tests which result in a favourable
correlation between a chemical substance administered and the
fight against certain cancer tumours. Then companies are under
pressure to produce a corresponding drug and to make profits.
Also the patients may see this as their last chance. In fact, we
only get a sustainable drug only if we find the underlying causal
mechanism of tumor growth, i.e. the laws of cell biology and
biochemistry.

Even Newton was hardly interested in data correlations of
falling apples on apple trees, but rather in the underlying math-
ematical causal law of gravitation. They allowed precise expla-
nations and forecasts of falling apples and celestial bodies, and
ultimately the current satellite and rocket technology is based on
it. Specifically, Newton assumed a causal analogy between the
force acting on an apple on the earth and the forces acting on
celestial bodies in the planetary system. With the help of Kepler's
planetary laws, he therefore proposed a causal model on the basis
of a few observational data which is described mathematically by
a functional relationship between causes and effects.

causal learning
observations & measuring dates

» & intervention (e.g. experiments)

7'y

causal model

causal reasoning

subsumes
subsume

statistical learning

probabilistic model observations & measuring dates

statistical reasoning

Fig. 2.3 Statistical and causal learning [21]
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Statistical learning and inference from data are therefore
not enough. Rather, we must recognise the causal relationships
of causes and effects behind the measured data. These causal
relationships depend on the laws of the respective application
domain of our research methods, i.e. the laws of physics in the
example of Newton, the laws of biochemistry and cell growth
in the example of cancer research, etc. If it were otherwise, we
could already solve the problems of this world with the methods
of statistical learning and reasoning. In fact, some short-sighted
contemporaries seem to believe this in the current hype of statis-
tical machine learning.

Statistical learning and reasoning without causal domain
knowledge is blind>—no matter how large the amount of
data (Big Data) and computing power!

In addition to the statistics of the data, there is a need for addi-
tional law and structure assumptions of the application domains,
which can be tested by experiments and interventions. Causal
explanatory models (e.g. the planetary model or tumor model)
fulfil the laws and structural assumptions of a theory (e.g.
Newton's theory of gravity or the laws of cell biology):

In causal reasoning, properties of data and observations are
derived from causal models, i.e. assumptions of laws of causes
and effects. Causal reasoning thus makes it possible to determine
the effects of interventions or data changes (e.g. through experi-
ments) (Fig. 2.3).

Conversely, causal learning attempts to construct a causal
model from observations, measurements and interventions (e.g.
experiments) with additional assumptions of laws and structures
(Fig. 2.3).

2Kant: “Intuitions without conceptions are blind.” [20, A48/B75]
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A structural causal model consists of a system of structural
assignments of causes to effects with possible disturbance varia-
bles (noise). Causes and effects are described by random variables.
Their functional assignments (taking into account the noise vari-
ables) are defined by equations, e.g. effect X; = f(X;, N) in func-
tional dependence on the cause X; and the disturbance variable N.

The network of causes and effects can be represented by
a graph of nodes and edges. Random variables of causes and
effects correspond to nodes. Causal effects correspond to
directed arrows: X; — X; means that cause X; triggers effect X;.

It can be proved that a causal model includes an unambigu-
ous probability distribution of the data (Fig.2: “subsumed”),
but not vice versa: For causal models (e.g. planetary model)
one needs to assume additional laws (e.g. law of gravity). In
order to recognise causal dependencies of events, the independ-
ence of the random variables representing them must be deter-
mined. Statistically, the independence of the results x and y of
two random variables (viz. random experiments) X and Y can be
expressed statistically by the fact that their composite probabil-
ity p(x,y) is factorisable, i.e. p(x,y) = p(x)p(y). In this case, one
also speaks of the Markov condition. On this basis, the calculus
of a causal independence relation _LL can be introduced [22]:

Let p(x) be the density of the probability distribution Py of a
random variable X:

e X independent of Y (X 1LY) :< p(x,y) = p(x)p(y) for all val-
ues x,yof X,Y;

e Xi,...,Xy mutually independent & p(xq,...,Xg) =
p(x1) - - - - p(xg)for all values x1, ..., xgof X1, ..., X4

e X independent of Y under the condition Z
(X1LY|Z) :& p(x,y|z) = p(x|z)p(y|z) for all values x,y,z of
X,Y,Z with p(z) > 0.

Conditional independence relations satisfy the following rules:

XUY|Z=YUX|Z (symmetry)

XUY W|Z= XUY|Z (decomposition)

X1Y,W|Z=X1Y|W,Z (weak union)
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XUY|Zand XU W|Y,Z = X 1LY, W| Z(contraction)
XUY|W,Zand XU W|Y,Z = X 1LY, W|Z (intersection set)

Example
A simple example
Causal structural model with assignments and graphical

representation

)
\/

o X1:=f1(X3,N1)

o Xo:=f(X1,N2)

o X3:=f3(N3)

o X4:=f4(X2, X3, Ny),

e With Ny, N2, N3, N4 independent noise variables.

The independence of random variables X1, X»,X3,Xs in the
statistical distribution Py, x, x;,x, can be represented by
X5 1l X3|X7 and X7 L X4|X>, X3 resp. by Markov factorization:

p(X1,x2,x3,%4) = p(x3)p(x11x3)p(x2|x1)p(xalx2, x3)

The aim of causal learning is thus to discover the causal depend-
encies of causes and effects behind the distribution of measure-
ment and observation data. The initial situation is a finite sample
of a data collection: In the example, a joint probability (e.g.
Px, x,x,,x,) of independent and identically distributed (i.i.d.)
random variables (e.g. X1, X», X3, X4) is presupposed. By means
of independence tests and experiments, causal models can be
constructed from this, which are determined by independence
relations resp. probabilistic factorization or causal laws. On the
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basis of such causal models, the dependencies of causes and
effects can be graphically represented. Further on, the account-
ability of causes and effects called for at the beginning is real-
izable. Accountability of causes and effects is necessary, for
example, to clarify questions of responsibility (Fig. 2.4).

In the case of statistical machine learning, the limits of Al are
evident by the fact that, in principle, there is no general algo-
rithm that can be used to determine an underlying causal struc-
ture for any statistical data distribution. However, this principal
limit also applies to the natural intelligence of a human math-
ematician. But, for certain classes of data distributions under
precisely specified conditions (constraints), algorithms for the
determination of the underlying causal structures can be found.
They depend, for example, on the type of the data distributions

Markov condition | causal mode ~ reading out
g X, =>X,—>X, =

X, X _f|(N1)
1X,X,) X,=£,IN,)
XXX, X,=£,06N,)

X
XXX, s

i.i.d. sample from
probabilistic distribution

determine restricted

independence tests model classes

PX,,%,,%;,% Of
random variables

Fig. 2.4 From data evaluation to causal models [23]
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and the equations. In these cases, there would be an Al that inde-
pendently solves knowledge tasks like a scientist. They may not
yet have the status of Newton's discovery of the law of gravita-
tion. But causal thinking is not inaccessible to Al in principle:
this can be proven mathematically!

Causal models that are subject to statistical data distributions
now influence machine learning. In an astrophysical example,
B. Scholkopf shows how an assumed causal structure can be
used to reduce systematic error noise in the prediction of exo-
planets [24].3 Empirical data were provided by the Kepler space
telescope, which observed a small section of the Milky Way for
its search of exoplanets. In the process, the brightness of almost
150,000 stars was measured. It is assumed that the orbit of a
planet is so that, from the Earth’s point of view, it passes exactly
in front of the star. The resulting occultations of the star then
produce periodic decreases in its brightness.

Example

The signal of interest Q (e.g. periodic decrease in the light
intensity of a star caused by an orbiting planet) can only be
measured in a noisy version Y (Fig. 2.5). If the same source
of noise also takes the measurements of other signals R (with
noisy version X) independently of Q (e.g. stars that are light
years apart), then these measurements can lead to “denois-
ing”, i.e. to the neglect of the measurement disturbances. In
this case, the observing telescope N used is the systematic
source of perturbations for the measurements X and Y of
independent light curves. This telescope measures several
stars at the same time. They can be assumed to be statistically
independent, since they are light years apart and, according
to Einstein’s theory of relativity, no effects can be transmitted
faster than light.

3These explanations follow K. Mainzer, Quantencomputer. Von der
Quantenwelt zur Kiinstlichen Intelligenz, Springer 2020 [25, p. 129 ff].
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In Fig. 2.5, only the observed quantities are drawn in black.
All causal assumptions are green. Thus the variable X (black)
denotes measurements of signals R (green) that are independ-
ent of Q. Graphically, everything in Y that can be explained by
X must be due to the common noise source of the telescope
N and should therefore be removed. Formally, this means:
let E[Y|X] be the expectation probability (regression) of the
observed event Y dependent of event X. Since X and Y have
the same parent node N in the causal graph (Fig. 2.5), they are
graphically referred to as “half-siblings”. Therefore, one also
speaks of “half-sibling regression”.

In this way, the unobserved “true” signal Q (green) can be
estimated by subtracting from the measurement Y (black) the
expected probability of the disturbances caused by the com-
mon measuring instrument with X:

0:=Y — E[Y|X]
In general, for random Variablgs 0,X,Y, with Q independent
of X (X1LY) and estimation Q :=Y — E[Y|X] of Q, it can
be proved that the method of “denoising” can never be worse
than the measurement Y itself:

E [(Q — E[01-0) 2] < E[(0 - E101 - (¥ — E[Y]) ] <

true signal systematic noise other noise

unobserved e 0 0
observed “ “

measure of interest other measures

Fig. 2.5 The causal structure used in the search for exoplanets (Tracing of
[21, p. 158])
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Example

Another example concerns brain research [26]: in this case,
we are dealing with one of the most complex neuronal net-
works that has emerged in evolution. Neural networks are
represented by causal graphs, whose nodes represent neurons
and whose directed edges represent synaptic connections of
the neurons. In the mathematical model, we assume a vector
z that encodes the activity of a large number of brain regions.
The dynamics (i.e. the temporal development) of z is deter-
mined by a differential equation

d F 0
Al (z,u,0)

with given function F, vector u of external stimulation, and
parameter 6 of causal connections.

However, the brain activity z cannot be observed directly.
Functional resonance imaging (fMRI) only determines the
consumption of nutrients (oxygen and glucose) to compen-
sate for the increased energy demand supplied by blood flow
(haemodynamic response). The increase is determined by the
blood-oxygen-level-dependent (BOLD) signal. Therefore, in
the dynamic causal model z must be replaced by a state vari-
able x, in which brain activity is taken into account with the
haemodynamic response:

d F(x,u,0)
—x =rx,u,
dt

For this purpose, the measured time series of the BOLD
signal y = A(x) is connected with the state variable x. 4

In fact, in the human brain we are dealing with a flood of data
produced by 86 billion neurons. How the causal interactions
between the neurons behind these data clouds take place in detail
remains a black box for the time being. Statistical learning from
measured data is not enough, even in the age of Big Data and
growing computing power. More explanation of the causal inter-
actions between the individual brain regions, i.e. causal learning,
is a central challenge for brain research in order to obtain better
medical diagnosis, psychological and legal sanity.
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2.3 From Baysian Learning to Neural
Networks

PROP. 5. If there be two subsequent events, the probability of the 2d
% and the probability of both together % and it being Ist discovered
that the 2d event has happened, from hence I guess that the 1st event
has also happened, the probability I am in the right is %.

Thomas BAves, [27, p. 381].

Newton's methodology, which is described in his textbook
“Principia Mathematica Philosophiae Naturalis” as regulae
philosophandi (rules of philosophising), is simple and has influ-
enced centuries of physics. It is repeated almost verbatim by
Einstein and others in the twentieth century: The natural scien-
tist begins with observations and measurements and recognises
correlations in these finite data. These are generalised in the
assumption of a law or a theory of several laws. In mathematical
terms, they often take the form of equations such as the equations
of motion and force in Newtonian mechanics. In philosophy
of science such assumptions of laws are called hypotheses. An
empirical theory is then a system of hypotheses. Newton called
this path from data to hypotheses or theories “induction” [28].

From such theories and hypotheses, predictions for past and
present events or explanations for future events can be derived
logico-mathematically for suitable initial and secondary condi-
tions. An example is Kepler's planetary model, which is derived
from Newton’s laws of mechanics. On the basis of this model,
predictions about future planetary positions can be derived. We
assume that a statement A (here, Kepler's planetary laws with a
known initial position of a planet) implies a statement B (here
a prediction of a future planetary position). The truth of this
implication is proved by calculating the equation of motion of
the planet after inserting its initial position. Now the statement
A, i.e. Kepler's planetary model and the initial position of the
planet, is assumed to be true. Then statement B, i.e. the predic-
tion of the future position of the planet, is also logically compel-
ling. If the conclusion “If A, then B ” is true and the statement A
is true, then, with logical necessity, the statement B is true.
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But now let us assume that the conclusion “If A, then B” is
true and that the statement B (e.g. an observation of the plane-
tary location) is true. What do we know about the assumed law
or model? In general, statement A is not true as a logical neces-
sity. After repeated observations, according to which the logical
conclusions B from A are true, one could at best assume that our
assumed model or hypothesis A is plausible. Obviously, this is
the situation in the empirical sciences such as physics, chemis-
try and biology, but also in social and economic sciences. Only
mathematics is concerned with logico-mathematical deductions
from assumed axiom or hypothesis systems.

The empirical sciences therefore focus on the questions: How
do we find suitable models for explanations and forecasts in data
sets? How plausible are such models? How does their credibility
change with new observations and new background knowledge?
What can we learn from new experiences? With the enormous
amount of data, that molecular biology and economics, for
example, have to deal with, it is clear that these questions can
only be answered within the mathematical framework of statis-
tics and probability theory.

According to the English mathematician and theologian
Thomas Bayes (1702-1762), learning can be explained by the
conditional probabilities of events [29]. In this context, probabil-
ity is not defined as probability (objective probability), but as a
degree of belief (subjective probability): An event A is assumed
before the occurrence of event B with the a priori probability
P(A), but after the occurrence of B with the a posteriori (condi-
tional) probability P(A|B).

With the help of Bayes’' theorem, conditional probabilities
can be calculated: The conditional probability P(A|B) of event A
after the occurrence of event B is given by the quotient of the
probability P(A N B) (i.e. the probability that events A and B
occur together) and the probability P(B) of event B.

ie.

P(ANB)

P(A|B) = PB)
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P(ANB
G - P(A) _ P(BIA) - P(4A)
P(B) P(B)
Therefore, the theorem of Bayes says P(A|B) = PBIAPA) § ¢

P(B)
the probability of A after the occurrence of B is calculated from

the conditional probability of B provided that A and the a priori
probabilities P(A) and P(B) are given.

How can Bayes' methods be applied to inductive reasoning in
the natural sciences? How can a model M be derived from a data
set D? From Bayes' theorem it follows for the probability of a
model M given a data set D:

POIM)-PM) _ P(M)P(DIM)

P(D) P(D)

The a priori probability P(M) estimates the probability that
model M is correct before (Latin: a priori) data are available.
The a posteriori probability P(M|D) takes into account the esti-
mate of the probability that model M is correct after (Latin: a
posteriori) the data of data set D have been observed. The prob-
ability P(D|M) that the observations of the data set D occur
under the assumption of model M is referred to as the likelihood
of data under the assumption of a model. The probability P(D)
stands for the data evidence of the data set D. For the calculation
of the probability of a model M under the assumption of a data
set, the calculation of corresponding logarithms is often simpler:

log P(M|D) = log P(D|M) + log P(M) — log P(D)

P(M|D) =

In the Bayesian assessment of models, the assumption of “a pri-
ori” probabilities is occasionally criticised as subjective or arbi-
trary. In reality, however, the effects of the a priori probabilities
decrease as the number of data increases. In the logarithmic cal-
culation of the likelihood, log P(D|M) typically grows linearly
with the number of data from D, while the a priori expression
log P(M) remains constant. Moreover, the Bayesian approach
requires a clear distinction between a priori and a posteriori
assumptions. The a priori probability of a model depends on the
assumed probability distribution. Depending on the application,
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e.g. Gaussian or Dirichlet distributions are suitable for this. In
any case, no general objective principle is known to determine a
priori assumptions in all situations [30].

Models M (w) depend on parameters w. In a physical model of
phase transitions that describes the transition from e.g. a liquid
state to a gas state at critical temperature values, temperature is
an example of a parameter. In contrast to such simple physical
models, molecular biological models depend on a huge number
of parameters. To assess how good a model M (w) is for a set D
of data such as a molecular biological sequence, error and fal-
sity functions f(w, D) > 0 are applied to calculate the degree to
which the model fits the set of data as a function of the model
parameters. It can be proved that the minimisation of the error
function is equivalent to the maximum data plausibility (likeli-
hood [31]).

Two models M| and M, can be compared by comparing their
probabilities P(M1|D) and for a set of data D (e.g. amino acid
sequence). One goal could be to determine the best model M
of a model class by finding the set of parameters w with maxi-
mum likelihood P(M|D). The Bayesian approach has the meth-
odological advantage that it favours less complex models. This
corresponds to the motto of Occam's razor, according to which
the explanation of an observation that makes fewer theoreti-
cal assumptions is to be preferred [32]. It turns out that the data
plausibility (likelihood) for given data sets becomes smaller on
average when P(D|M) concerns a growing data space. Complex
models therefore tend towards a smaller data plausibility (likeli-
hood) of the observed data.

According to Bayes’ theorem, in order to determine the prob-
ability P(M|D) of a model given the data set D, it is first nec-
essary to assess the data plausibility (likelihood) P(D|M) of a
model and its a priori probability P(M). For a bit sequence of
bits 0 and 1, the simple model of a fair coin could be chosen
whose two sides show the digits O or 1. This model has only a
single parameter p. The data consists of sequences over the
alphabet A = {0,1}, generated by random coin tosses.
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The data D of a DNA sequence is formed over the alphabet
A ={A,C,G,T}. A simple random model would be a four-sided
dice whose sides carry the symbols A, C, G, T [33].

Bayesian philosophy of science explains statistically how
our models and hypotheses about the world change through
new experiences and how we can learn from experience. It can
therefore be understood as a framework theory for learning algo-
rithms that automate learning procedures in machine learning. In
machine learning, neural networks modelled on the human brain
play a dominant role. The breakthrough of Al research in prac-
tice is largely related to the ability of neural networks to apply
large amounts of data (Big Data), e.g. in pattern recognition with
effective learning algorithms. Practical applications require thou-
sands of neurons and synapses in multilayer neural networks
(deep learning) that are statistically trained with finitely many
data sets of inputs and outputs.

From a Bayesian point of view, neural networks can be under-
stood as graphical models M(w) with certain parameters w.
These models are reminiscent of the human brain. In classical
feed-forward neural networks, neurons are arranged in layers
as nodes of a graph. In Fig. 2.6, each neuron of a layer is con-
nected to all neurons of the following layer by directed edges
(synapses), but the neurons of a layer are not connected to each
other. Exceptions are the input layer, whose neurons have no
incoming connections, and the output layer, whose neurons have
no outgoing connections. The layers between the input and out-
put layers are called “hidden”. Each connection/edge is weighted
in the graphical model of a neural network with a number that
corresponds to the intensity of the synaptic connection. These
weights are the parameters w of the graphical model M (w) of a
neural network. Each neuron is characterised by an activation
function that defines the input—output relation for this neuron.
By analogy with the brain, a neuron is said to “fire” or be excited
when the sum of the weighted inputs of its neighbouring cells
exceeds a certain threshold.

Mathematically, these networks can be defined as functions
v:I" — O™ that map an n-dimensional input space I"(n > 0)
to an m-dimensional output space O™(m > 0). For example,
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output layer

input layer

Fig. 2.6 Feedforward network with 3 hidden layers and an input and output
layer

such a network can compute an approximation of a function
f :R" - R with I = O = R. For example, a network that clas-
sifies 8-bit images of size & x v (with h horizontal and v verti-
cal) into two classes can be defined by a function v : I"” — O
with input range I = {0, . . ., 255} for the 2% = 256 possible 8-bit
images and output range O = {0, 1} for the two classes denoted
by 0 and 1. The mapping begins with an input from 7", which
is first entered into the input layer in the network and then pro-
cessed further via the hidden intermediate layers to the output
layer. Layer by layer, linear combinations of the values of nodes
(neurons) and weights (synaptic connections) from the preced-
ing layers are calculated. Activation functions for the subsequent
neurons are applied to these results (Fig. 2.7). Graphically, the
activation functions trigger the state of “firing” of a neuron.
Networks are distinguished by different activation functions.
The threshold function of a McCulloch-Pitts neuron only has
the function value 1 for inputs v > 0, otherwise 0 (Fig. 2.8a).
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inputs weights linear combination activation functions
X —— |

X2

Fig.2.7 Activation functions of neurons in neural networks

A piecewise linear function linearly maps a bounded interval and
the outer intervals are constant (Fig. 2.8b). Sigmoid functions
have a variable increment expressed in the curvature of the graph
(Fig. 2.8¢c). A rectifier function (ReLU =rectifier linear unit)
takes the positive values of its arguments, otherwise O (Fig. 2.8d):

The crucial point here is that neural networks can learn from
examples. From a Bayesian point of view, this is nothing more than
estimating the suitability of a model M (w) for explaining (fitting)
a data set D and estimating the model parameters w. Depending
on the application, a data set can be understood as an input—output
sample D = (Dy,...,Dg) of pairs D; = (d;, z;), where d; stands
for the respective data and z; for the respective target state.

In a classification task, for example, the task could be to
divide the data of a data set into certain classes as target states. If
a finite number of target states are specified in the training data,
we speak of supervised learning. Otherwise, it is non-supervised
learning. An error function is used to compare the output data
with the target states in order to optimise the model parameters,
i.e. the weights of the neural network. From a Bayesian point of
view, this is the classic induction problem of how to obtain the
best possible model from data.

I

Fig. 2.8 Examples of activation functions
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A remarkable property of neural networks is that they can
approximate almost any function f(x) =y with arbitrary accu-
racy [34]. Here, the function arguments x are the inputs and
the function value y is the output of a suitable neural network.
The algorithm for approximating the function f is realised step
by step through the layers of a suitable network architecture.
Bayesian science theory can be used to select a suitable objective
function and a transfer function for the output. Let data again
be given as independent input—output pairs D; = (d, z;). These
data are noisy in the sense that different target states z; can be
observed for a given data point d;. The operations of the neural
network itself are assumed to be deterministic. For the prob-
ability of the data pairs D; = (d;, z;) under the condition of the
synaptic weights w (as parameter values of the neuronal model
M (w)) the Bayesian calculus then yields.

P((di, z)|lw) = P(dilw)P(zild;, w) = P(d)P(zildi,w), where
for the second equality the independence of the inputs d from
the parameters w is assumed. The logarithmic formula of the
Bayesian calculus can then be used to calculate the probability
of the model parameters w (i.e. the weights of a neural network)
assuming the data pairs D:

log P(w|D) = log P(D|w) + log P(w) — log P(D)
=3 log P((d;. z)lw) + log Pw) — log P(D)
= 371 (og PCaildi,w) + log P(d) +log Pow) — log P(D)

K K
=Y logPGldiw) + Y. 1og P(d;) +log P(w) —log P(D),

where in the 3rd line P((d;,zi)|lw) = P(d;)P(z|d;,w) was taken
into account.

In the calculation, the data evidence P(D) and P(d;) can be
neglected, since these values do not depend on the parameters w
(i.e. the synaptic weights of the neural network). The focus is on
determining the a priori probability P(w) and the data plausibil-
ity (likelihood) P(z;|d;, w). In the case of data plausibility (like-
lihood), the guiding idea is that a network with given weights
w generates an estimated output y(d;) for a given input d;. The
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model is fully defined if it can be determined how the observed
data z; = z(d;) can statistically deviate from the output y; = y(d;).

In terms of the history of science, it is worth noting that the
development of neuronal networks was associated with a sharp
discussion about the limits of this technology which finally turned
out to be provisional. The learning algorithm of the perceptron
model (1950) starts with a random set of weights and modifies
these weights, according to an error function, in order to mini-
mise the difference between the current output of a neuron and
the desired output of a trained data pattern (e.g. letter sequences,
pixel image). This learning algorithm can only be trained to rec-
ognise such patterns (supervised) that are “linearly separable”. In
this case, the patterns must be separable by a straight line.

Figure 2.9a shows two patterns that consist of either small
squares or small circles as elements. Both patterns are sepa-
rable by a straight line and thus recognisable by a perceptron.
Figure 2.9b shows two patterns that are not separable by a straight
line.

M. Minsky, leading Al researcher of his time and representa-
tive of the “old” paradigm of symbolic Al, and S. Papert, proved
mathematically in 1969 that Perceptron would fail if the patterns
were only represented by curves (“non-linear”) (Fig.2.9b [35,
2.36]). With this Minsky and Papert believed to have mathemati-
cally refuted the new paradigm of neuronal networks, or at least
to have put it in very narrow confines.

Fig.2.9 Linear (a) and non-linear (b) separable patterns
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For this reason, the proof of Minsky and Papert was initially
regarded by the Al-community as the fundamental limit of neu-
ral networks for Al research. The solution to the problem was
inspired by the architecture of natural brains [36].

Why should information processing only run in one direction
through the superimposed layers of networked neurons?

In 1986, D. E. Rumelhart, G. E. Hinton and R. J. Williams
proved that backpropagation between input, intermediate and
output layers also permit non-linear classifications with suitable
activation and learning algorithms [37]. Finally, K. Hornik, M.
Stinchcome and H. White proved in 1989 that, under suitable
conditions, feedforward architectures can also be used [38].

Neural networks with these extensions have led to major
breakthroughs in machine learning and artificial intelligence.
A few years ago, Google developed the AlphaGo software,
whose neural network learned from playing experience in the
Asian board game Go and eventually beat human champions.
Following this success, in 2018 the same company developed
software whose neural network succeeded in modelling proteins
in the largest numbers to date and in the shortest time [39].

This software, called AlphaFold, is based on a multi-layer
neural network in the sense of Deep Learning, which can predict
suitable shapes and folds of proteins based on input sequences
of amino acids. This is done by estimating distances and angles
of bonds between amino acids, whose distribution is calculated
by learning algorithms. These probabilities are summarised in
a score that can be used to estimate how accurate a proposed
protein structure is. The training of the neural network draws
on an extensive database. Figure 2.10 shows the architecture of
AlphaFold, which recognises the appropriate protein structure
from a protein sequence of amino acid codes. The learning algo-
rithm that recognises the matching protein structure from the
probability distributions of the distances and angles can be based
on a scoring or a gradient method. Gradient methods are known
from materials research when certain structures (such as basalt
columns) are created by cooling (gradient descent) a hot material
(e.g. lava).
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protein sequence
eg... .QETRKKCTEMKKKFKNCEVRCDESNHCVEVRCSDTKYTL

neural network data base
prediction of dlstances pred|ct|on of angles

learning algorithm
(score, gradient decrease)

protein structure

Fig.2.10 Architecture of AlphaFold [40]

So far, only about half of all possible protein structures of the
human cell have been deciphered. Of central interest are changes
due to mutations. Malformations of the structure lead to mal-
functions as causes of diseases. AlphaFold and similar machine
learning neural networks will be indispensable for disease con-
trol and health care, since the diversity of life is based on the
complexity of the world of proteins. Their codes can only be cap-
tured by machine learning with the computing power of super-
computers. Basically, the search space for possible protein forms
is exponential and never complete, as evolution is not finished.

The complex structures and functions of genes, proteins
and cells that we observe today are the result of an evolution
that took place over many millions of years and is constantly
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evolving. Darwin had the ingenious idea that the observed diver-
sity of species can be traced back to common ancestors whose
developmental branchings can be represented by the branchings
of a tree. While the tree with its branches and ramifications is
a model, its “leaves” at the ends of the branches correspond to
the observed species. The big question is how this phylogenetic
development can be derived from molecular biological evolu-
tion. In the language of bioinformatics, the aim is to infer the
phylogenetic tree structures from DNA and protein sequences.
Machine learning methods are used to process the large amounts
of data with powerful algorithms and computers.

Mathematically, a tree T is understood to be a connected acy-
clic graph (Fig. 2.11). In a tree, two nodes are always connected
with exactly one edge. The number of nodes is always exactly
1 greater than the number of edges. A tree is called binary if
each node has either one or three neighbouring nodes. The dis-
tinguished root node of a tree is called . A distinction is made
between rooted and non-rooted trees without a distinguished root
node. In phylogentic trees, the root node represents the ancestral
sequence from which all other sequences of the tree are derived
or can be derived. Characteristic of trees are their topology and
the length of their branches. The topology shows the branching
pattern and divergence of evolution. The length of the branches
indicates the time interval between the events represented by the
respective sequences.

Fig.2.11 Graphical
Model of a binary
phylogenetic tree [31]
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As a simplified probabilistic model of evolution, a cube
model can again be assumed. According to this, evolution starts
with the sequence of an ancestor and develops step by step by
replacing letters randomly and independently of position. In
Fig. 2.11, r is the tree root. The temporal distance between tree
nodes i and j is denoted by dj;. X; is the letter at the hidden tree
node i.The observed letters are at the lower nodes called leaves.
The probability of letters X; being replaced by letters X; when
moving from node i to j is denoted by px;x; (dji)-

A simple probabilistic model for evolution makes the follow-
ing assumptions:

e At each position, there are only substitutions of letters (i.e.
no insertions and deletions). All observed sequences have the
same length.

o Substitutions at each position are independent of each other.

o Substitution probabilities depend only on the current (present)
state and not on past evolutionary history (Markov condition).

e The Markov process is the same for all positions.

The disadvantage of these simplified assumptions is that in bio-
logical evolutions not a single assumption is fulfilled by real
DNA. The length of DNA sequences can change due to inser-
tions and deletions. Furthermore, evolution is not independent of
different positions. The rates of change during evolution are not
uniform in time and with respect to positions. In addition, DNA
can be recombined. Correspondingly simplified probabilistic
models can therefore only serve as approximations.

Example

Given a set of sequences and a probabilistic evolutionary
model, an attempt can be made to determine the most prob-
able tree topology and the most probable length of branches.
Let K sequences Oy, ..., Ok of the same length N be given
over an alphabet A. In the corresponding tree model 7, r
denotes the common root and dj; the distance between neigh-
bouring nodes i and j. The aim of Bayesian scientific theory
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is to determine the probability P(T'|Oy, ..., Ok) of the model
T given knowledge of the sequences Oi,..., Ok. According
to Bayes’ theorem, an essential step to this end is the calcula-
tion of the plausibility (liklihood) P(Oy,...,Ok|T) of these
sequences for the probabilistic evolution model 7. Because
of the independence assumption of the evolution model, this
probability can be factorised for the individual letters of the
sequences:

P(Oy,...,0x|T) = [IN_ P(O%,...,0%|T), where ot
denotes the k-th letter observed in the j-th sequence. It is there-
fore sufficient to examine the probabilities PO, ..., O’I‘{|T)
relating to the k-th letters 05‘ in the sequences at the K leaves
of the tree. At each tree node i, a hidden random variable yx;
can be assumed to indicate the letter associated with node i.
Therefore, a phylogenetic tree can also be understood as a
causal model with a tree structure, in which the conditional
probability of node j at a given parent node i depends on the
temporal distance dj;:

P(xj = Ylxi = X) = pyx(d;))

All known algorithms for calculating causal models can
therefore be applied to phylogenetic tree models [42]. 4

The search for optimal tree structures is a computationally inten-
sive challenge. The search space of all possible trees is exponen-
tially large, so that an exhaustive search is impossible. So there
are only heuristic procedures. This often involves selecting a
new species in each evolutionary step, taking into account all its
possible positions in the current tree. Probabilistic evolutionary
models, however, must not be too simple. Markov models prove
to be unrealistic for long-term evolutionary processes, since they
mathematically converge to an equilibrium distribution during
this period. However, a state of equilibrium in nature contradicts
all previous experience. Equilibria occur only temporarily and
locally in subsystems. Therefore, it is obvious to combine differ-
ent local evolutionary models. This results in highly non-linear
dynamic systems, which may correspond better to biological
complexity, but come up against limits of calculability.
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In machine learning, research focuses on modelling the struc-
ture and functions of a virus. One function is that parts of a virus
can be attacked by antibodies to prevent viral entry into a cell
and the spread of the virus in the organism. Another function
involves protein fragments of a virus that map onto the surface
of a human cell, marking the cell as infected so that it can be
recognised and eliminated by antibodies. Machine learning mod-
els were trained to derive predictions about the intensity level of
these properties for each viral fragment. This makes it easier and
faster to estimate which parts of a virus have a higher degree of
immunogenicity, i.e. the ability to develop an immune response.
These parts can then be incorporated into a vaccine.

The great strength of machine learning is its ability to rec-
ognise patterns and correlations in large masses of data. With
this ability, machine learning is far superior to human abilities.
In immunology, we are talking about nearly a million protein
fragments presented on a cell surface and visible to T cells. No
human researcher would be able to systematically complete this
task in a reasonable amount of time for a specific fragment of the
Corona virus. In contrast, for a suitable model, machine learning
algorithms could be used to calculate the data plausibility of pro-
tein fragments to predict the best candidate. Using this method,
regions in the protein envelope of SARS-CoV-2 were found to
form strong antibody targets.

On this basis, vaccines can be “designed” in the computer.
In this process, the viral protein fragment that is recognised as
favourable is stored together with other virus-like particles so
that the vaccine is recognised by the immune system like a real
virus and antibodies are then developed. What sounds so sim-
ple is extremely complex in biology. Proteins consist of tens of
thousands of molecules. The possible foldings of proteins that
determine their functions are exponentially diverse and cannot
be fully computed. It is possible to exclude a large number of
possibilities from the outset in the computer model, which there-
fore no longer need to be tested in the laboratory. But candidates
that have been identified as favourable still have to be tested and
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discarded in the laboratory in order to then select other candi-
dates in the model that have to be tested again in the laboratory.

In a kind of methodological spiral, machine learning and lab-
oratory testing thus work together to approximate a favourable
result. The philosopher of science Karl R. Popper once opined,
“We err up!” [41] This word vividly describes the research strat-
egy pursued here. In the end, however, there is no mathematical
proof that the research spiral converges to an optimal result or
even to the truth in every case. In practice, it could well happen
that no vaccine is found for a given initial situation.

The dramatic collapses that viral pandemics trigger in econ-
omies and societies worldwide lead to the question of whether
humanity can prepare for new pandemic waves in the long
term. This is because viral evolution continues at a greater
speed than the evolution of plants and animals. This process is
being accelerated considerably in the age of globalisation, as
the epidemological risk of infection among large masses of
people is growing worldwide, making the starting position of
viral evolution with highly interconnected host organisms ever
more favourable. In short, the danger of pandemics is increas-
ing and, because of the increase in viral fitness, so is their dan-
ger. Ultimately, this acceleration could only be countered with
machine learning, large databases and supercomputers.

Now, the exponentially growing possibilities of viral evolu-
tionary trees cannot be fully mapped with supercomputers, no
matter how large they are. It is conceivable, however, that geneti-
cally generated countermeasures can be predicted for classes
of such viral evolutionary trees under certain restrictions (con-
straints). In this way, a kind of toolbox of learning algorithms
could be created in order to be able to react quickly if the worst
comes to the worst. The whole company would itself be a learn-
ing system that is gradually expanded through new experiences.
So we are meeting viral evolution with an evolution of artificial
intelligence.
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2.4  Data Set and Data Quality

RS ENILIS S

Chinese for Social Credit System.

Machine or statistical learning is at the heart of modern Al It
works with data, or better: with a lot of data, or Big Data. A
first impressive example was GPT-3, an autoregressive language
model [44]. By use of 45 terabytes of retrieved speech data
(e.g., from Wikipedia) and deep learning it can conduct dialogs
with a user. It is impressive for two reasons: in general, it can
form grammatically correct sentences; but it can also assign the
appropriate context to homonyms. For example, it does not con-
fuse banks, when it is used on the one hand for a riverbank or
a saving bank. The program owes this ability primarily to the
immense amount of data it could access.

Even as a pilot application, GPT-3 can deal with local and
temporal language variants and, e.g., answer a question in the
language of the Shakespearean era accordingly. And the newer
versions, ChatGPT and GPT-4 (see below Chapt. 5.3), have
already proven that they can answer correctly in German, a
language with a grammar usually considered as comparatively
complicated.

However, the matter becomes problematic, when one con-
siders a language with few speakers or few recorded language
material, or when a dead language. Especially in the last case
it can not be assumed that sufficient additional material can be
collected over time to make a larger stock accessible to machine
learning.

Here we are confronted with questions which arise in the con-
text of a small database which does not seem to be suitable for
machine learning. To get a sense of what a marginal database is
likely to be, one may consider a cultural achievement of man-
kind that is significant in the history of science: the ability to
predict a solar eclipse. Machine learning is not capable of doing
this according to an expert of the area: far too few data.
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Example

And we want to give another impressive example from the
history of mathematics. It suggests that human intuition is
still far ahead of machine learning. The most important open
problem of mathematics is the Riemann conjecture, which
states that all non-trivial zeros of the ¢-function.

c(s) = Zf;l % for s € C with Re(s) > 1 have the real part
Re(s) = % [45]. Here, the question is not whether one can find
a proof of this conjecture by means of machine learning.* But
we ask how many zeros an Al program would have to com-
pute in order to make this assumption independently — if
it can make generalized assumptions on its own, in the first
place. Riemann himself had calculated only 3 zeros and one
can consider it as impossible that any Al can infer anything
from three data only. «

Of course, Riemann had a much more advanced theory in the
background, which allowed him to make the assumption even
without further empirical data [46]. Even more impressive is the
example of the physics of the twentieth century with its ingenious
breakthroughs from Einstein's general theory of relativity (1915)
to the first axiomatic versions of quantum mechanics that emerged
in the 1920s. Some of these were not even based on small data,
but on the purely theoretical calculation of the consequences
resulting from specific assumptions—for the theory of special
relativity, for example, the finiteness of the speed of light. The
empirical data were usually collected only afterwards in order to
verify the theoretical predictions. And the richness of these basic
equations of physical models has not been exhausted until today.
For scientific progress background theories—whether they are to
be confirmed or reformulated—are of fundamental importance;
however, such theories are not available to a statistics-based Al.

4Evidence search in the mathematical sense does not seem to be a suitable
subject for statistical learning. However, if it were possible to find a proof
of Riemann's conjecture with the help of artificial intelligence, even the last
mathematical sceptic would certainly be convinced by this technology.



46 2 Practical Limits

For all the successes of machine learning, we are not aware of
any approach that would claim to be able to duplicate successes,
which are based on big data, on the base of small data. Thus
in the presence of few data we stay with difficulties to apply
machine learning, and this seems to be an intrinsic limit for this
form of artificial intelligence.

Machine learning starts with learning data. These data are later
used to obtain results for input data which does not match directly
with the learning data. Sometimes this involves statistical biases in
such results, especially with a discriminating effect. Currently, it is
an important task of statistical learning to exclude such discrimi-
natory consequences. But such consequences are not necessarily
due to the way the Al software works: if the learning data itself
already contained discriminatory elements, one can, of course, not
blame machine learning if this is reflected in the application.

Thus, it is a special task of machine learning to ensure qual-
ity of the learning data; and this quality includes that the data
includes that this data should be free of discriminating elements.

Example

At this point, however, it boomerangs that modern Al transla-
tion software is based on the frequency of translations found
in general use. Google Translator, for instance, had chosen
the gender of a profession according to the dominant use
in other texts. As Turkish does not have a gender indication,
one obtained for the two (gender-neural) sentences: “O bir
hemsire. O bir doktor.” as English translations “She is a nurse.
He is a doctor.” One cannot blame Google insofar as the fre-
quencies of the correlation “she — nurse” and “he — doctor”
in not intentionally filtered text bases should statistically pre-
dominant. When, today, Google Translator is warning the user
about the risk of gender bias, this is due to human intervention,
not by self insight of the underlying Al software.®

SThe example is discussed in [47, p.17]. In [45] one can find a number of
other examples and also extensive references to the corresponding sources.

Shttps://ai.googleblog.com/2020/04/a-scalable-approach-T-reducing-gender.
html. Retrieved March 2021.
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Thus, especially with respect to current debates on lin-
guistic discrimination, we face a need for corrections against
biases. Data management is required here, which (at least
until today) is not—and perhaps cannot—be done by Al
itself, but which requires manual intervention by humans. <

The classic example of poor data quality is the completely mis-
carried prediction of the outcome of the 1936 presidential elec-
tion in the USA by the The Literary Digest [46]. The magazine
had predicted a victory of Alf Landon over incumbent president
Franklin D. Franklin, when in fact the latter won with 60% of the
electoral votes and, because of the U.S. electoral system, with a
crushing majority of 523 to 8 electors. The magazine had relied on
a polling of 10 million eligible voters, which, however, in no way
corresponded to a representative sample.” This fiasco serves nowa-
days in the statistical literature as a pointer to the importance of
proper sample selection, and it has also historically contributed to
the development of better methods for modern opinion research.

The example shows that data quality is not a specific prob-
lem of machine learning. But it is clear that if you start from bad
data, you can hardly expect good results. Thus, we face the ques-
tion how data quality can be determined or measured in concrete
applications. And further, the question arises whether the criteria
for data quality—or their absence—could be determined indepen-
dently by AL That seems to be rather doubtful.

2.5 The Return of the Frame Problem

...if each context can be recognized only in terms of features selected
as relevant and interpreted in a broader context, the Al worker is
faced with a regress of contexts.

Husert DreYFUS [49, p. 289]

7See [46], where, however, the beautiful myth is rejected that the sample is
limited to (supposedly above-average wealthy and therefore inclined to con-
servatism) phone owners.
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The frame problem is a, especially in philosophy, widely dis-
cussed problem from the early days of the old Al. McCarthy
and Hayes [48] consider in which form relevant information
(in the concrete situation, for a robot) has to be represented in
logical form, without having to store any fact of the environ-
ment (to frame the situation). Against the boundless number
facts that could be represented, but also in view of the compara-
tively restrictive syntax of logical programming languages pro-
gramming languages, such as Prolog, the problem was put in a
broader philosophical context and reduced to the following ques-
tion: which facts might be subject to change, and have to be,
therefore, explicitly treated.® In the end, this problem already
points to the hurdle at which the old AI ultimately failed: the
complexity of a formal representation of all relevant facts, which
proved to be too costly. A clarification of the question of what is
to be considered relevant, was not even any longer attempted in
view of the difficulties.

For the new AI, the problem of the relevant information
returns in a slightly different form. A well-known example is
the recognition of a camel in a photo; since camels are usually
photographed in the desert, it may happen that machine learn-
ing takes as a relevant factor for the identification of a camel, not
the characteristic outline of the animal, but simply that there is a
desert landscape in the background. The problem is more com-
plicated than in rule-based Al, since in machine learning, per
se, we have no access to what is learned as a feature. It is only
when misclassification occurs while using the programme that it
becomes apparent what went wrong.

One of the central distinctions that philosophically lies
behind this problem was already worked out by Aristotle, when
he distinguished the essential from the accidental features of a
substance (see e.g. [52, E 2]). In rough analogy the fact that a
camel is usually seen in front of a desert background is a purely

8This discussion culminated in the so-called Yale shooting problem [49],
which illustrates well the philosophical level of of the discussions in the old
Al and which attributes a place to the American university in this discussion.
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accidental feature, but its characteristic outline is an essential
one. Despite a 2000-year tradition of philosophical discussion,
this distinction has become obsolete with the advent of modern
logic. In modern logic, any feature is given, quite undifferenti-
ated, by predicates. The distinction of essential and accidental
features has been receded into the background.® In the context of
Al it is important to recognize that this distinction is conceptu-
ally not based on a pure statistical correlation, but, on the con-
trary, it is part of an intellectual definition of concepts. From this
perspective it becomes understandable why machine learning, as
far as it uses only statistical data for the time being is not able to
independently detect the distinction.
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Theoretical Limits 3

3.1 Can “calculating” be Learnt
Statistically?

Interviewer: What is your biggest strength?
Me: I am an expert in machine learning.
Interviewer: What’s 6+ 10?

Me: Zero.

Interviewer: Nowhere near. It’s 16.

Me: Ok, It’s 16.

Interviewer: What is 10+20?

Me: It’s 16.

This is an old, simplified illustration of machine learning—by
now, ChatGPT may not fail on this question, but it is known
for having serious problems with Mathematics. In fact, it is the
aim of the illustration to show that statistics is not the adequate
approach to calculate elementary mathematical expressions.
Even if it whould be possible to learn mathematical functions,
such as addition, correctly in a purely statistical way from exam-
ple calculations, it is not to see what would be the advantage
over traditional programming techniques, which provide sophis-
ticated algorithms for calculations with natural numbers.
However, the situation can change fundamentally if one
goes beyond elementary operations, and we see potential for
Artificial Intelligence when it we would like, for example, solve
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numerically differential equations which do not have solutions in
elementary functions.

In the present context, however, we are interested in the
potential or limits of Al for supposedly simple arithmetic opera-
tions [1]. A good example is a prime number test.

Example

First one can ask whether AI can learn purely statisti-
cally the property of primality of numbers. Here the prob-
lem is certainly not that there are not enough data available.
If one marks correctly the prime numbers in a set of mil-
lions of numbers, will Al correctly mark other numbers
as prime numbers or composite numbers? Without having
tested this question in practice, let us give some theoretical
considerations.

Of course, the prime number property can be determined
for each natural number n > 1 in a brute-force manner by try-
ing to divide n by every smaller number. If one finds only 1
as a divisor, one has a prime number. This test is hopelessly
inefficient. But also the method of the sieve of Eratosthenes
[2, p. 31], known since antiquity and still taught in school,
is—like all other known deterministic prime number tests—
inefficient form the point of view of complexity theory.' But
independently of this it is an interesting question whether the
process underlying the sieve of Eratosthenes can be taught to
the Al. From a practical point of view, however, one would
expect more, namely that the Al could find a faster prime
number test.

Should the prime number property be based on a certain
regularity, which has escaped the mathematicians until today,
it seems possible that deep learning, with the possibility to

'Nevertheless, the idea underlying the sieve of Eratosthenes has an algorith-
mic added value, see the example below in the discussion of cryptographic
protocols.
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map much more structure internally than a human being
can do with a piece of paper, recognizes this regularity and
accordingly produces correct results in a comparatively short
time.

If, however, such a regularity does not exist at all, then, of
course, it cannot be encoded in a neural network. Here one
could imagine that a formal conceptualization could be devel-
oped, according to which the Al cannot learn a prime number
(because if it did, this would imply the existence of a certain
regularity). <

Example

But what does it mean that there is no regularity?
Mathematics knows this phenomenon from the transcen-
dental numbers, especially in the context of the study of the
Ludolphine number 7. The decimal expansion of 7 does not
follow any recognizable rule, which would allow e.g., to
determine the n™ decimal fraction directly from n.2 Leibniz
had still the hope to find a periodic regularity, if one would
write 7 to another base. The proof of the irrationality of
shows that this was an illusion. Nevertheless, 7 can be stated
in a mathematical expression revealing a regularity, not as
a decimal fraction, but as a continued fraction. Also here it
is by no means to be expected that by statistical learning of
many decimal fraction places, Al could ever come to such a
continued fraction representation. 4

Another problem, which arises with statistically learned math-
ematical operations, is scaling. Let us imagine an Al program
that has learned prime numbers in a range of up to 1000 digits
and is able to determine correctly primes in this range. Will it,

2By now, we know algorithms for a direct calculation of the digit in hexa-
decimal or binary expansion [3, §1.2]. But this still does not give a regular-
ity in the usual sense.
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therefore, still deliver correct results, if it examines a number
with 10,000 digits? There are doubts, which can be illustrated by
an example from Euler [4].

Example

Euler discovered that the polynomial x?> —x 4 41 returns
prime numbers for the first 40 values (his numbers started
with 1); but for x =41 it has the value 412, Thus, the
sequence of prime numbers comes to an end here. Even if
this polynomial does not enumerate all prime numbers below
a certain limit, it illustrates the possibility that there might
be simple primality tests for finite domains. And Al could
learn them as long as the learning data stay in the respective
range—but it would fail outside of this range. 4

This problem is intrinsic: Al is supposed to have a good inter-
polation behavior in the order of magnitude of the learning data.
But about the extrapolation behavior, when one is far away from
the learning data, one can, per se, not predict much—at least, as
long as the internal algorithm, which the Al uses after learning
the data, is not accessible.

3.2 Continuous Versus Discrete Problems

Ol mpdtoL aptbpol mielovg elol mavtog tod Tpotedévtog
TANO0UG TPOTWY APLOL@V.
EucLip, ELEMENTS, Book IX, Prop. 20.

The prime number test points to another general problem of
(new) Al their analysis methods usually assume a continuous
relationship between the data. And this relation should be math-
ematically expressed in continuous functions over the real num-
bers. Discrete correlations are thus not directly captured. The
qualitative difference was very well illustrated by Hermann Weyl
[5, p. 37] with a reference to Plato’s number of the citizens of the
ideal city, which is supposed to be 5040 ="7!
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5040 = 2* . 32 . 5. 7 has many divisors, while 5039 is a prime num-
ber. If in Plato’s ideal city one citizen dies overnight and thereby
reduces the number of citizens to 5039, it is immediately completely
corrupted.

In areas where exact numerical values play a role, such as, for
example, cryptography, Al methods—at least as far as they work
under the condition of continuity—are not directly applicable.
This problem occurs everywhere where there is a specific func-
tional dependency of discrete input values and discrete results.
In this case, statistical methods are not appropriate. Hans Leil3
(Munich) illustrated this by the provocative question, how a C++
compiler should be obtained by machine learning (a lack of data
would not be the problem).

And even if a functional relationship learned by Al would be
piecewise continuous, it is not clear how it will behave at a point
of discontinuity. We encounter such a situation, for example,
when Al produces—quite impressively—male and female faces.
At the switch from male to female faces, nonsensical images
may appear for a short time.

The discussion of prime numbers in the last two sections is
not an arbitrarily chosen example. These play a central role in
practically all common cryptographic protocols. Some basic
concepts of cryptography will be briefly outlined in the follow-
ing, to get an idea of the range of problems that the Al faces if it
also wants to play a role in this area.

For secure cryptographic procedures, it is not only the
increase in the computing power of computers that is decisive.
The ingenious performance of a single mathematician could
also ensure a breakthrough. Algorithms based on number sevens
actually lead to an improvement over RSA algorithms.

In general, the history of cryptographic methods shows
that their security depends on the degree of difficulty of the
mathematical background knowledge used in each case. The
intelligence of the problem solution is thus reflected in the math-
ematical background knowledge used.

Would Al be able to do this? Let’s first take a look at the RSA
encryption.
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Example

In addition to the Euclidean algorithm, the RSA encryption
algorithm uses theorems from number theory that go back to
Leonard Euler and Carl Friedrich Gauss. This refers to mod-
ular arithmetic with integers, which is used in computer sci-
ence. Depending on their finite number of bits, computers can
only calculate up to numbers smaller than a certain limit. Let
Z, =1{0,1,...,N — 1} be any finite set of integers. In multi-
plications with numbers from Z,, the results of a certain size
would lead out of this set. Therefore, arithmetic operations
modulo (abbreviation: mod) N are introduced. Gauss had
already examined congruent numbers modulo N in his num-
ber-theoretical work.

The RSA algorithm is based on modular computing. It
guarantees the difference between the encoding and decod-
ing keys. Furthermore, the encryption key is made public,
while the decryption key remains secret. This is why one also
speaks of a public-key crypto procedure.

In asymmetric encryption such as RSA, two keys are
therefore used. Senders of a message use public keys to
encrypt their messages. The recipient has a secret key which
he does not communicate to anyone. With this, he decrypts
the messages that were encrypted with the public key. This is
to exclude the possibility that someone other than the sender
and recipient can decrypt the message. The advantage of this
procedure is that no secret key has to be exchanged between
sender and receiver. Such an exchange would represent a con-
siderable security risk, as it could in principle be overheard.

Based on the mathematics of modular computing, the RSA
algorithm proceeds in the following steps [6]:

1. Two different prime numbers p and g are chosen at
random.

2. The product n=pg and its function value
¢(n) = (p — 1)(g — 1) of the Euler function are calculated.

3. A (small) odd number e (encryption) is chosen, which is
not a divisor of ¢(n).
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4. The solution d (decryption) of the modular equation
e-d =1 moda@(n)is calculated.

5. The numbers e and n are published as public keys.

6. The number d is the secret key and the numbers p, g and
¢ (n) are eliminated.

The recipient can decode the messages with a secret key d
because he knows the prime factors p and g of n. It is assumed
that only the one who knows the prime factors p and g of n
can decode the encoded message. Furthermore, it is assumed
that there is no classical efficient algorithm for the factorisa-
tion of n. In fact, none is known so far, but it is not excluded
in principle. So far, all security guarantees of the RSA pro-
cedure are based on these facts and assumptions. However,
should the factorisation of n be possible with a quantum algo-
rithm, the security guarantee no longer applies. 4

Example

This also applies to the next steps in the improvement of
cryptology through the so-called number sieves. After the
sieve of Erathostenes, number sieves were proposed for the
factorisation of integers.

In cryptology, number sieves were proposed for the
factorisation of integers. After various precursors, Carl
Pomerance developed the so-called square sieve in 1981,
which was more powerful than all factorisation methods pro-
posed up to that point [7, 8, Sect. 6.1: The quadratic sieve
factorization method, 227-244]. This method depends only
on the size of the number to be factorised and, after vari-
ous improvements, is still the fastest classical factorisation
method for numbers up to 100 decimal places. The “sift-
ing” here refers to the search for divisors. The designation
of this factorisation procedure as “quadratic” comes from
the fact that the factorisation of an integer n in a product is
represented by a corresponding difference of squares, i.e.
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x> —y? = (x + y)(x — y) = n. The equation y*> = x> — n thus
yields the divisors (x + y) and (x — y) of n.

This time, Fermat contributes the mathematical back-
ground knowledge: Using a factorisation method named after
Fermat, the function value of g(x) = x> — n is calculated for
different numbers x until g(x) is a square number. One starts
with the smallest number x that is smaller than the root of n.
Then x is increased by 1 in each subsequent step until the
goal is reached. The question is how to determine as effi-
ciently as possible which function values g(x) can be multi-
plied as a square. In a first step, the approach is to look for
the corresponding congruences x> = gmod n instead of the
equations g(x) = x> — n . This step is also called “sifting”. In
a second step, those congruences are selected from which a
quadratic congruence results by multiplication.

In 1994, a number with 129 decimal places was factor-
ised in this way. However, the effort was enormous: In the
first step of the “sifting”, 600 employees collected congru-
ences in 8 months and sent them to a central computer. The
second step of selection was carried out by a supercomputer
for 298 GB of data in 45 h. For a length N =logn of the
input number 7, the running time of the Quadratic Sieve is
€N M0g M) ™ \ith o = Land ¢ = 1. For a=1 there would be
exponential growth, for « = 0 polynomial computation time.
The quadratic sieve therefore works with superpolynomial but
subexponential computing time.

Another improvement is the so-called number body sieve
with o = %, which goes back to a proposal by Michael J.
Pollard in 1988 [9]. It is used for numbers above 100 digits,
but with the enormous effort of several hundred computers
computing in parallel. Mathematically, the number sieve is
a generalisation of the quadratic sieve. Instead of the ring Z
of integers, other algebraic number rings are considered, with
which the divisors can be found more quickly. However, the
computing time to factorise a number # is still superpolyno-
mial, albeit subexponential. 4
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Example

Elliptical curves

In these cases, security is therefore achieved through math-
ematical background knowledge from number theory and
technology based on the division of labour. In the meantime,
increasingly more and more sophisticated mathematical back-
ground knowledge is being used:

As computing power grows, so does the danger that
encrypted messages will be decrypted. Cryptologists are
reacting with longer keys. This may not be a problem for
supercomputers, but it has disadvantages with the many small
end devices such as smartphones. In order to achieve a com-
paratively equally efficient encryption with small keys as with
factorisation, for example, asymmetric cryptosystems with
elliptical curves are used. The reason is that an addition of
curve points can be defined on elliptic curves, which is suit-
able for encryption methods [10].

In fact, the discrete logarithm problem for elliptic curves
is harder than the factorisation of integers [11]. Therefore,
asymmetric cryptosystems based on elliptic systems only
require significantly shorter keys if the security requirement is
appropriate. With a key length of e.g. 160 bits, a similar secu-
rity is achieved as with an RSA system with 1024 bits. This
is why encryption methods with elliptical curves are used for
devices with small memory and computing capacities, such as
smartphones. The running time of the fastest encryption algo-
rithms with elliptic curves is of the order of 23, where n is the
bit length of the size of the body used.

Mathematically, the theory of elliptic curves is extremely
interesting. After their applications to real, complex and
rational numbers, finite bodies and number theory, the spec-
tacular solution of Fermat’s problem in the 1990s by Andrew
Wiles succeeded on this basis. While there is only elementary
number theory behind the RSA cryptosystems, elliptic cryp-
tosystems require sophisticated algebraic number theory. One
could therefore speculate whether this also opens up further
applications for cryptology on a classical basis. «
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Example

Quantum algorithms

However, anyone who believes that they can reject Al with
a mathematical sense of superiority should keep an eye on the
technical progress of computers. Quantum computers over-
come the security of RSA procedures, which depends on the
difficulty of the mathematical background knowledge used:

In 1994, Peter Shor found an efficient algorithm of the
factorisation problem for a quantum computer in polyno-
mial time [12, 13, p. 733-753]. Central to this is the use of
superimposed states, which allow many calculations to be
performed simultaneously in a gigantic quantum parallelism.
While a superposition of all 2 possible m quantum bit words
can be stored in an m quantum bit large register of a quan-
tum computer, only one of the 2™ possible m bit words can be
stored in the m bit large register of a classical computer.

Shor’s algorithm uses this quantum parallelism to find peri-
ods of modulus functions from which the prime number factors
sought can be derived. With numbers of a word length of more
than 1024 bits to be factorised, corresponding calculations by
classical computers with serial processing or low parallelisa-
tion are practically impossible. When quantum computers are
technically realised, Shor’s quantum algorithm will crack every
version of an RSA encryption method. Then the previous secu-
rity of the global information society will collapse.

The basic idea of Shor’s algorithm is that a number n
can be factorised if the period of the modulus function
f(x) = a* modn can be found for a number a smaller than n.
To determine this period, a quantum algorithm is now to be
given [14]:

By definition, the moduli function f maps the set of inte-
gers Z to the restricted set of numbers Z,, = {0,1,...,n — 1}.
For the input 0,1,...,N — 1 of the quantum algorithm, N
is chosen in the order of n%. We thus assume a function f
with which the set {0,1,...,N — 1} is mapped onto the set
{0,1,...,n — 1} with period p, i.e. f(x +p) =f(x) applies
for all x from {0,1,...,N — 1}.
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That means in the mathematical quantum formalism: The
corresponding unitary operator Uy of f maps two quantum
registers |a) |b) to |a)|b @ f (x)). To achieve the desired accel-
eration of the search for periods of the modulus function, the
quantum Fourier transform is applied to it. Shor’s algorithm is
thus based on the application of the unitary transformation of
the modulus function f(x) = a* modn to factorise n and the
quantum Fourier transform. <

With regard to all these mathematical and physical theories
behind Al, one will rightly underline the supremacy of mathe-
matics and human mind over Al: At first, humans have to come
up with that the world is based on the mathematical laws of
quantum mechanics, that with this physical background knowl-
edge computers can be built and, finally, that mathematical back-
ground knowledge about modulus functions and fast Fourier
transformations lead to algorithmical success. However, it would
be too early to jubilant to assume that there is a mathematics
behind quantum mechanics, which is fundamentally inacces-
sible to Al. The opposite is the case: as is well known, statis-
tics play a fundamental role in quantum mechanics. In fact, the
mathematics of (classical) statistical learning (deep learning) can
be translated into the quantum mechanical formalism. Neuronal
quantum networks with deep learning are the focus of current
research.

3.3  Which Role Does Random Play in Al?

I, at any rate, am convinced that He is not playing at dice.
ALBERT EINSTEIN in a letter to Max Born 14 December, 1926

Random-based methods decide on individual solution steps,
such as by the throw of a coin. They can solve difficult problems
that could not be solved with non-random methods, because the
search space for problem solutions is too large. This advantage,
however, has a price: Occasionally, such methods provide wrong
answers.
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Random can even be useful in proofs. Proofs are an expres-
sion of mathematical intelligence. Since the beginnings of Al,
automatic proofs have therefore played a central role in symbolic
Al There proofs are fully determined step by step. Proofs are by
no means only of theoretical importance. Practical challenges of
digitalisation, such as security in cryptology, blockchain and dig-
ital currencies are increasingly made dependent on proof tasks
that work with randomness.

But how do you convince someone that they have a proof for
an assertion? Traditionally, the only possibility is assumed to
present the proof to the doubter step by step. For practical tasks,
however, this is by no means absolutely necessary or expedient.

A zero-knowledge proof, on the other hand, is a procedure
with which one can convince an opponent with a certain prob-
ability, without revealing any information about the proof [15].
This is by no means unusual, but rather everyday life in the
information age. Detailed analyses are hardly ever read any
more. Fragments, partial quotations, and headings are used to
obscure the essential message with an (intuitively assumed)
degree of probability and to convince the public. In an Al, such
intuitive procedures would have to be translated into algorithms.
For this purpose the technique of interactive proofs can be
applied [16, p. 183 ff.].

Example

An interactive question-and-answer dialogue between a
prover and a verifier is used to check knowledge-free evi-
dence. This dialogue is recorded in various rounds of a pro-
tocol. In the process, the prover has the task to convince the
verifier of the validity of the assertion by answering ques-
tions. Both dialogue partners work with random information
[17]. The verifier must only be able to distinguish between
correct and incorrect evidence with a high probability.
Interactive proof protocols with k dialogue rounds are
denoted IP(k) [18]. In this case, the random bits used remain
secret. In the dialogue form denoted by AM(k), the random
bits are revealed. The “A” stands for the king Arthur, who, as
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a verifier, verifies the proofs of the magician Merlin for “M”.
In this case it can be shown that interactive proofs with an
arbitrary number of k dialogue rounds can get by with only 2
rounds, i.e. AM(k) = AM(2) for k > 2. AM(2) means that
Arthur sends a question to Merlin in the 1st round and Merlin
answers with a proof. In the 2nd round, Arthur must accept or
reject Merlin’s proof. However, it does not matter whether the
random bits are kept secret or not. Therefore, it follows for the
protocols IP(k) € AM(k + 2) and IP(k) = AM for k > 2[19].

The complexity class IP = IP(Poly) comprises proof sys-
tems in which the verifier may interact with the prover in a
polynomial number of rounds, before making a decision. IP
is very extensive, because it applies [P = PSPACE [20]. This
result is therefore significant, since it cannot be relativised
and transferred to arbitrary oracles.

The class NP can be understood as an interactive proof
system: The prover generates a proof, which the verifier
checks in polynomial time. The question is whether the veri-
fier can check the proof without having read it completely.
Can the proof be written in a format that allows only a small
part of it to be checked in order to determine its correctness
with a high probability? In this case, the intuitive and incom-
plete handling of information by humans could be taken over
by the effective algorithms of an Al. 4

In fact, it can be shown that there are proofs for every language
from NP, the verifier, using logarithmically many random bits,
only has to read a constant number of bits of the proof. This
description of NP is the famous PCP (probabilistic checkable
proofs) theorem, which was substantially co-founded by the
2021 Abel Prize winner Laszl6 Lovacz [21].

The class PCP(r(n), g(n)) refers to the class of decision prob-
lems with probabilistically verifiable proofs that can be solved
in polynomial time by exploiting at most r(n) random bits and
by reading at most g(n) bits of the proof. Correct proofs should
always be accepted. Incorrect proofs should be rejected with a
probability greater than 1/2. The PCP theorem then states that
PCP(O(log n), O(1)) = NP [22].
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The PCP theorem has great significance for the approxi-
mation of difficult problems. Thus, in the class MAXSNP
of approximable optimisation problems [23], the aim is not
to determine the solution exactly, but to find the best possi-
ble approximations. An example is the satisfiability problem
MAXSAT, in which one searches for assignments that do not
include the entire formula, but satisfy many clauses. Here it can
be shown that under the assumption of P # NP no MAXSNP-
complete problem (e.g. MAXSAT) can be approximated well.
Exact bounds could be found for e.g. 3-MAXSAT.

Let us return to the initial question of the role of random in
Al Probabilistic algorithms are often more efficient than deter-
ministic algorithms if small error probabilities are accepted. One
example is the verification of prime numbers. There are algo-
rithms that check whether a number is divisible only by itself
and one. But they are time-consuming. With an error probability,
which can be reduced arbitrarily, efficient algorithms based on
random numbers can be used for verification.

In fact, randomised algorithms are mainly of practical impor-
tance. They are often simpler than their deterministic counter-
parts. Occasionally no efficient deterministic algorithms are
known. However, technical computers are never randomised, but
deterministic.

A few random bits arise, for example, through unintentional
(“random”) mouse movements. Pseudo-random generators pro-
duce a large number of pseudo-random bits from a small number
of real random bits. In this context, pseudo-random means that
the bits cannot be efficiently distinguished from real random bits.

Theoretically, however, randomness does not have the signifi-
cance that is suggested by the practical application successes of
randomised algorithms. For example, the 2021 Abel Prize win-
ner Avi Wigderson was able to show that, in principle, for any
method that can solve a problem with a random toss, there is
an almost just as efficient method without a random element
[24, 25]. In this case, the random bits required for the proba-
bilistic algorithms are generated by pseudo-random genera-
tors. Under certain conditions the real random bits used by the
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pseudo-random generators can be eliminated. However, the algo-
rithms obtained in this way are deterministic.

In AI discussions, randomness is often associated with spon-
taneity and creativity that are closed to a deterministic computer
and thus to classical symbolic Al. The stories of the “random”
and “spontaneous” occurrences of human creativity are sim-
ply too beautiful. This alleged limit of Al is at least put it into
perspective by the mathematical result of Wigderson et al.: The
same results of a “spontaneous” and “creative” intelligence could
cum grano salis also be obtained on a deterministic computer.

34 Which Role Has Chaos in Al?

In the beginning rose Chaos ...
HEsiop, THEOGONY, Vers 116.

In everyday language, chaos is understood as a complete mess
that, like randomness, is not calculable and thus does not appear
to be accessible to a computer-assisted Al. Mathematically, how-
ever, chaos is a precisely determined state of a dynamic system
that is to be distinguished from randomness. In general, a com-
plex dynamic system consists of a large number of elements.
The microscopic states of the elements determine the macro-
scopic state of the system. For example, in a planetary system,
the state of motion of a planet at a point in time is determined by
its location and speed. But it can also be the state of motion of a
molecule in a gas, the state of excitation of a nerve cell in a neu-
ronal network or the state of a population in an ecological sys-
tem. The dynamics of the system, i.e. the change of the system
states in time, is described by time-dependent equations (e.g. dif-
ferential equations). In deterministic systems, each future state is
uniquely determined by the present state.

3The following presentation of chaos theory follows the book: K. Mainzer
(2016), Information, Algorithmus, Probability, Complexity, Quantum World,
Life, Brain, Society, Berlin University Press [26, 67 ff.].
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In linear systems, causes and effects are proportional.
Mathematically, we then obtain an equation of the form
f(x) = c - x with x-values, the function values f(x) that depend
on them and a constant of proportionality c. Since this equation
represents a straight line with the gradient c in the coordinate
system, it is called linear.

A solution to this equation can be represented as a time series
of the location as a function of time. We know from mathemat-
ics: Linear equations are easy to solve. However, non-linear
equations, which represent geometric curves, do not always
allow for arbitrarily precise calculation, even with our best com-
puters. In essence, non-linearity means that cause and effect are
no longer proportional: A small local cause can result in a global
effect. An example is weather forecasts, which depend on many
interacting factors. Here, an unnoticed local turbulence can build
up and change the entire weather.

In order to study non-linear dynamics, the so-called state
space of a dynamic system is introduced in addition to time
series analysis. The state of a dynamic system is determined
by various quantities (e.g. the state of motion of a molecule
by its location and momentum at a point in time). These state
components are understood geometrically as coordinates of the
state space of a dynamic system. They define a point in the state
space that represents the system state. In contrast to the location
space consisting of height, depth and width, state spaces can be
defined by more than three coordinates (e.g. the disease state of a
patient, which can be dependent on many symptoms).

In equilibrium, the state does not change and the correspond-
ing point in the state space is fixed in time (fixed point). If the
state changes, the state point generates a development curve
(trajectory) in the state space. The phase portrait of a state space
clearly shows how the state developments (trajectories) of a
dynamic system result in characteristic patterns (attractors).

An attractor is a state into which a dynamic system is drawn
(converges) in the long term:

e A state of equilibrium corresponds to a fixed point attractor
that no longer changes over time (“remains fixed”). In the
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state space, all lines of development (trajectories) then run
(“converge”) to this point as the final state. Linear systems
only have fixed point attractors.

e Non-linear systems also have limit cycles in which states
repeat periodically or, in the case of turbulence, chaos attrac-
tors in which the development lines condense completely irreg-
ularly and non-periodically in a limited area of the state space.

In random evolutions, all correlations have decayed into inde-
pendent events and fluctuate irregularly over the entire state
space. Dynamic complexity and chaos thus lie between complete
regularity (as in linear systems) and randomness.

The time series does not change in the equilibrium case.
This corresponds to a fixed point attractor in the state space. In
the periodic case, the time series fluctuates between two fixed
points. In the corresponding state space, the trajectory is closed
and always returns to its initial state. In the quasi-periodic case,
patterns repeat in the time series. This corresponds to a periodic
pattern of the trajectory in the state space. In the chaos case, the
time series develops completely irregularly and non-periodically.
This corresponds to a trajectory in the state space that develops
completely irregularly and non-periodically, but in a limited
area—the chaos attractor.

In contrast to the three preceding cases, the chaotic develop-
ment is sensitively dependent on the smallest changes in the ini-
tial values of a trajectory: Even the smallest differences lead to
completely different developments after a few steps. This makes
the difference between chaos and randomness clear:

e In deterministic chaos, the dynamics is completely deter-
mined by a non-linear growth law. Nevertheless, long-term
effects are practically impossible to predict, since the com-
putational effort grows exponentially due to the sensitive
dependence on the initial data.

e In contrast to chaotic ones, random developments cannot be
predicted in principle (i.e. even in the short term), since (as
in the case of a fair coin toss, for example) all events are
independent.
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To measure the complexity of a time series and thus of a non-lin-
ear dynamic, we can determine, for example, the degree of non-
periodicity or the sensitive dependence of a dynamic on its initial
data. Thus, the so-called Lyapunov exponents can be used to
measure whether and how strongly the trajectories drift apart in
the state space in order to capture the degree of sensitive depend-
ence (butterfly effect).

Deterministic chaos is therefore in principle computable.
Computability limits are of a practical nature, but serious, since
the smallest differences in the initial data can lead to different
courses of events after only a few steps into the future and practi-
cally exclude long-term forecasts. In practice, it also proves dif-
ficult to distinguish random noise in data from chaotic behaviour,
although mathematical methods are available for this. In classi-
cal mechanics, however, despite Poincaré’s multibody problems
and chaos, the world is completely determined and computable
for a Leibnizian God who does not depend on “earthly” comput-
ers. For Al systems (in a classical world), it follows that their
predictions, despite the constantly increasing computing power
of supercomputers, become exponentially more difficult with
longer time into the future. Quantum computers would, however,
literally lead to a “quantum leap”: Problems (e.g. the factorisa-
tion problem in cryptology) which were previously practically
unsolvable, will then be solvable by a machine. Some theorists
will then continue to argue with Godel and Turing according to
which there are problems that cannot be decided in principle. But
what significance does that have for the rest of humanity?

3.5 IsThere a Theory of Computability
and Complexity for Al?

Will you not answer “yes” to this question?
[27, p. 128]

For classical computing, complexity classes were introduced
to distinguish between P, NP, NP-hard and NP-complete prob-
lems [16, 172 ff.]. While these complexity distinctions refer
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to the different time required to solve the problem, the storage
capacity can also be taken into account. The polynomial space
PSPACE is the class of problems that can be solved by an algo-
rithm whose search space can be polynomially restricted by an
upper bound in all examples. EXP is the very powerful class of
problems whose solutions require exponential time. We know
that P 2 EXP. Then at least one of the relations P # NP or
NP # EXP must hold. However it is not yet known which of the
two possibilities holds.

Since the performance of artificial intelligence depends on
different classes of algorithms, the computability and complexity
theories are fundamental. We first examine hierarchies of these
complexity classes and then ask whether measures of the degree
of artificial intelligence can be deduced from them. From com-
putability theory S. C. Kleene’s arithmetical hierarchy is known,
in which the class of (Turing) decidable predicates is extended
step by step by the alternating addition of existential and all-
quantifiers [28, Chap. 3]. Thus an infinite hierarchy of classes
¥, I, and A, is generated with X = Ilp as class of Turing-
decidable predicates, ¥, (I1,) predicates with prefix of n alternat-
ing quantifiers which begins with the existential (all) quantifier,
and A, = X,NTII,.

In everyday decisions, we often fall back on background
knowledge that we cannot decide and prove ourselves. This is
also true in research based on the division of labour, where we
often make use of the knowledge of neighbouring disciplines
without being able to decide on this knowledge ourselves. Often
these are also assumed hypotheses. This type of natural intelli-
gence can be represented in algorithms:

In computability theory, Turing had introduced the concept of
an oracle Turing machine. In this case, a Turing machine addition-
ally uses a device (oracle), which answers questions without being
able to decide this knowledge itself. If a problem A (formally:
predicate) is decided by an oracle Turing machine in polynomial
time with an oracle B, then A is called Turing-reducible to B. Now,
complexity classes can be defined relative to an oracle. As an exam-
ple, the class of all problems which can be decided in polynomial
time with an oracle B is called P5. Similar to Kleene’s arithmetic
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hierarchy, an infinite hierarchy of complexity classes can be formed
with each level referring to the one below as an oracle. This poly-

nomial hierarchy PH begins with Eg =P and EF = NP, followed
by the layers AP = lel:fl, E,I; = NPEIl:fl, and Hg = CO-E}: with all

complements co-E,l: of E,l:.

With regard to subsymbolic Al, the complexity of classical
probabilistic algorithms is of interest [29]. BPP (bounded-error
probabilistic polynomial time) refers to the class of problems for
which there is a polynomial randomised algorithm that solves
each example with a success probability of at least about 2/3.
Randomised algorithms can sometimes solve problems bet-
ter than deterministic algorithms. So BPP problems have either
a polynomial deterministic solution algorithm or a probabilistic
algorithm that gives a wrong result with a probability no worse
than about 1/3. These limits need not be fixed, but should be
between 0 and below V2. After all, according to the central limit
theorem of probability theory, this does not change anything:
after many runs, the probability of generating an error each time
is small. The BPP class thus includes the class of P problems in
any case. It is even often assumed that BPP=P. But there is no
proof of this yet.

A random-based algorithm can be introduced for the prime
number test [30]. This algorithm uses random throws for the cal-
culation in polynomial time. Occasionally, wrong answers are
given. A one-sided error occurs when prime numbers are always
recognised, but composite numbers are only recognised with
probability 1 — é. The complexity class RP (randomized poly-
nomial time) covers problems with random-based algorithms of
polynomial duration with one-sided error. If two-sided errors are
also permitted, the result is the class BPP. It is known that BPP is
part of PH.

Random-based algorithms of polynomial duration do not
have to be efficient: The class PP (probabilistic polynomial
time) comprises algorithms in which the probability of a correct
answer is little greater than 1/2. In contrast, with BPP algorithms
the answers are correct with a high probability. It can be proved
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that NP is part of PP. However, it is not yet known whether NP
is also part of BPP. The polynomial hierarchy PH is contained in
the Turing closure of PP (i.e. PH € PPP) [31].

Random-based algorithms with one-sided or two-sided error
are also called Monte Carlo algorithms. In Las Vegas algo-
rithms, the correct answer is always given. The price here,
however, is that the runtime depends on chance and can take a
very long time. The class ZPP (zero error probabilistic polyno-
mial time) includes all problems that are solved by Las Vegas
algorithms with polynomial runtime. The following applies:
ZPP = RP N co-RP. The prime number test can be carried out
with Las-Vegas algorithms as well as with Monte Carlo algo-
rithms [32, 33]. An overview of these complexity classes is given
in Fig. 3.1.

Fig.3.1 Complexity EXP
hierarchy for

probabilistic and PSPACE =1IP
deterministic algorithms -

[16, p. 176]

PH
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The performance and limitations of symbolic Al depend on
the (deterministic) algorithms on which they are based. It stands
to reason that sub-symbolic Al such as machine learning on the
basis of statistical learning theory is brought together with the
complexity classes of probabilistic algorithms. The performance
and limits of probabilistic neuronal networks can be determined
by the corresponding complexity classes. But which degrees of
intelligence would an artificial “brain” based on quantum com-
puting have? Which limits arise on the basis of a complexity the-
ory of quantum computing?

In quantum computing, BQP (bounded-error quantum poly-
nomial time) refers to the class of problems for which there is a
polynomial quantum algorithm. BQP contains problems, such as
the factorisation of large numbers, for which it is assumed that
there is no classically realisable solution. However, Shor’s algo-
rithm only proves that the factorisation problem is BQP. It is not
impossible that there is a classical solution. So it is not certain
how exactly BQP relates to P, NP and PSPACE (Fig. 3.2).

The Shor Algorithmus requires gates of the order of
O((logn)*). The computation time of the quantum algorithm
is of the order of O(loglogn - (logn)?) [21] The classical part
of Shor’s algorithm only uses multiplications of the order of
O(logn). The computation time of Shor’s algorithm as a whole
to determine a true divisor of the integer n is therefore of the
order O(loglogn - (logn)®) = O((logn)*). The decisive step in
accelerating the determination of the period is the Fourier trans-
formation, which was translated into a quantum algorithm. This
is at the same time the theoretical breakthrough that classically
non-polynomial solvable problems become polynomial solvable.
The question is whether quantum computers can also solve other
problems polynomially that do not depend on quantum Fourier
transformations. No definitive answers and limits can yet be
given for an Al of the future. Research into quantum computing
and its relationship to classical complexity theory has only just
begun.

Classical complexity theory is fundamental to the security
of the cryptographic protocols mentioned above. With regard to
statistics-based Al, the question arises as to whether this theory
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PSPACE

NP-complete

Fig. 3.2 Complexity classes with Quantum complexity [34, p. 104]

remains valid in the same way, or what should take its place.
Although the software systems of machine learning are them-
selves being implemented in the usual programming languages,
such as C++ and Python, are subject to the known limits of
complexity and computability, in that the deterministic compu-
tations within a neural network cannot be suddenly accelerated.
In a statistical data evaluation is not about a deterministic and
discrete calculation (which, as a rule, is also only carried out
under the aspect of the worst-case complexity). It is therefore
quite conceivable, that—certainly in the sense of an average-case
complexity—classical complexity barriers could be exceeded.
We do not know whether there have been investigations in this
direction that would lead us to expect such results. However, the
need for a theoretical delimitation of the performance of statis-
tics-based Al arises directly from the question of the security of
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our cryptographic protocols. It is to be expected, that even deep
learning cannot compromise RSA, even if oodles of coded and
decoded data is made available. But can this be formally proved?

References

11.

12.

13.

14.

. Kahle, R. (2021), Primzahlen als Herausforderung, in: R. Reussner, A.

Koziolek, and R. Heinrich (Eds.), INFORMATIK 2020, Lecture Notes
in Informatics, pages 719-727. Gesellschaft fiir Informatik.

. Hoche, R. (Ed.) (1866), Nicomachi Geraseni Pythagorei Introductionis

arithmeticae libri II. Teubner.

. Berggren, L.; Jonathan Borwein, J.; Peter Borwein (2004), A Pamphlet

on Pi, in: L. Berggren, J. Borwein, P. Borwein (Eds.), Pi: A Source
Book. 3rd edition, Springer, 721-739.

. Euler, L. (1771), Extrait d’un lettre de M. Euler le pere a M. Bernoulli

concernant leM’emoire imprimé parmi ceux de 1771, 318. Nouveaux
Mémoires de I’Académie royale des Sciences. Berlin, 1774, 35-36,
1772.

. Weyl, H. (1971). Uber den Symbolismus der Mathematik und mathema-

tischen Physik, in: K. Reidemeister (ed.) Hilbert, 20-38. Springer.

. Homeister, M. (2018), Quantum Computing verstehen, Springer: Berlin

5. Aufl., 195-196.

. Pomerance, C. (1982), Analysis and comparison of some integer fac-

toring algorithms, in: Computational Methods in Number Theory, Part
I, HW. Lenstra, Jr. and R. Tijdeman, eds., Math. Centre Tract 154,
Amsterdam, 89—139

. R. Crandall, C. Pomerance (2001), Prime Numbers: A Computational

Perspective. Springer, New York.

. Lenstra, A.K.; Lenstra (1993), H.W., The Development of the Number

Field Sieve, Lecture Notes in Mathematics V, 1554.

. Werner, A. (2002), Elliptische Kurven in der Kryptographie, Springer,

Berlin.

The case for Elliptic Curve Cryptography: https://www.nsa.gov/busi-
ness/programs/elliptic_curve.shtml (abgerufen 06.052020).

Shor, P.W. (1997), Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer, in: SIAM J. Computing
26 1997, 1484-1509.

Ekert, A.; Jozsa, R. (1996) Quantum computation and Shor’s factoring
algorithm, in: Rev. mod. Phys. 68.

Benenti, G.; Casati, G.; Strini, G. (2008), Principles of Quantum
Computation and Information. Vol. I: Basic Concepts, World Scientific
Singapore, 161-162.


https://www.nsa.gov/business/programs/elliptic_curve.shtml
https://www.nsa.gov/business/programs/elliptic_curve.shtml

References 77

15.

16.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

Quisquater, J.-J.; Guillou,L. (1990), How to explain zero-knowledge
protocols to your children, in: Advances in Cryptology — CRYPTO ’89,
Lecture Notes in computer Science 435, 628—631.

Kobler, J.; Beyersdorff, O. (2006), Von der Turingmaschine
zum Quantencomputer — ein Gang durch die Geschichte der
Komplexititstheorie, in: W. Reisig, J.-C. Freytag (HRSG.), Informatik.
Aktuelle Themen im historischen Kontext, Springer: Berlin.

. Babai, L. (1985), Trading group theory for randomness, in: Proc. 17th

ACM Symposium on Theory of Computing, ACM Press, 421-429.
Goldreich, O.; Micali, S.; Rackoff, C. (1989), The knowledge complex-
ity of interactive proof systems, in: STAM Journal on Computing 18(2),
186-208.

Goldberg, A.; Sipser, M. (1989), Private coins versus public coins
in interactive proof systems, in: S. Micli (Hrsg.), Randomness and
Computation, Advances in Computing Research 5, JAI Press, 73-90.
Shamir, A. (1992), IP=PSPACE, in: Journal of the ACM 39(4),
869-877.

Feige, U.; Goldwasser, S.; Lovasz, L.; Safra, S.; Szegedy, M. (1996),
Interactive proofs and the hardness of approximating cliques, in: Journal
of the ACM 43, 268-292.

Arora, S.; Safra, S. (1998), Probabilistic checking of proof: A new char-
acterization of NP, in: Journal of ACM 45(1), 70-122.

Papadimitriou, C.H.; Yannakakis, M. (1991), Optimization, approxi-
mation, and complexity classes, in: Journal of Computer and System
Sciences 43(3), 425-440.

Nissan, N.; Widgerson, A. (1994), Hardness vs. randomness, in: Journal
of Computer and System Sciences 49(2), 149-167

Impagliazzo, R.; Widgerson, A. (1997), P=BPP unless E has sub-expo-
nential circuits: derandomizing the XOR lemma, in: Proc. 29th ACM
Symposium on Theory of Computing, ACM Press, 220-229.

Mainzer K (2016) Information: Algorithmus-Wahrscheinlichkeit-
Komplexitat- Quantenwelt-Leben-Gehirn-Gesellschaft. Berlin.
Dershowitz, N. (2005). The four sons of Penrose. In G. Sutcliffe
and A. Voronkov (Eds.), Proceedings of the Eleventh Conference on
Logic Programming for Artificial Intelligence and Reasoning (LPAR)
(Montego Bay, Jamaica), Volume 3835 of Lecture Notes in Artificial
Intelligence, pp. 125-138. Springer.

Mainzer, K. (2018), The Digital and the Real World. Computational
Foundations of Mathematics, Science, Technology, and Philosophy,
World Scientific Singapore.

Hidary, J.D. (2019), Quantum Computing: An Applied Approach,
Springer: Cham, 20-21.

Solovay, R.; Strassen, V. (1977), A fast Monte-Carlo test for primality,
in: STAM Journal on Computing 6, 84-85.



78

3 Theoretical Limits

31.

32.

33.

34.

Toda, S. (1991), PP is as hard as the polynomial-time hierarchy, in:
SIAM Journal on Computing 20, 865-877.

Adleman, L.; Huang, M. (1987), Recognizing primes in random poly-
nomial time, in: Proc. 19th ACM Symposium on theory of computing,
ACM Press, 462—-469.

Rabin, M.O. (1980), Probabilistic algorithm for testing primality, in:
Journal of Number Theory 12(1), 128-138.

Mainzer, K. (2020), Quantencomputer. Von er Quantenwelt zur
Kiinstlichen Intelligenz, Springer: Berlin.



®

Check for
updates

Conceptual Limitations 4

4.1 The Question “why?”

Why?
Question of a child

If the Turing test would be used as benchmark for the successful
implementation of artificial intelligence, statistics-based Al is in
a dilemma—at least as long as it is still operating in the in black
box mode. This is because one only need to follow up on a ques-
tion, which can be answered as well as possible by the Al, with
the next question: “Why?”

Humans answer a why questions usually by an argument;
such an argument can be placed in a conceptual framework.
Statistics-based Al, however, does not have, per se, a conceptual
system available from which the answer could be derived. So if
it—correctly—answers every why-question with a succinct “I
have learned it this way”, it would immediately fail the Turing
test, since one will not accept this (continuous) answer from a
human being.

That arguments could be statistically learned from a lot of
answers to why-questions appears to be impossible. On the one
hand, one can resort to mathematical examples where specific
discrete properties, e.g. in number theory, seem to exclude a sta-
tistical guessing of the correct calculation. On the other hand,
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arguments for answers from everyday questions cannot be con-
vincingly generated by statistical extrapolation of answers to
similar questions.’

Why questions also pose a dilemma for statistical Al, when
one asks whether the corresponding answers should be correct
in so far as they should reflect the actual decision making used
by the software. In this case, the software would have to disclose
its black box. On the one hand, this should not be possible—
due to the very definition of black box; on the other hand, such
an answer would certainly be distinguishable from an answer
given by a human being. However, if the answer does not cor-
relate with the internal decision making, but is, e.g., statistically
extrapolated from the way other why-questions were answered,
it is not clear why such an answer has to fit to the previously
given answers at all.

From a conceptual point of view, why questions are only one
particularly impressive example of reflexive considerations about
one’s own thinking, which at least human intelligence is capa-
ble of. Questions like “How do you know that?”, “Since when
do you know that?”, “Do you know that for sure?”, etc., which
reflect our knowledge, will not be answered based on purely sta-
tistically learned answer schemes.

Interestingly, in some narrowly defined contexts, symbolic
Al can answer Why questions, because it derives its answers
within a given conceptual framework—and the resulting deri-
vation serves as justification. This leads to a further argument,
why artificial intelligence, as far as it aims to meet requirements
of a Turing test, requires a connection of statistical methods and
knowledge-based systems in a hybrid Al

It is something else that Al can, of course, “memorize” an argument if the
very same question was already answered in the learning data; ChatGPT
makes use of this possibility, when it recourse to its enormous learning data.
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4.2 Can Al “Remember”?

“What do I care about my chatter from yesterday. Nothing prevents
me from becoming wiser.”
Attributed to KoNRAD ADENAUER (German Chancellor, 1949—-1963)

It is first of all a purely technical question whether a trained
machine learning program will always give the same for the
same question; in this case the program has the mathematical
property of functionality.

At this point it is worth taking a look back at fuzzy logic, a
supposedly revolutionary branch of logic that, in the context of
symbolic Al, was preparing to revolutionize formal logic and
with it also computer programming. One broke away from the
usual two truth values true and false and calculated with fuzzy
values (“rather”, “somewhat”, etc.). Especially propagated by
Japanese industrial companies, this fuzzy logic was able to enter
the consumer goods business at the end of the twentieth century.
However, it is was not that your “fuzzy logic washing machine”
worked on base of fuzzy logic; fuzziness was only used for
the modeling of the modeling of the washing machine control
system. The later installed control system was a deterministic
algorithm “like any other”. In the long run it turned out that the
conceptual basis of fuzzy logic does not have any special theo-
retical added value, and the field is today, with less publicity, but
scientifically more solid, only as a special discipline within the
framework of the non-classical logics.

As far as statistical Al delivers functional, i.e. determin-
istic, programs, it follows the principle of fuzzy logic, in the
sense that the statistical methods are only used in the construc-
tion (“learning”) of the program. In the application, however,
we would have to do it again with a deterministic algorithm.
The difference to a traditionally implemented algorithm (e.g., in
the programming language Java) would essentially be that the
internal processes of the algorithm would not be accessible to
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us—due to the black box technology.? This complicates, if not
makes impossible, the investigation of formal properties, e.g.,
correctness with respect to a given specification; but at least one
can “rely” on the results—in the sense of functionality. Areas
where deterministic algorithms exist (or are easy to create), are
from this perspective not specific fields of application for statis-
tical AL

However, if a program created by machine learning should
not be functional, it faces a problem, if one—in the sense of the
last section—asks: “Why did you change your answer?” Would
the program even have the possibility to know that it changed
its answer? Thus, one could also ask the question the question:
“What did you give me as an answer yesterday?” It is obvious
that answers to such questions cannot be learned statistically.

If results are not deterministic, the user has to expect to get
different answers to the same questions. Of course, this is only
acceptable if such different answers have no particular effect in
the given context. As a rule, this is the case for questions only,
whose possible answers are continuously connected to each
other, i.e. different answers are sufficiently close to each other.
In this case, we see again the weakness of statistical Al for dis-
crete questions.

To the extent that one wants to value changes in answers as a
positive feature of learning, the question arises how to deal with
earlier answer—from a more recent perspective wrong or stupid
answers. This question is quite analogous to the evaluation of a
misbehavior of an inexperienced person. Conceptually, it poses
a challenge as one would have to be able to transform experi-
ence into a number of data to be learned. It is a saying that men
never stop learning. This may also apply to Al as it is constantly

2This disadvantage is accepted, on the one hand, because the program crea-
tion in the Al learning process is faster and, above all, is done by the com-
puter itself and no longer requires a trained computer scientist. On the other
hand, it is possible to tackle problems whose external complexity does not
allow direct programming.
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confronted with qualitatively new situations. But such new sit-
uations may also make a “learned AI program” immediately
obsolete.

4.3 CanProgramming Be Automated?

Calculemus!
GOTTFRIED WILHELM VON LEIBNIZ

Programming requires extensive knowledge, experience and
a high degree of creativity. Programmes are written by human
written by people. But can machines also write programmes?
Can this kind of creativity be automated? Programming can be
understood as a process that transforms a problem definition as
the user’s intention into a sequence of instructions and, when the
instructions are executed on a computer, produces a solution to
the problem. Over time, a programme needs to be maintained
as it evolves to changing programme goals, errors in the pro-
gramme, and properties in new computer platforms. Automated
programming (machine programming) is a system that can per-
form some or all of the steps to transform a user’s intention into
an executable programme and its programme and its mainte-
nance [1]. In this sense the creativity of a programmer can be
automated. It is no less than computers programming computers,
and software writing software.

In view of the complexity of programmes today, they are
written by teams. Each team works on a precisely defined goal,
the results of which are put together on a platform. Programmers
make use of prefabricated programme modules, which are com-
piled in digital libraries.

From the 5000 source code databases (repositories) one
and a half decades ago have now become more than 200 mil-
lion. Automated programming (machine programming) aims to
automate these steps. It is not simply about systems that control
themselves and setting, as is already known from control and
regulation technology. Rather, software should create its own
software.
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Automated programming would be used in the technology
of self-controlling automobiles of levels four and five with fully
automatic and autonomous driving. This requires that a system
independently recognises that something is wrong and that an
accident could occur. An important step on the way to machine
programming would be software that could write error-free pro-
grammes. In 2020, the company Intel introduced ControlFlag, a
system that is supposed to detect errors in the source code. The
basic goal here is that a source code by methods of machine
learning (ML), i.e. Al is created.

However, ControlFlag should not initially develop new code,
but only detect errors in existing code. For this purpose, meth-
ods of non-supervised learning are used. In this process, the sys-
tem (e.g. a neural network) analyses data which, in contrast to
supervised learning, is not based on the input and prior training
by a human. Rather, the system recognises the “standard case”
in a large amount of data based on similarities and correlations
and deviating cases deviating anomalies and outliers (bugs). For
example, ControlFlag has identified one billion unlabelled pro-
gram lines of standard quality code and learned corresponding
normal patterns. Unlike software for static code analysis, the
system does not look for specific vulnerabilities such as memory
allocation errors, but rather identifies anomalies independent of
the used programming language.

For the detection of deviations in patterns (e.g. programma-
tion errors), the tool MISIM (Machine Inferred Code Similarity)
is used, which detects similarities in the code. Through structural
comparison MISIM automatically detects which purpose a part
of a code serves. The structure of the entire code is determined
automatically by checking the pieces of code for syntactical sim-
ilarities and differences to other codes with similar behaviour.

Automated programming (machine programming) can
already recognise from parts the intention that an algorithm is
pursuing. For Intel, this is based on a concrete business model:
MISIM is intended to offer software developers in complex envi-
ronments automated code suggestions that fit into a software
architecture or can be used to solve a problem in an existing
code.
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From an epistemological point of view, automated program-
ming with MISIM is a first step in the direction of a software
that recognises intentions and problem situations in order to
independently suggest solutions independently and in this sense
to be intelligent and creative.

In contrast to other code code-similarity programmes, MISIM
has a context-aware semantic structure (CASS) that users can
configure for specific contexts.

The code-similarity programme does not require a compiler
to convert human-readable code into computer-executable code.
The system can also execute incomplete code parts and suggest
additions to solve problems. In the process, neuronal networks
evaluate the code parts according to similarity.

In practical terms, this means software that makes fewer
errors, learns from itself and immediately implements what it
has learned. Machine programming is therefore definitely prov-
ing to be a boost in the economy. Today, software is built into
almost all electronic devices. Therefore, every user should be
able to develop their own suitable software without having to
write a line of programming code. Like a human interpreter
translates, Machine programming translates human language
into the language of machines.

Will machine programming make human programmers
become superfluous? Yes, to a certain extent: the search for pro-
gramming errors and simple programming could be done by
these self-programming machines themselves. Programming
people could then concentrate on more demanding tasks. Where
previously hundreds of thousands of lines of code were neces-
sary, machine programming codes with just a few hundred lines
of programming.

In summary, automated programming is based on three pillars:

1. Intention is the ability of the machine to understand the goals
of the programmer.

2. Invention is the machine’s ability to discover methods for
realising these goals.

3. Adaptation is the machine’s ability to maintain this software
autonomously.
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As already explained, the intention of a programmer can be
detected by non-supervised learning from parts of a code [2].
When inventing a program to achieve these, in addition to neural
networks and machine learning, methods of program synthesis
can also be used. In program synthesis, an invention is conceived
as a search problem. The search space comprises programmes as
solution candidates. The goal is to find a program that satisfies
certain constraints of the constraints of the desired behaviour. In
this case, it is necessary to determine how the search space is to
be represented, how it is to be efficiently constructed using the
semantics of the underlying building blocks and how the con-
straints and side conditions are to be understood.

4.4 CanProving Be Automated?

A good proof can be read as a poem—this one looks like a phone
book!

Comment on the computer assisted proof of the Four Color
Theorem

A classical example of automatic proof is formal verification
with SAT. Automatic proof goes back to the beginnings of sym-
bolic Al and is based entirely on formal (symbolic) logic. In
logic, the satisfiability problem (SAT) concerns the question of
whether there is an interpretation that satisfies a given Boolean
formula. In this case, the formula is called satisfiable. If such an
assignment does not exist, the function expressed by the formula
is false for all possible assignments of variables and the for-
mula is unsatisfiable. According to Cook’s theorem, SAT is NP-
complete [3]. There is no known algorithm that efficiently solves
every SAT problem. But heuristic SAT algorithms can at least
be applied, to solve restricted problem classes with thousands of
variables and formulas [4].

The question arises as to whether SAT methods can also be
applied to machine learning with neural networks. In this case,
one would have to find neural network models that are con-
strained by boundary and side constraints. Neural network nodes
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of neural networks but often do not have linear input-output
behaviour. However, they can be approximated linearly. For this
purpose, the weighted sum of the input signals to the nodes is
denoted as variable c. Let variable d be the output of a node.
If there are upper and lower bounds [/, ] of ¢, the relationship
between ¢ and d can be approximated by boundary conditions
suchasd > 0,d > c,and d > % Obviously, these boundary
conditions are represented by linear equations for constants / and
u [5].

In the next step, the boundary constraints are represented
by Boolean formulas. The idea is to combine a linear program
solver and a SAT solver. The SAT solver is to check whether
these Boolean formulas have a satisfiability assignment. For this
purpose they are transformed into a conjunctive normal form
(CNF), which consists of clauses connected by conjunctions
(disjunctions of literals).

A SAT solver works in such a way that it successively evalu-
ates the Boolean variables. Backtracking always occurs when-
ever a conflict is found between the current evaluation and a
clause. SAT solvers can be extended by various learning heu-
ristics. An example are SMT (Satisfiability Modulo Theory)
solvers, which combine SAT solvers with specialised decision
procedures for other theories.

The verification of feed-forward neural networks can be
formally realised in following steps: Given a feed-forward
neural network G with a function f :R" — R™, which is
defined by a set of linear constraints ¢ over the real variables
V=1{x1,....%0,¥1,....Ym}. The verification problem of G
is either to find a valuation function o for the variables from
V which satisfies ¢ over the input and output nodes of G with
f&1,..sx0) = O15...,Ym), or to show that no such valuation
function exists for the nodes.

In the case of a linear programme solver (LP), one starts with
a given set of linear inequalities over real variables and a linear
optimisation function (linear programme). The verification prob-
lem of linear programming consists in finding an assignment to
the variables that minimises the objective function and satisfies
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all constraints. A more advanced instrument is the combination
of a linear programming solver (LP) and a satisfiability solver
(SAT, SMT).

A proof assistant or interactive theorem prover (interactive
theorem prover) is a software tool that supports the process of
formal proving by human-machine interaction. In computer pro-
grams data types are used to reduce software errors (bugs). The
type theory CoC (Calculus of Construction) is the basis for the
proof assistant Coq [6]. Coq implements a programme specifi-
cation, which is based on an extension of CoC, the calculus of
inductive constructions (CiC) and combines a higher-order logic
with a richly typed functional language [7].

The instructions of Coq allow,

e to define functions or predicates (which can be evaluated
efficiently).

to assert mathematical theorems and software specifications.
to develop formal proofs of these theorems interactively

to machine-check and certify these proofs

to extract certified programs.

Coq provides interactive proof methods and decision algorithms.
Connections with external theorem provers are also accessible.
Therefore, Coq is a platform for both the verification of math-
ematical proofs as well as for the verification of computer pro-
grams in CiC [8].

In Coq, the verification of proofs is reduced to the verification
of types in type theories like CiC. The core of Coq is therefore a
proof algorithm for types in the language of CiC. Further details
of Coq are given in various tutorials. Finally, Coq and CiC have
been used in advanced difficult proofs (e.g. the four-colour theo-
rem [9]).

The extraction of certificated programs works with recursive
schemes of terminating algorithms. The extraction of programs
requires that a faithful Coq version of the target program in func-
tional language is embedded in Coq. Correctness properties of
the Coq version of the target program can then be proven and
a functional program version automatically extract a functional
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programme version. If the automatic extraction is secured, the
resulting functional program fulfils the expected correctness
properties.

A well-known application of symbolic Al since its beginnings
has been first-order unification. This is an algorithmic procedure
in which equations between symbolic expressions are solved. A
solution to a unification problem is a substitution that assigns a
symbolic value to each variable of the formal expression of the
problem description. A unification algorithm calculates a com-
plete and minimal set of substitutions, which includes all solu-
tions and contains no redundant elements. Syntactic unification
of Ist order is fundamental to the resolution method of 1st level
logic. In ‘““automated reasoning” this procedure helps, to cope
with the combinatorial explosion that occurs in the search for
instantiation of terms.

The Ist order unification can be fully formalised in induc-
tive type theory. Automated reasoning is also a major application
of unification today. Thus SAT methods with Boolean logic are
used in the automotive industry, aviation and in rail transport in
the handling of logistical problems.

These examples involve highly safety-critical applications.
Because of their complexity, these optimised SAT solvers are
not amenable to direct formal proofs of correctness. However,
Boolean SAT solvers can be embedded in the proof assistant
Cogq. Their certification procedure does not depend on a specific
SAT solver, but can be applied to any SAT solver that can be for-
malised in Coq. As usual, the program code of the proof checker
can be extracted with Coq.

It is noteworthy that practical software procedures of indus-
try and technology can in principle be certified by proof assis-
tants like Coq. At the same time, however, these proof assistants
are deeply rooted in the fundamentals of logic and mathematics.
Therefore, they can also be applied to the increasingly complex
proofs in mathematics. Some proofs with an immense number of
case distinctions, such as, e.g., the four-colour problem can only
be tested with increasing computing power. However, in today’s
research, a much more fundamental problem arises than just the
size of individual proofs:
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Mathematical disciplines have become so highly specialised
with difficult methods that they often require a lifetime of train-
ing. Mathematical arguments are occasionally so complicated
that a single mathematician can hardly examine them in detail.
Therefore, they rely on the competence of their colleagues, who
are recognised by the scientific community in their respective
fields of research. This gives rise to considerable risks of error.

The Russian mathematician and Fields Medal winner
Vladimir Voevodsky (1966-2017) reported one of these experi-
ences. In his research, he had combined the highly abstract fields
of algebraic geometry and algebraic topology together in order
to prove central mathematical conjectures (Milnor and Bloch-
Kato conjectures). In the process, errors in his theorems were
overlooked and remained undiscovered for years. After the dis-
covery of these errors, one was alarmed, because it could not be
ruled out that other errors were hidden in the difficult proofs.

Voevodsky was deeply concerned about this. Who, he asked
himself, could ensure that something had not been forgotten,
that a mistake has been made, if even errors in rather simple
arguments remain undiscovered for years [“Who would ensure
that 1 did not forget something and did not make a mistake, if
even the mistakes in such more simple arguments take years to
uncover?’] [10]. This experience with mistakes, which had been
overlooked for years by the scientific community doubts as to
whether the usual division of labour of experts in the scientific of
experts in the scientific community can be trusted in the future.
Voevodsky became increasingly convinced that the human mind
cannot cope with the increasing complexity of mathematical
problems and would be overtaxed.

This raises the question: Are we ultimately dependent on the
support of computers as the only way to solve problems even
in mathematics? Voevodsky therefore proposed his basic pro-
gramme for univalent mathematics, in which software for the
verification of proofs is at the centre to promote confidence and
security in mathematics.

The situation is reminiscent of the mathematical founda-
tion crisis of a hundred years ago [11]. To avoid contradictions
in Cantor’s set theory, Bertrand Russell had introduced his type
theory [12]. Objects were not defined as sets, but as types with
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great similarity to data types in programming languages. In pro-
gramming languages data types are necessary to avoid program-
ming errors. In fact, type theories prove to be a bridge between
mathematics and computer science. Meanwhile, not only data
structures in computer science, but also complex mathematical
structures such as algebras and topologies can be characterised
by type theories. The result is that the theorems and proofs can
be automatically checked for correctness by proof assistants
along the lines of Coq.

The issue here is not whether Voevodsky’s univalent math-
ematics already provides the ideal methods. Rather, the devel-
opment of mathematics could come up against the limits of the
capacity of human brains, which can only be overcome with the
support of powerful instruments such as computers. It is not only
human muscle power that has been strengthened by technol-
ogy and eventually led to motorisation and automation, but also
human brainpower through computerisation.

What is new is that proof assistants work interactively, i.e.
they develop proofs in the interplay of humans and computers.
Are we thus entering a new phase of mathematical thinking,
in which mathematical theorems and their proofs are devel-
oped in a symbiosis of man and machine? Huge databases store
routine proofs and patterns of thought, which are combined in
new and appropriate ways. The machine discovers patterns of
“normal cases”, but also deviations and tests possibilities. What
would that be other than the first steps towards mathematical
creativity?

At any rate, it would be the transition from symbolic Al, as
cultivated in mathematics through automatic proof, to a hybrid
human-machine intelligence, which opens up new potentials
and transcends old boundaries of both machines and human
creativity.

4.5 “What You Give is What You Get”?

The Analytical Engine has no pretensions whatever to originate any-
thing. It can whatever we know how to order it to perform.
ApA LOVELACE
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We had already pointed out the problem of extrapolation, i.e., the
problem that can arise in machine learning when it has to deal
with data that lie outside the domain from which the training
data came from. Conceptually, the situation is even more prob-
lematic when it comes to features that do not have a statistical
relationship to the features that act as input parameters.

For example, address, gender, nationality, and skin color can
be recorded together with a given selection, in order to statisti-
cally check whether this selection was discriminatory. With the
help of these data, however, no statistics can help to find out
that the selection systematically discriminated, e.g., left-handed
people.

At the end of the day, this problem boils down to the fact that
machine learning only detects correlations that exist between
the given features. Scientific progress, however, often takes
place where correlations are detected which relate to previously
ignored features,

Thus, on a conceptual level, machine learning can only take
into account the features that have been explicitly given to it; in
short:

What You Get Is What You Give.

How little the data themselves sometimes justify their inner
structure, is shown by an example described by the physicist
Max Born in his memoirs [13, p. 55]:

Breslau obtained an excellent meridian instrument and a parallacti-
cal telescope. Yet no proper building was provided, and the previous
instruments were installed in two wooden huts on a narrow island in
the Oder river ... The time service for the province of Silesia ... was
transferred to the new Zeiss instrument, but the results were rather
unsatisfactory.

As nice as the idea may be to find out the reason for the devia-
tions by machine learning based on the captured data, such an Al
is unlikely to be successful:
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Dr Lachmann was charged with finding out the reason, and he soon
discovered a correlation between the strange deviations of the time
observations and the changing level of the water in the lock: the
island was not proof against water pressure.

This example involved information that was outside of the data,
but which can be added by taking into account comprehensive
“knowledge” of the environment. A classic example that requires
real creativity is the Artin board>:

Example

Consider a board with a 8 x 8 grid on it, dividing it into 64
squares; now remove the two opposite squares from the cor-
ners so that only 62 squares remain:

Is it possible to tile 31 dominoes [__] on this board so that all
squares are covered?

The answer is easy to see when we put some extra struc-
ture on the board, namely the usual black and white alterna-
tion of a chess board; a mutilated chess board looks like this:

3Christian Thiel [14] discusses Artin’s board as a paradigmatic example of
creativity. On the notion of structure that comes into play here, see [15].
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As we removed two white squares, the mutilated chess
board has 32 black squares but only 30 white squares; but
each domino covers exactly one white and one black square,
so that we cannot tile a board which doesn’t have an equal
number of white and black squares.* <

Of course, with the help of brute-force methods Al should be
able to find out (very fast) that the desired covering does not
exist; but it is not to see that it could draw on the idea to use
the chessboard painting and, thus, solving the problem also inde-
pendent of the size of the board.

In general, there are limits to machine learning when we need
to recognize or even just have to take into account-parameters
which are not explicitly included in the data sets. At best, arti-
ficial intelligence can indicate that an explanation for a conspic-
uous pattern in the data - a pattern at least conspicuous for the
Al - requires an additional feature to explain this pattern. The
creativity to suggest even one for it is left to humans.

The great successes that machine learning can show in such
cases where the relevant information is actually hidden in large
amounts of data - facial recognition or the above-mentioned
folding of proteins - are examples will not be generalizable if
relevant information is not already part of the data under con-
sideration. Here, we see a conceptual boundary, which cannot be
overcome by advances only within machine learning.

“4Historically, the example of the mutilated chessboard can be traced back to
Max Black who posed it in 1946 as a problem in his book Critical Thinking
[16, exercise 6, p. 142] (but starting off with the chess board, thus, leaving
out the creative part of adding this structure as a first step). It is also reported
that Emil Artin occasionally used this example in his lectures (see [15, 17]);
it might well be that he took it from Black (or some other later source), but
it was stressed in a obituary for Artin that he applied the idea of the solution
within his mathematical activity, as he had “the very rare ability to detect,
in seemingly highly complex issues, simple and transparent structures” [18,
p. 39].
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4.6 Background Theory

Stella Veneris, quae CI)(J)GCP(/)POC Graece, Latine dicitur Lucifer, cum
antegreditur solem, cum subsequitur autem Hesperos.
Cicero, De Natura Deorum 2, 20, 53

We had already pointed out in the Riemann conjecture, and
especially in the discussion of cryptographic protocols that
mathematical conjectures and results are made and proven in
the context of a given background theory. In mathematics, the
respective background theory is given as an axiomatic system,
and the mathematician David Hilbert sees in the axiomatic
method a goal of every further science [19]:

Everything that can be object of scientific thinking in general, as
soon as it is ripe for formation of a theory, runs into the axiomatic
method].]

The “framework of concepts” [19] formed in this process is, of
course, not obtained on a statistical basis, but through conceptual
analysis, which leads to implicit definitions of the used terms
and general laws for them.

In principle, the axiomatic method is also the leitmotif of the
expert systems. It should be noted, however, that these systems
do not generate their own “framework of concepts”, but the con-
cepts are supplied by a programmer. What can be proven within
a given system of axioms is subject to the well-known restric-
tions in computational complexity.

But independently of this, the expert systems - as well as sci-
entific theories in general - reach their limits, if they would have
to draw on general world knowledge. And this limit is even more
restrictive in statistical learning.

Machine learning is already said to be able to generate jokes.
But in what form should machine learning be able to determine
whether a joke generated by it has crossed the line of good taste?
Jewish jokes and jokes about Jews are dangerously close expres-
sions. Nevertheless, a not completely dump person should be
able to recognize the difference immediately due to his world
knowledge.
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If one were to commit oneself to the highly dubious task of
to try to teach the said difference to an Al by means of a nega-
tive classification of a large numbers of jokes about Jews, it is
noticeable that one can teach the difference, for instance, to a
naive child by a single example. The reason lies in the explana-
tion, which can refer to background knowledge which refers to
terms such as “hurtful” and “contemptuous” - not to mention the
historical context.

Another interesting challenge is posed for machine learning
by counterfactuals. Here, one tries to obtain conclusions within a
counterfactual thought experiment. There should be no problem,
as long as only one feature in a query is changed. One can run
statistics-based human resources software, of course, to check
the following situation: “What would be the result if the appli-
cant were a woman?” But in more complex scenarios, at least
two problems arise.

On the one hand, changes in the deep structure of the argu-
mentation structure cannot be carried out directly, precisely
because of the inaccessibility of the theory, which would make
this structure manageable. On the basis of recorded positions,
the position of Neptune in the sky can be predicted by machine
learning; but using only these data, and without any further
theory, certainly the following question cannot be answered:
“Where would Neptune be seen if Uranus did not exist?”.

On the other hand, changes in the situation underlying the
learned data cannot be mapped, because no (learning) data are
available for this purpose. Consider, for example, the extrapola-
tion of fall experiments on the basis of highly sensitive measure.
Now ask: How would the body fall if we neglected friction?

Another example where a background theory can enter, is
the phenomenon of creativity. Here some quite impressive suc-
cesses are attributed to modern Al, e.g. in creative Go strategies
or in the composition pieces of music. The creativity that comes
to light here is by construction bound to the learned examples.
A “revolutionary” idea, which can be based on a negation estab-
lished rules - as it is realized for example in Schonberg’s twelve-
tone music - will, however, not be invented by machine learning.
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It is precisely the knowledge of the prevailing theory that makes
it possible to propose a radical alternative.

Finally, we want to address a question where the theory is
not in the background but, strictly speaking, in the foreground.
Based on an extensive collection of data on the position of Venus
in the morning sky one should be able to predict with machine
learning when and where to see Venus next time in the morning
sky; the same is true for Venus in the evening sky.

But in what form could an artificial intelligence indepen-
dently correlate the data of the morning sky with those of the
evening sky to find out that they are one and the same planet?
The human achievement to develop a planetary system, in which
circular orbits are introduced into the theory, which hyposta-
size planetary positions also below the horizon, and which rec-
ognizes the morning star and the evening star as being on the
same (approximated) circular orbit, cannot be developed by the
Al alone. This is because the pure observation data do not pro-
vide any reference to a superordinate (planet) theory. One can, of
course, try to ask to match the data with a circular orbit. But this
would give the actual progress in knowledge, which was present
in this identification, to the Al, instead of receiving it from it.

4.7 Ethical and Societal Limitation of Al

Human dignity shall be inviolable.
German Constitution Art. 1 (1)

In philosophy, a distinction is made between the limits of knowl-
edge and the limits of moral-ethical action. Kant assumed that
the limits of knowledge are determined by the categories of
understanding. These are forms of judgement that largely corre-
spond to the axioms of Newtonian physics of the time. Examples
are categories that describe objects with their properties, causal
sequences of events and their interactions in space and time.
Boundary questions that go beyond these categories were
described as categorically undecidable. For Kant, these include
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questions such as whether the universe has a causal beginning
and end or is unlimited, but also the question of whether there is
an “immortal soul” or a God. In modern times, these limitations
of undecidable questions remind us of Godel’s incompleteness
theorems, which define the limits of logical calculi for logically
undecidable questions. In computer science, limits to the per-
formance of algorithms are distinguished in complexity theory.
In contrast to Kant’s categorical limits of cognition, limits in
computer science are relativised to the presupposed classes of
algorithms.

The limits of moral-ethical action are, in Kant’s case, likewise
by a logical form of judgement, in this case of the categorical
imperative as a universal requirement of action [20, Ch. 12.2].
In simplified terms, the scope for action (“freedom”) of each
individual is limited by the scope of action (“freedom”) of the
of the others in a society. Therefore, every intention and rule of
action (according to Kant, a “maxim of action”) of an individual
must be a law and must be generalisable as a law and regulation
for the whole of society [21]. To put it bluntly, I must therefore
always behave in such a way that my maxim of an individual
action as a law, e.g. in a democratic parliament for all citizens,
could be adopted for all citizens. As a general requirement for
any action, this is very strong and emphasises the formal rigo-
rism in Kant’s ethics. Just as Kant’s categorial epistemology
was oriented towards (then) physics, his ethics should define the
framework of civic legislation in law.

All ethical and legal regulations were to be justified by this
ethical framework. These regulations thus limit the scope of
action of every citizen of a society. After the epistemological
limits of computer science and Al have been discussed in the
previous sections, we now turn to the ethical and societal limits
of AL The following analyses will show whether today’s regula-
tions for the limits of Al application can be traced back to Kant’s
categorical imperative.

As an example of ethical-legal boundaries, the former EU
Directive on Al 2021 will be considered [22]. The legal frame-
work for Al proposed by the EU Commission is intended to
define the fundamental rights and the security of users. The aim
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is to increase the trust and the dissemination of Al. From the
EU’s point of view Al systems promote its economic growth,
its innovative strength and its global competitiveness. However,
this also entails new risks with regard to the security of users
and their fundamental rights (“civil liberties”). The legal frame-
work covers both providers and developers as well as users of Al
systems.

The risk classification is based on the intended purpose of
the Al system in relation to the EU product safety regulations.
Therefore, the classification of the risk depends on the function
of the Al system, its specific purpose and its conditions of use.
Added to this is the number of persons likely to be affected,
the dependence on the outcome, and the irreversibility of any
damage.

The EU Commission proposes a risk-based legal framework
with four risk levels.

Unacceptable risk: Some very harmful Al applications that
violate fundamental rights and therefore fundamental rights and
thus violate EU values, will be banned. This concerns, first of
all, the evaluation of social behaviour by authorities, known in
China as the ‘social score’. In this way, the EU is clearly setting
itself apart from its Chinese competitor. Likewise, the exploita-
tion of the vulnerability of children is also prohibited. The use of
Al techniques to unconsciously influence users is also banned.
This is a very strong demand, as it interferes with the area of
advertising in free markets. Similarly, biometric real-time remote
identification systems will be severely restricted if they are used
for law enforcement purposes in the public domain.

High risk: In this case, the Al systems concerned have a nega-
tive impact on the security and fundamental rights protected by
the EU. The EU proposal is accompanied by a list of high-risk
Al systems. This also includes security components of products,
covered by EU sectoral legislation. According to these sectoral
legislation, they must be subjected to a conformity assessment
by a third party. For all high-risk Al systems, binding regula-
tions are required which secure the quality of the data sets used,
the documentation, transparency, provision of information to
users, robustness, accuracy and cybersecurity. In the event of
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infringements, national authorities will have access to infor-
mation that will allow them to assess the legitimacy of the Al
This legal framework is in line with EU Charter of Fundamental
Rights and the EU’s international trade obligations.

Low risk: In this case, special transparency obligations are
imposed if, for example, there is a risk of manipulation. In this
case it should be clear to the users that they are cooperating with
a machine.

Minimal risk: All other Al systems can be developed and used
in compliance with generally and used in compliance with gen-
erally applicable law. However, providers can offer voluntary
codes of conduct to ensure the trustworthiness of the Al systems.

A list of critical application areas includes the fields of biom-
etric identification, critical infrastructure, education and training,
recruitment and employment, provision of essential public and
private services, law enforcement, justice, asylum and migration.

Biometric identification can be used for user authentication.
Technically, it is based on machine learning for pattern recog-
nition. Examples are the unlocking of a smartphone or the veri-
fication for border crossings. But remote identification is also
possible, e.g. to identify a person in a crowd by comparing him
or her with the database. Biometric systems can also refer to,
for example, gait and language. The quality and accuracy of the
identification depend on, e.g., camera quality, light, distance,
database, algorithm, ethnic origin, age or gender of the persons.
They are constantly being improved. But even a small error rate
of 0.1% is high for tens of thousands of people.

When Al systems are classified as high-risk, obligations arise
for the providers. Companies that put high-risk Al systems on
the market must submit to a conformity assessment. In doing so,
they must prove that their systems meet the prescribed criteria of
a trustworthy system.

Kant already emphasised that ethical standards alone are not
enough, but must be enforceable as a law. Normative limits must
therefore be linked to state sanctions in the event of transgres-
sions. In the EU, this is the responsibility of the member states
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with their national authorities. In the European regulation, the
sanctions of companies are defined for certain threshold values,
which relate to the classification of risks.

Up to 30 million euros or 6% of the total worldwide turnover
of the preceding year are provided for in the event of violations
due to prohibited practices or data requirements.

Up to 20 million euros or 4% of the total worldwide turnover
for the previous year are provided for violations of other orders
and obligations under the regulation.

Up to 10 million euros or 2% of the total worldwide turno-
ver of the preceding year shall be imposed in the event of false,
incomplete or misleading statements in the case of information
provided to the competent national authorities.

A central concern of the EU regulations is to prevent bias
by AI systems on the basis of racial discrimination or gender.
However, EU regulations should not become a killer of inno-
vation. Especially, the new EU Al-regulations which were
accepted by the EU Parliament in 2023 do no longer consider
the potential of Al, but tend to overregulation under the impre-
sion of ChatGPT. Therefore, lean administrative structures
should be implemented. They should also only be used when it
is absolutely necessary and impose as little bureaucratic burden
as possible on the economic participants. In principle, greater
confidence on the part of users promotes the demand for Al
Increased legal certainty with uniform regulations opens up
larger markets for their products for European providers.

At the national level, the German AI Steering Group of
Standardisation was set up in 2019 to promote confidence and
legal certainty in Al by standardising and certifying Al software
[23]. Clear limits for the use of technical devices are set in the
German tradition by DIN (Deutsches Institut fiir Normierung)
standards. However, mathematical correctness and technical
safety are not sufficient. Ecological, economic, social, legal and
ethical criteria must be taken into account in Al standards. These
criteria are therefore based on ethical, legal, social, economic
and ecological limits of the application of Al
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The German Steering Group (HLG) therefore comprised
members from the following areas of science, economics, poli-
tics and civil society (e.g., German Research Center for Al
(DFKI), Platform for Learning Systems, acatech, IBM, Siemens,
Federal Ministries, German Parliament), which is organised by
the Federal Ministery of Economy (BMWi) together with the
German Institute for Standardisation (DIN). Their task was to
structure a roadmap and a future strategy for the standardisa-
tion of artificial intelligence. Proposals were to be developed that
would provide orientation for the German (DIN) orientation for
the certification of Al software. The legislature should also be
given the opportunity to make recommendations for legislative
resolutions.

DIN standards at national level are not sufficient for an
international technology such as Al For this reason, in addi-
tion to DIN, DKE (German Commission for Elektrotechnology,
Elektronics, Information technology) and VDE (Society of
Electrical Engineers) at national level, CEN (European Committee
of Standardisation), CENELEC (European Committee of
Electrotechnical Standardization) and ETSI (European Institute of
Telecommunication Standardization) are also involved. The interna-
tional umbrella organisations are ISO (International Standardization
Organization) and IEC (Electrotechnical Organization).

The boundaries were drawn in seven working groups under
the aspects of

fundamentals (data, terminology, classification, Al elements)
ethics/responsibility

safety

quality and certification

mobility and logistics

industrial automation

medicine.

The Commission was aware that these boundaries of Al could
steer the development of a society in the application fields of
economy and and infrastructure.
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Example

A risk-adapted regulatory system for Al is to be illustrated
using the concrete example of a criticality pyramid. This is an
application of machine learning for automatic translation. To
measure the accuracy of a translation, the BLEU (bilingual
evaluation understudy) value is used, which automatically
compares machine-translated texts with texts that are trans-
lated by human experts. The BLUE value on a scale of up to
100% does not capture the syntactic and semantic correctness
with its very simplified metric, which is limited to compari-
sons of word sequences. But the BLUE value proves useful as
a first rough estimate between automatic translation systems.
The standardisation of quality metrics for Al systems is very
important for a broad acceptance of these systems in practice.
Since 2006, the BLUE factor has been specialised in applica-
tion domains, in order to increase its accuracy. For example, a
BLUE value of 15 is very poor, since it requires a great deal
of post-processing of the automatic translation in order to con-
tinue the translation work.

For a risk-adapted certification of Al systems, quality
thresholds must be defined for application classes, below
which the results of the Al systems can no longer be used in
a critical area. If, for example, a witness statement is avail-
able in a foreign language, its transcription can no longer be
used in court with too high an error rate. If, for example, a
witness statement is in a foreign language, its translation can-
not be used in court with too high an error rate. In this case,
the document must be given to a human translator instead (cf.
Fig. 4.1: red peak in the pyramid of criticality). Only certified
texts should be used for operating instructions for technical
devices. For doctors’ letters and contractual texts, the quality
of the translation must be checked on an ongoing basis. In the
case of public tweets, blogs or news portals, an expost check
should be carried out. For private chats automatic translation
with a low BLUE value may well be useful, since a very low
risk for the user and the advantage of a fast translation out-
weighs the risk. €
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In summary: The steering group worked with science, business,
politics and civil society, industry, politics and civil society to
develop standards for AI technology (DIN standards) and leg-
islative initiatives (e.g. Ministries, German Parliament). In this
way, it regulates the current ethical-legal limits of Al It there-
fore serves to advise and coordinate. Al standardisation should,
however, not only be seen as a control and regulatory task (dan-
ger of over-regulation, bureaucratisation and a brake on innova-
tion, but rather as a reinforcement of sustainableand responsible
innovation.

To conclude the discussion of ethical-legal barriers, their
international dimension should be examined. It is not enough to
develop European standards that are not accepted internationally.
In the USA, ethical-legal limits of Al are pragmatically com-
bined with the possibilities of business and capital (e.g. Silicon
Valley). Global IT and Al companies are dramatically changing
the world of life and work. Human progress is measured by suc-
cessful business models. Ethnic and gender discrimination are
clear limits to this.

In contrast, China relies on state monopolism with a con-
trolled economic system. Boundaries are set by the Communist
Party for all areas of life. Al is the spearhead of the technical,
economic, military and political challenges of China as a world
power. In strategic plans up to 2050, the steps towards innova-
tion are centrally determined by the state party and realised with
“ruled” capitalism. A “ruled” civil society controls itself via a
social score for each individual citizen [24]. This total data col-
lection of each individual is by no means regarded as a horror
vision of a “Big Brother”, as it is in the West, but rather, in the
opinion of a large majority of the Chinese people, it ensures the
superiority of its own system in crisis management. The ethical-
legal limits of Al application should then be determined by the
state and implemented directly to increase the efficiency of its
own system. In the Confucian tradition, the collective good is at
the top of the hierarchy of values.

The boundaries of Al in Europe are fundamentally deter-
mined by human rights and parliamentary democracy. Funda-
mental to individual human rights are the autonomy rights of
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each individual. A technical system that adheres to pre-pro-
grammed moral rules, is not itself “moral”, however. Even in
the case of learning algorithms we are dealing at best with Al
systems that can be compared with trained animals or small
children. Autonomy in the rights of political freedom, however,
means a higher level: autonomous is the human being who is
self-determined in every respect and capable of self-legislation.

As already explained above, according to Kant, an action is
only morally justified if it can be the basis of a general legisla-
tion. This is the core idea of his Categorical Imperative: The rule
(Kant: “maxim”) of my action must be generalisable. My right
ends where the right of others begins. If I encroach on the other
person’s freedom, this action is not capable of generalisation. It
would inevitably lead to the war of all against all. The maxim of
my action must therefore, in principle, be the basis of a general
law which, for example, a democratic Parliament would pass. In
this sense, autonomy means the ability to “self-legislate”.

From a technical point of view, it cannot be ruled out that an
artificial intelligence will one day also be capable of “self-legis-
lation”, i.e. it will give itself its laws as programs: It programs
itself! In the separation of powers of Western democracies, leg-
islation is the right of parliament (i.e. legislative power), elected
by the people of a country in free elections.

At this point at the latest, the question of responsibility arises
in the age of digitalisation and artificial intelligence. The concept
of responsibility has a long legal and philosophical tradition.
Responsibility is generally understood to be the duty of an acting
person (or group of persons) on the basis of a claim made by an
authority (e.g. institution, state, society).

The first distinguishing criteria are, for example, causal
responsibility with a view to causation (e.g. programming error
of a programmer), role responsibility with regard to a task (e.g.
a teacher for his class), abilities (e.g. a teacher for his school
class), responsibility for ability with regard to fulfilment (e.g.
a medical practitioner in the case of an accident) and liability
responsibility, which can differ from causation (e.g. ‘parents
are liable for their children’) [25]. The determination of causal
responsibility is not normative, but rather is based on empirical
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evidence. It is the central problem with the opaque “black
boxes” of neural networks.

In questions of liability, legal persons (e.g. companies) are
treated as responsible subjects of action, if there is an transgres-
sions occur under the applicable law. Criminal liability for insti-
tutions, however, does not exist under German law (unlike, for
example, US-American law). At least morally, however, respon-
sibility is also attributed to companies. One then speaks of cor-
porate governance and corporate social responsibility.

In legal terms, responsibility is understood as the duty of a
person to be accountable for his or her decisions and actions in
accordance with specified regulations. Formally, law does not
refer to moral or religious responsibility (e.g. conscience), but
(“positivistically”) to the violation of legal provisions, which is
determined by a court. Responsibility in the legal sense is always
bound to empirical facts. Therefore, the demand for more expli-
cability of causal processes in machine learning is of fundamen-
tal importance for the clarification of legal responsibility.

In legal terms, a distinction is made between the following
aspects of accountability is distinguished, for example, between
the following aspects [26]:

a) With responsibility for action, the accountability is defined
with regard to the type of the way in which the task is carried
out.

b) Accountability for results refers to accountability for the
achievement of objectives.

c) Leadership responsibility refers to the accountability with
regard to the leadership tasks performed, including the associ-
ated external responsibility.

In law, responsibility relates not only to persons, but also to
tangible assets (e.g. computers) and to the requirements of an
owner, trustee or tenant. With the increasing degree of auton-
omy of intelligent systems, the question arises as to the degree
to which, e.g., robots can still be treated as tangible goods or
whether we already have to take into account intermediate areas
between tangibles and persons. Animal law shows how the
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traditional boundary between thing and person is inappropriate,
if we take into account modern findings of evolutionary biology
and cognitive psychology: Animals are living beings capable of
suffering and not “things”, but on the other hand they are not yet
responsible “persons” [27, 28, p. 172].

Artificial intelligence is undoubtedly subject to the principle
of responsibility: Only humans should determine how it is used.
However, specialisation and the growing complexity of techni-
cal, societal and ecological interrelationships lead to a diffusion
of responsibility: The individual is increasingly dependent on the
information or assessments of other experts. As a consequence,
the necessity arises of responsibility by means of legal or con-
tractual provisions, e.g. in liability law, and/or the attribution of
responsibility to collective actors such as companies and associa-
tions. However, the diffusion of responsibility also favours clear
violations of the law and misuse of technology which leads to
outrage and uncertainty in the general public. Safety and trust in
technology are prerequisites for the future viability of a country
[29].

With regard to complex Al systems and Al infrastructures, the
concept of responsibility has to be extended. In systems theory,
collective and cooperative responsibility must also be analysed.
Responsibility should also be attributed to those who are respon-
sible for the design of Al systems (e.g. industrial Internet resp.
Industry 4.0), the development of interfaces and the use of the
infrastructure. The degrees of influence are to be measured here.

Responsibility for the future requires the early recognition
and assessment of risks and evaluate them. In the debate on
responsibility for the future, the precept of Hans Jonas, in par-
ticular, emphasised the imperative to refrain from actions that
pose an existential threat to the environment or to future genera-
tions and in this sense represent a transgression of boundaries
[30]. This applies in particular to artificial intelligence.

Ethics should therefore not be misunderstood as a brake on
innovation. On the contrary, raising awareness of ethics and
responsibility promotes innovation advantages, such as greater
legal certainty and social acceptance of Al research in society.
The focus is on the international challenge, how Al systems are
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to be understood as a service of democratic societies that want
to continue to invoke their individual liberties and human rights.
Internationally country’s locational advantage is strengthened:
Europe should not only be strong in Al innovation, but also take
societal responsibility issues into account.

Europe must not only be a leader in Al innovation and Al
research (e.g. at the interface of machine learning and industry in
Industry 4.0), but also to build a related attractive societal envi-
ronment. The limits of individual liberties and secure societal
systems in a market economy remain important in the age of dig-
italisation and artificial intelligence remain great assets that are
recognised and valued by all people worldwide.
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Prospects for Hybrid Al 5

5.1 Potential and Limitation
of Neuromorphic Al

Classical Al research is oriented towards the performance capa-
bilities of a program-controlled computer, which, according to
Church’s thesis, is in principle equivalent to a Turing machine.
According to Moore’s Law, gigantic computing and storage
capacities have been achieved, which made Al performance pos-
sible in the first place. But the performance of supercomputers
have a price that can be equivalent to the energy of a small town.
Human brains are all the more impressive, that can compare the
performance of a computer (e.g. speaking and understanding a
natural language) with the energy consumption of a light bulb.
At the latest, one is impressed by the efficiency of neuromorphic
systems, that have emerged in evolution. Is there a common prin-
ciple underlying these evolutionary systems that we can make
use of in AL

Biomolecules, cells, organs, organisms and populations
are highly complex dynamic systems in which many elements
interact. Complexity research is concerned with interdiscipli-
nary issues in physics, chemistry, biology and ecology with the
question of how the interactions of many elements in a complex
dynamic system (e.g. atoms in materials, biomolecules in cells,
cells in organisms, organisms in populations) can lead to the
emergence of order and structure, but also chaos and decay.
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In general, in dynamic systems the temporal change of their
states is described by equations. The state of motion of a sin-
gle celestial body can still be precisely calculated and predicted
according to the laws of classical physics. With millions and bil-
lions of molecules on which the state of a cell depends, high-per-
formance computers must be used which provide approximations
in simulation models. Complex dynamic systems, however, obey
the same or similar mathematical laws applied across the disci-
plines of physics, chemistry, biology and ecology.

In general, we imagine a spatial system of identical elements
(‘cells’) that interact with each other in different ways (e.g.
physically, physically, physically, physically, physically) [1, 2],
[Sect. 10.1]. Such a system is called complex, if it can gener-
ate non-homogeneous (“complex”) patterns and structures from
homogeneous initial conditions. This pattern and structure for-
mation is triggered by local activity of its elements. This applies
not only to stem cells during the growth of an embryo, but also,
for example, to transistors in electronic networks.

We call a transistor locally active when it converts a small
signal input from the energy source of a battery to a larger sig-
nal output in order to generate non-homogeneous (“‘complex’)
voltage patterns in switching networks. No radios, televisions
or computers would function without the local activity of such
units. Important researchers such as the Nobel Prize winners 1.
Prigogine (chemistry) and E. Schrodinger (physics) were still of
the opinion that a non-linear system and an energy source were
sufficient for structure and pattern formation. The example of
transistors shows that batteries and non-linear switching ele-
ments alone cannot generate complex patterns if the elements are
not locally active in the sense of the described amplifier function.

The principle of local activity is of fundamental impor-
tance for the pattern formation of complex systems and has not
yet been recognised to a large extent. It can be defined in gen-
eral mathematical terms without reference to specific examples
from physics, chemistry, biology or technology. Here we refer
to nonlinear differential equations as they are known from reac-
tion—diffusion processes (but not at all restricted to fluid media
as in chemical diffusion). To illustrate this we imagine a spatial
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lattice whose lattice points are occupied by cells that interact
locally. Each cell (e.g. protein in a cell, neuron in the brain, tran-
sistor in the computer) is mathematically seen a dynamic system
with input and output. A cell state develops locally according to
dynamic laws as a function of the distribution of neighbouring
cell states. The dynamic laws are defined by the equations of state
of isolated cells and their coupling laws. In addition, initial and
secondary conditions must be taken into account in the dynamics.

In general, a cell is called locally active if, at a cellular equi-
librium point a small local input exists which can be enforced
by an energy source to a large output. The existence of an input
that triggers local activity can be systematically tested math-
ematically by certain test criteria. A cell is called locally pas-
sive if there is no equilibrium point with local activity. What is
fundamentally new about this approach is the proof that systems
without locally active elements cannot, in principle, generate
complex structures and patterns.

In the neuronal networks of the brain, the neurochemical
dynamics take place between the neurons. Chemical messengers
cause neuronal state changes through direct and indirect trans-
mission mechanisms of great plasticity. The different network
states are stored in the synaptic connections of cellular switch-
ing patterns (cell assemblies). As is usual in a complex dynamic
system, we also distinguish in the brain between the microstates
of the elements (i.e. the digital states of “firing” and “non-
firing” during discharge and the resting state of a neuron) and
the macro-states of pattern formation (i.e. switching patterns of
jointly activated neurons in a neural network). Computer visu-
alisations (e.g., PET images) show that different macroscopic
wiring patterns are correlated with different mental and cogni-
tive states, such as perception, thinking, feeling and conscious-
ness. In this sense, cognitive and mental states can be regarded
as emergent properties of neural brain activity: Individual neu-
rons can neither see, feel nor think, but brains connected to the
sensors of the organism can. In complexity research, the synaptic
interaction of the neurons in the brain can be described by cou-
pled differential equations. The Hodgkin-Huxley equations are
an example of nonlinear reaction-diffusion equations, which can



116 5 Prospects for Hybrid Al

be used to model the transmission of nerve impulses. They were
developed by the medical Nobel Prize winners A. L. Hodgkin
and A. F. Huxley through empirical measurements and provide
an empirically confirmed mathematical model of neuronal brain
dynamics.

Technically, the information channel (axon) of a nerve cell
(neuron) (a) can be represented by a chain of identical Hodgkin-
Huxley-(HH) cells which are coupled by diffusion connections
(b). These couplings are represented by passive resistances.
The HH cells correspond to an electrotechnical circuit model
(c): In a biological nerve cell, ionic currents of potassium and
sodium alter the voltages on the cell membrane. In the electro-
technical model sodium and potassium ionic currents together
with a current discharge through an external axon membrane
current. The ion channels are technically realised by transistor-
type amplifiers. They are connected to a sodium ion and potas-
sium ion battery voltage, a membrane capacitor voltage and a
voltage leakage. In this way, the input currents can be amplified
according to the principle of local activity to trigger an actua-
tion (“firing”’) when a threshold value is exceeded. These action
potentials trigger chain reactions that lead to wiring patterns.

In the case of the Hodgkin-Huxley equations, we obtain a
parameter space of the brain with precisely measured regions
of local activity and local passivity. Only in the region of local
activity can action potentials of neurons arise, which trigger wir-
ing patterns in the brain. Computer simulations can be used to
systematically investigate and predict these wiring patterns for
the various parameter points.

In this way, the region at the “edge of chaos” can also be
precisely determined. It is very small and amounts to less than
1 mV and 2 A. This region is associated with great local activ-
ity and pattern formation, which can be visualised in the corre-
sponding parameter spaces. An “island of creativity” is therefore
assumed to exist here.

The starting point of this research programme was the mathe-
matical Hodgkin-Huxley model of the brain. In the EU’s Human
Brain Project, an exact empirical modelling of the human brain
with all its neurological details should be realized. With the
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technical development of neuromorphic networks, an empiri-
cal test bed for this mathematical model would be available, in
which predictions about the formation of patterns in the brain
and their cognitive meanings could be tested.

Differential equations can also be introduced for this purpose,
which do not depend on the local activities of individual neu-
rons, but rather on entire cell assemblies, which in turn depend
on cell assemblies of cell assemblies etc. In this way, one obtains
a system of non-linear differential equations, which are nested
at different levels and thus model extremely complex dynamics.
Connected with the sensors and actuators of our organism, they
record the processes that generate our complex motor, cognitive
and mental states. As already emphasised, we do not yet know
all of these processes in detail. But it is clear how, in principle,
they can be modelled mathematically, and how they could be
empirically tested in neuromorphic computers.

In evolution, effective problem-solving methods devel-
oped without symbolic representation in computer models.
Subcellular, cellular and neuronal self-organisation generated
the appropriate complex networks. In principle, they can be
simulated by computer models. These simulations are based on
a fundamental mathematical equivalence of neuronal networks,
automata and machines.

Thus it can be proved that a McCulloch-Pitts network can be
simulated by a finite automaton. Conversely, the performance of
a finite automaton can also be achieved by a McCulloch-Pitts
network. In other words: An organism that is equipped with a
neuronal nervous system of the type of a McCulloch-Pitts net-
work can only solve problems of the complexity that an finite
automaton can handle. In this sense, such an organism would be
as intelligent as a finite automaton.

But which neuronal networks correspond to Turing machines,
which, according to Church’s thesis, are prototypes of computers?

It can be proved that Turing machines simulate precisely
those neuronal networks whose synaptic weights are rational
numbers and have feedback loops (“recurrent”). Conversely,
Turing machines can be exactly defined by recurrent neuronal
neuronal networks with rational synaptic weights [3].
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In the biological model, the numerical values of the weights
correspond to the chemical strengths of synaptic connections,
which are modified by learning algorithms of neuronal net-
works. Intensive synaptic couplings generate neuronal wiring
patterns that correspond to mental, emotional or motor states of
an organism. Let us consider a Turing machine as a prototype of
a program-controlled computer. Then, according to this proof, a
brain with finite synaptic strengths can be simulated by a com-
puter. Conversely, the processes in a Turing machine (i.e. a com-
puter) can be simulated by a brain with finite synaptic intensity.
In other words: The degree of intelligence of such brains corre-
sponds to the degree of intelligence of a Turing machine.

In practice, it follows that neuronal networks of this type can
in principle be simulated on a suitable computer. In fact, neural
networks for practical applications (e.g. pattern recognition) are
still largely only simulated on computers. Only neuromorphic
computers would be able to reconstruct neural networks directly.

But what do neuronal networks with synaptic weights achieve
that are not only rational numbers (i.e. finite quantities such as
2.3715 with a finite number of decimal fractions), but also any
real numbers (i.e. decimal fractions with an infinite number of
digits behind the decimal point such as 2.3715... which, moreo-
ver, are not computable)? Technically speaking, such networks
would not only perform digital but also analogue calculations.

In signal theory, an analogue signal is understood to be a sig-
nal with a continuous and uninterrupted course. Mathematically,
an analogue signal is defined as a smooth function which is infi-
nitely differentiable, i.e. in particular continuous. The graph of
such a function has no corners and interruptions that are not dif-
ferentiable. Thus the temporally continuous course of a physical
quantity can be described in the form of an analogue signal. An
analogue-digital converter discretises a time-continuous input
signal into individual discrete samples.

In fact, many processes in a natural organism can be under-
stood as analogue. For example, the signal processing in vision
is controlled by electromagnetic fields that impinge on sen-
sors. Also the acoustics of hearing are also based on continu-
ous waves. In the case of pressure, too the skin sensors convey a
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continuous and not a digital sensation. Now one will object that
measured values in a finite physical world are finite and there-
fore in principle be digitised.

However, the theoretical consequences of analogue neural
networks are of fundamental importance for artificial intelli-
gence. Mathematically, analogue neural networks can be unam-
biguously defined with any real numbers as synaptic weights, if
the mathematical theory of real numbers is assumed.

The central question is whether neural networks can do
“more” than neural networks with rational numbers, and thus
“more” than Turing machines or digital computers. This would
be a central argument in the AI debate, according to which math-
ematics is “more” than computer science and cannot be reduced
to digital computers.

A central achievement of automata and machines is the rec-
ognition and understanding of formal languages. An automa-
ton recognises a read-in word as a formal sequence of symbols
when, after a finite number of many steps, it enters an accepting
state and stops. A language accepted by an automaton consists
only of words that can be recognised by the automaton. In this
way, it can be proved that finite automata recognise exactly the
regular languages. Context-free languages use rules whose word
derivation does not depend on surrounding symbols. They are
recognised by more efficient pushdown automata. Recursively
enumerable languages are so complex that they can only be rec-
ognised by Turing machines.

Thus, neural networks with rational synaptic weights (just
like Turing machines) can also recognise recursively enumerable
languages. These can be natural neuronal systems of organisms
as well as artificial neuromorphic computers that follow the laws
of recurrent neuronal networks with rational synaptic weights. It
can now be proved: Analogous neural networks (with real synap-
tic weights) can in principle also recognise non-computable lan-
guages in exponential time [3].

Corresponding proofs are mathematically possible if one
accepts the concept of the computability of the computability
of natural (and rational) numbers to real numbers [5]. Instead
of digital processes with difference equations, continuous real
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processes can also be described with differential equations. In
other words: All types of dynamic systems, such as e.g. currents
in physics, reactions in chemistry and organisms in biology can
be described, in principle, by corresponding extended analogue
systems with real numbers [4, Chap. 10].

However, it is not to be expected that analogous neural net-
works solve NP-hard problems in polynomial time. Thus it can
be proved that, for example, the problem of the travelling sales-
man is also NP over the real numbers.

On the other hand, according to a proof by the logician A.
Tarski (1951), every definable set over the real numbers is also
decidable. On the other hand, there are sets definable over the
integers which are not decidable. This is a consequence of
Godel’s incompleteness theorem of arithmetic. The real comput-
ability is obviously partially “simpler” than digital computability
over the integers.

The advantage of computability generalised to real numbers
(analogue computability) is in any case that it handles analogue
processes in organisms, brains and neuromorphic computers
more realistically. Here a very profound equivalence of evolu-
tionary, mathematical and technical processes becomes clear,
which suggests an extension of Church’s thesis:

Not only digital effective processes can be represented by
computer models in the sense of a (universal) Turing machine,
but also analogue effective processes in nature. If this extended
thesis of Church is correct, then the invention of the computer
opens up a fundamental insight for us. If this extended thesis of
Church’s is correct, then the invention of the computer opens up a
fundamental insight that was initially unforeseeable in its scope:

All effective dynamic processes (natural as well as technical
or “artificial”’) can be modelled on a (universal digital or ana-
logue) computer.

This would be the core of a unified theory of complex
dynamic systems. The symbolic codes with numbers in the com-
puter would only be our way of processing information, repre-
senting atomic, molecular, cellular and evolutionary processes.

A distinction can be made between degrees of computability:
Thus, for example, a non-deterministic Turing machine also uses
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random decisions in addition to the usual effectively computable
elementary operations. For this purpose, we extend the concept
of the Turing machine with the concept (going back to Turing) of
the y-oracle machine [2, Sect.10.2]: In an y-oracle machine, in
addition to the commands of a (deterministic) Turing machine,
an operation ¥ is allowed (e.g. “Replace the numerical value x
with value ¥ (x)”), of which we do not know whether it can be
computable. The calculation is then dependent on the “oracle”.
An example in nature would be a mutation as a random change
in the effective processing of DNA information. One then speaks
of relative computability:

A function is computable relative to v if it is computable
by an yr-oracle machine. Accordingly, a relativised version of
Church’s thesis can be formulated: All relatively effective
processes can be simulated by a (universal) ir-oracle Turing
machine. Accordingly, an extended analogous version of
Church’s thesis (for real numbers) can be formulated.

One can prove: An analogous neuronal network recognises
in polynomial time the same class of languages that a suitable
Yr-oracleTuring machine recognises in polynomial time. It fol-
lows according to our definition of artificial intelligence: A natu-
ral organism with a corresponding analogous neuronal nervous
system or a corresponding technical neuromorphic system are as
intelligent as this -oracle Turing machine.

Some mathematical and natural objects, such as a sequence
of zeros or a perfect crystal, are intuitively simple, other objects,
such as the human organism or the sequence of digits of a ran-
dom decimal fraction such as 0.523976... obviously have a com-
plex developmental history. The complexity of these objects can
be determined by their logical depth, i.e., the computation time
with which a universal Turing machine can generate its develop-
ment process from an algorithmically random input. Computing
time is not a physical measure of time, but rather a logical-math-
ematical measure of complexity, which determines the number
of elementary arithmetic operations of a Turing machine depend-
ing on the input.

For natural objects, the algorithmically random input corre-
sponds to the more or less random initial data of the evolution.
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This definition of complexity by logical depth of the process of
creation is thus independent of the respective technical stand-
ard of a computing machine. It can be shown [7] that (complex)
objects with logical depth cannot be generated “quickly” from
simple objects neither with a deterministic nor with a probabil-
istic process. This proof theoretically confirms our empirical
knowledge of the evolution of life, the complex organisms of
which have arisen through many intricate and more or less ran-
dom phase transitions (bifurcations).

The transfer of logical depth to the physical and evolutionary
complexity of life is based on the assumption of the extended
Church’s thesis, according to which processes of development
and emergence in nature can be simulated by computer models
and thus (extended) Turing machines with adequate efficiency.

Processes in nature are often modelled by continuous differ-
ential equations. Digital machines cannot solve continuous dif-
ferential equations of dynamic systems exactly.

(Occasionally, the notion of computability for continuous sys-
tem laws is not sufficiently robust, since a computable differenti-
able function can have a non-computable derivative.) But digital
computational methods can certainly approximate dynamic pro-
cesses with finite precision. Even for stochastic phase transi-
tions, as they typically occur in complex dynamic systems and
mathematically described by stochastic differential equations
(e.g. master equations), discrete stochastic models are known,
which can be simulated on computers.

5.2 Potential and Limitation of Quantum Al

So far we have considered artificial intelligence on machines of
classical physics. With quantum computing, we go back to the
smallest units of matter and the limits of natural constants such
as the quantum of action and the speed of light - the ultimate
ratio of a computer. As a physical machine, the performance of
a computer depends on the circuit technology used. The growing
miniaturisation of computers has led to new generations of com-
puters with increasing memory capacity and reduced computing
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time. Growing miniaturisation, however, leads us also into the
order-of-magnitude range of atoms, elementary particles and the
smallest energy packets (quanta), for which our usual laws of
classical physics apply only to a limited extent. Instead of clas-
sical machines according to the laws of classical physics, we
would then have to use quantum computers that function accord-
ing to the laws of quantum mechanics [5].

Quantum computers would lead to breakthroughs with an
enormous increase in information and communication technol-
ogy. Problems such as the factorisation problem, which until
now had exponential complexity, and were therefore practically
unsolvable, then would be polynomially solvable. Technically,
quantum computers would thus lead to an immense increase in
our problem-solving capacities. In the sense of the complexity
theory of computer science, the hitherto high computing times
of individual problems could be considerably shortened (e.g.
with polynomial computing time, although they do not belong to
the complexity class P in classical computers). However, could
quantum computers also be used for non-algorithmic thought
processes beyond the complexity limit of a universal Turing
machine? Would this open up new possibilities for artificial
intelligence?

There are great possibilities for the technical construction of
quantum computers, but also considerable problems of realisa-
tion. Apart from the tiny size of atomic switches, their enormous
switching and signaling speed, and their low energy require-
ments, quantum computers could be used for the simultaneous
(parallel) processing of large amounts of data. The reason for
this is the superposition principle of quantum physics, which
allows the formation of quantum bits. With serial data process-
ing, a decision for a large mass of data must be checked succes-
sively for each individual data unit.

A quantum computer operates according to the laws of quan-
tum physics, according to which the output of quantum states
is uniquely computed on the basis of the input quantum states
as long as their coherence is not disturbed. In quantum phys-
ics, a quantum state evolves in time unambiguously determined
according to the Schrodinger equation, which is a deterministic
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differential equation. The computational process of a quantum
computer can be understood on the model of a deterministic
Turing machine in the same way as earlier generations of com-
puters on a mechanical, electromechanical or electronic basis
[9]. Because of quantum parallelism, however, a quantum com-
puter simultaneously can process gigantic amounts of data in a
flash which are in the superposition of a single quantum state.
When the individual data are read out, a random process occurs
that in principle cannot be predicted exactly. This makes quan-
tum computers a non-deterministic Turing machine. However,
the read-out process can be approximated mathematically (e.g.
by a quantum version of a fast Fourier transform).

In the previous section, a hierarchy of automata and machines
was presented which correspond to neural networks of increas-
ing performance. Turing machines are mathematically equivalent
to neural networks with rational numbers as synaptic weights.
They can recognise recursive languages that are determined by
Chomsky grammars. Analogue networks with real numbers as
synaptic weights correspond to special oracle machines, i.e.,
Turing machines, which are (polynomially restricted) oracles
and can even recognise non-recursive languages.

Quantum computers are non-deterministic oracle machines
that are based on quantum oracles. Quantum oracles are the ran-
dom reduction of the wave packet (superposition of data) that
occurs when the data of the machine output is read out. Quantum
computers can also be characterised by cellular quantum autom-
ata or neuronal quantum networks [10, Chap. 9].

In general, quantum physics is the basis for the evolution
of nature. In the beginning, there was a quantum vacuum from
which elementary particles and atoms evolved. This basic layer
of nature can only be explained with the laws of quantum phys-
ics. The resulting molecular structures, depending on their size,
lie at the interface of quantum chemistry and classical physics.
Biological systems up to and including metabolism in brains
can be explained within the framework of chemistry and classi-
cal physics. Classical physics can be approximately embedded
in quantum physics, for example, if we consider “slow” veloci-
ties (relative to the velocity of light), “large” systems (relative to
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elementary particles) and “weak” gravity (relative to the attrac-
tion of black holes).

It seems to be the case that microsystems, through their (non-
linear) interactions, lead to the formation of new macroscopic
structures from elementary particles, atoms and molecules to
organs and brains: In the opposite direction, organ states can be
explained by cellular interactions, cell states by molecular inter-
actions, and molecular states by molecular interactions, molecu-
lar states from atomic interactions, etc. In Sect. 5.1, the principle
of local activity in complex dynamic systems was introduced, in
order to explain the emergence of complex structures in nature
mathematically. It is worth noting that macro-states of a complex
system cannot be reduced to the individual micro-states-from
the superposition of quantum systems to the life of cells and
organisms.

All measurements and observations to date indicate that even
in the brain the emergence of new structures and states can be
explained “layer by layer”: Quantum mechanical interactions of
elementary particles generate quantum chemical states in syn-
apses, the molecular interaction of which leads to the wiring
patterns of neuronal networks, which are connected with cogni-
tive states of the brain. States of consciousness are therefore not
in principle unsolvable “riddles”. Physicians already use their
knowledge of the underlying neuronal wiring patterns, to sedate
patients step by step during operations or to put them in anaes-
thesia or to induce a coma.

However, in machine learning, the emergence of perception
from neuronal circuitry patterns is technically generated, the
existing knowledge of states of consciousness - at least as we
know it from humans and higher organism - is not sufficient to
technically generate consciousness. Self-perception of today’s
robots are only the first steps in this direction.

In the course of its history, technology has by no means lim-
ited itself to the simulation of natural intelligent systems. In
Sect. 5.1, neuromorphic computer structures were described,
which do not occur in this way in nature, but which combine
the advantages of neural systems in nature with the advantages
of technical systems of nature with the advantages of technical
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computer structures. Likewise neuronal quantum computers are
conceivable, in which the enormous computing speed and mem-
ory capacity of quantum computers are connected with neural
networks.

What advantages would quantum computers bring to neu-
ral networks and machine learning? It is not only a signifi-
cant increase in computing speed. Key concepts of quantum
mechanics such as superposition and entanglement open up
new perspectives of knowledge, classical neuronal networks
and learning algorithms based on biological learning algo-
rithms modelled on biological brains do not have. Quantum
Machine Learning (QML) shows new possibilities of artificial
intelligence.

Neuronal networks are open systems that exchange informa-
tion with their environment and in this sense are physically dis-
sipative. The interactions of their neurons is also non-linear. In
quantum versions of neural networks, the problem is how non-
linear and dissipative systems can be embedded in the linear and
unitary framework of quantum mechanics. A quantum mechani-
cal model of a quantum neuron must simulate classical neurons
with sigmoid activation functions or step functions or step func-
tions, where the states of the input functions are combined in
quantum mechanical superpositions. In this way, classification
systems and associative memories are developed in quantum
mechanical framework. The neural network is quantum mechan-
ically embedded by introducing a quantum bit for each neuron.
The classical neurons are replaced by quantum neurons in the
quantum version of a neural network.

In the end, it cannot be technically ruled out that Penrose’s
hypothesis that states of consciousness in the human brain can
be explained by quantum superpositions in quantum physics is
neurobiologically incorrect, but could one day be realised with
a quantum-physical computer structure. The technical challenge
is to realise superpositions over a longer period of time than in
nature, independent of environmental conditions. Whether and
how they can be connected with states of consciousness is then a
completely different question.



5.2 Potential and Limitation of Quantum Al 127

Will there be epistemological breakthroughs, according to
which hitherto in principle undecidable and unsolvable problems
become decidable and solvable with quantum computers?

The basic undecidability and unsolvability of problems are
based on the laws of logic and mathematics. Even a quantum
computer will therefore in principle solve no more than is pos-
sible according to the logical-mathematical theory of comput-
ability: In principle, algorithmically and undecidable problems
remain unsolvable even for quantum computers [6].

For example, the halting problem of a Turing machine is also
undecidable for a quantum computer. Another example is the
word problem of group theory, according to which for any two
expressions of a symbol group it must be checked to see whether
they can be transformed into each other by given transformation
rules. Behind this is a problem that often arises in practice, e.g.
whether expressions in language systems are traceable to each
other or not.

In computability theory, it was proven that there is no algo-
rithm that arrives at a decision in every case. No quantum
computer will change anything. So even in a civilisation with
quantum computers, there will be no machine that can solve all
problems algorithmically.

Godel’s and Turing’s logical-mathematical limitations remain,
even if there are gigantic increases in computational speed and
capacity. Every kind of of physical, chemical, biological and
neuromorphic computer structure will observe the laws of logic
and mathematics as will the evolution of nature itself.

Besides the superposition principle, another (classically)
strange phenomenon of quantum physics is that two phenome-
non of quantum physics states that two spatially distant bodies,
such as elementary particles, are correlated (“entangled”) with
each other, although they do not interact with each other by any
mechanism.

Classical information can be transmitted between transmitters
and receivers, which are realised by different physical, chemi-
cal and biological carrier systems. However, transmitters and
receivers must not be miniaturised in the size range of quantum
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effects. In the quantum world, the transmitter corresponds to
the preparation of a quantum system, the receiver to its meas-
urement. The quantum systems (e.g. elementary particles),
which evolve from the preparation state of an experiment to the
measurement, transmit information in this sense [12]. Quantum
information is understood to be that information which is trans-
mitted by quantum particles from the preparation to the measur-
ing apparatus of a quantum mechanical experiment.

In quantum physics, entangled quantum states can be used,
which allow the instantaneous quantum teleportation of quan-
tum information to distant receivers. This is not a contradiction
to the relativity theory, according to which signal transmissions
are only possible at the maximum speed of light. In fact, it is
not a matter of an “interaction” between two objects located at
different places. In quantum physics, a single quantum state is
produced by the EPR correlation, which is distributed over the
space between the two objects.

The catch with quantum teleportation, however, is that the
quantum information to be transmitted is unknown and is only
decided by the coincidence of a measurement. Quantum tel-
eportation can therefore not be used for the direct transmission
of information. In this respect there is conflict with the theory
of relativity, according to which no interaction can be faster
than light. However, as long as we do not measure, read out and
observe quantum information, it can be transmitted instantane-
ously and in any superposition.

Technically, entangled states have already been realised
over miles-long distances on earth. Quantum teleportation can
be realised with the aforementioned statistical restrictions. The
speed of light may not be an effective limit for the transmission
of information on the Internet on earth. For space travel, e.g. to
Mars, however, the delay due to the speed of light in the trans-
mission and control of information from Earth already becomes
a problem. Therefore, the technical realisation of entangled
states on a cosmic scale will be a challenge for the future. With
satellite technology, communication with intelligent infrastruc-
tures will be transformed into the Quantum Internet of Things.
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5.3 Potential and Limitation of ChatGPT

As an Al language model, I don’t have personal experiences, beliefs,
or a subjective understanding of the world.
ChatGPT.

5.3.1 What Can the Al Chatbot ChatGPT Do?

A spectacular application example of subsymbolic Al are chat-
bots like ChatGPT (Generative Pre-trained Transformer), which,
because of its amazing capabilities as an automatic text gen-
erator, had more followers than social media such as Instagram
and Spotify within a few days, with millions of users, since
30 November 2022. ChatGPT can generate texts from school
assignments at grammar school level to texts of seminar papers
of middle university level. Based on a “large language model”
(LLM), this AI programme can be used to talk about business
plans or to commission the writing of a song, poem or novel
fragments in a certain style.

In fact, ChatGPT’s language model is based on a massive
amount of text (Big Data) that has been trained into the system
by humans. It is thus an example of machine learning based on
statistical learning theory and pattern recognition, as explained
in the previous section. The ambitious goal here is to overcome
a key limitation of symbolic Al, which in its knowledge-based
expert systems was limited to the expertise of specialists (e.g.
medical expertise in a specific medical discipline), provided
it could be translated into logic rule-based formulae. With the
increase in computing power and the handling of large masses
of data with models of statistical learning, the goal is now being
pursued to also bring the general “world knowledge” of us
humans to the machine.

For this purpose, the chatbot is trained with texts from news,
books, social media, online forums, images, films and spoken
language texts. Algorithms are used to learn from the training
data. The chatbot reproduces patterns that it recognises in the
stored data. This is done using the same procedures that are used
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in face recognition to recognise images of people from image
files. The reproduced texts are compared with trained sample
texts and thus gradually improved by reinforcement learning
algorithms. It is definitely impressive that this procedure is suf-
ficient to produce grammatically correct sentences in German,
a language usually considered as very complicated - and com-
plicated to learn. Corrections can also be made if correlations of
the trained data lead to discrimination, for example. Similar to
indoctrinated humans, such misbehaviour can never be ruled out
due to the volume of the trained data sets. Since these chatbots
are widely accepted in social media, they can also cause danger-
ous disinformation.

Ultimately, ChatGPT is also nothing more than a stochastic
machine that recombines and reconfigures data, texts, images
and spoken words with pattern recognition algorithms. However,
due to modern computer technologies that can store enormous
amounts of data and apply fast learning algorithms, amazing
results are produced that simulate a great deal of human back-
ground knowledge and intuition. But this also reveals the mecha-
nisms on which our conversational and cultural worlds are based
- reproductions and recombinations of patterns that can largely
be adopted by machines. Even the social sciences, cultural stud-
ies and the humanities are not immune to this, not to mention
journalism.

Wittgenstein called these “language games” that function
according to certain rules. The original often consists only in
a small change and variation of the usual language games and
“narratives”. In machine learning, there is now talk of “stochas-
tic parrots”. Positively speaking, ChatGPT is therefore suitable
for exposing the mechanisms of the culture industry and journal-
ism. They will have to become more sophisticated in order not to
be replaced by machines.

But how can ChatGPT solve mathematics problems if in the
end it is all based on statistical “guesswork™ [7] ? In fact, the
possible solutions depend on the stored documents. For this
purpose, textbooks and a variety of other documents are trained
with (human) supervised learning algorithms. In the sense of
reinforcing teaching, the chatbot repeatedly restarts or improves
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its proposed solutions when asked, by determining new contexts
of the trained documents through pattern recognition. ChatGPT
thus only knows numbers, for example, if they can be extracted
from trained texts. Thus, the definition of a prime number could
be reproduced if this text appears somewhere in ChatGPT’s
memory. But ChatGPT can only draw conclusions and decide
whether a given number is a prime number or not if there are
trained documents.

Calculating, logical and causal thinking are therefore basi-
cally alien to the chatbot. It guesses and associates. In this book,
this central weakness of statistical learning theory and machine
learning was highlighted in contrast to mathematical and logical
thinking. ChatGPT can also write and evaluate computer pro-
grammes only by imitating and recombining stored templates
and fragments - but at an astonishingly high level that often can-
not be distinguished even by “educated” humans. The difference
to human thinking is already demonstrated by a gifted pupil:
without having been “fed” with all kinds of textbooks, he or she
solves a mathematics problem without the effort and memory
volume of a chatbot.

5.3.2 Inthe “Machine Room” of ChatGPT

Technically, ChatGPT is a “Large Language Model” (LLM) that
generates human-like texts with deep learning algorithms from
large data masses of speech. It is based on a “Generative Pre-
trained Transformer” (GPT) architecture, in which a transformer
generates texts with a neural network. The model is trained
beforehand with large data masses of books, articles, web pages,
etc. to recognise patterns and structures of natural languages.
Given an input (called “prompt”), the model generates a suitable
text based on the previously trained knowledge.

By using a transformer, the GPT differs from previous lin-
guistic models that sequentially predicted probable words in a
text context. Transformers process all input data simultaneously.
Fundamental to this is a process of “self-attention”, which dis-
tributes changing weights for different parts of the input data
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with reference to other positions in the speech sequence. Due to
increasing computational efficiency, the GPT models have been
extended and improved since 2018 from GPT1 to GPT4 for ever
larger and more diverse scopes of knowledge.

A self-attention method uses a neural network to weight the
importance of different parts of the input and make predictions.
The input is mapped to multiple keys, values and queries that
correspond to learned weight matrices. The model then calcu-
lates the scalar product of the queries with the keys for all items
of the input. This produces a score for each item. These scores
are then used to calculate a weight (“attention”) for each item in
the input. The scores are multiplied by these attention weights to
add up these products as the output of the self-attention process.
This output is now connected to the input and passes through the
multiple layers of the feedforward neural network that realises
self-attention.

To better match the outputs of the ChatPCT with the user’s
intentions, a reinforcement learning from human feedback
(RLHF) algorithm is used, which distinguishes three steps [14]:

Step 1: Supervised Fine-Tuning (SFT) Model
The first development involved fine-tuning the GPT-3 model by
hiring 40 contractors to create a supervised training dataset, in
which the input has a known output for the model to learn from.
Inputs, or prompts, were collected from actual user entries into
the Open API. The labelers then wrote an appropriate response
to the prompt thus creating a known output for each input. The
GPT-3 model was then fine-tuned using this new, supervised
dataset, to create GPT-3.5, also called the SFT model.

In short: Step 1 collect demonstration data and trains a super-
vised policy with the following partial steps:

e A prompt is sampled from the prompt dataset. Prompt dataset
is a series of promptspreviously submitted to the open API.

e A labeler demonstrates the desired output behavior. 40 con-
tractors hired to write responses to prompts.

e This data is used to fine-tune GPT-3 with supervised learn-
ing. Input-output pairs are used to rain a supervised model on
appropriate responses to instructions.
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Step 2: Reward Model (RM)
After the SFT model is trained in step 1, the model generates
better aligned responses to user prompts. The next refinement
comes in the form of training a reward model in which a model
input is a series of prompts and responses, and the output is a
scaler value, called a reward. The reward model is realized by
reinforcement learning in which a model learns to produce out-
puts to maximize its reward in step 3.

In short: Step 2 collect comparison data and trains a reward
model in the following partial steps:

e A prompt and several model outputs are sampled. Responses
are generated by the SFT model.

o A labeler ranks the outputs from best to worst.

e This data is used to train our reward model. Combinations of
rankings served to the model as a batch datapoint.

In order to speed up comparison collection, labelers with
responses of ranking between K =4 and K =9 were used. It

delivers (12(

Comparisons are correlated within each labeling task. Therefore,
if the comparisons are shuffled into one dataset, a single pass
over the dataset caused the reward model to overfit. Instead, it

comparisons for each prompt shown to a labeler.

is trained on all 5 | comparisons from each prompt as a sin-

gle batch element. This is much more computationally efficient
because it only requires a forward pass of the reward model for

each completion rather than forward passes for K comple-

K
2
tions. As it no longer overfits, it achieves much improved valida-
tion accuracy and log loss. Mathematically, the loss function for

the reward model is

loss(6) = =2~ By~ [log (0 (9 (¥, yw) = 1o (5, y)))]
(5)

with scalar output rg (x, y) of the reward model for prompt x and

completion y with parameters 6, the preferred completion out of

the pair of y,, and y;, and the dataset D of human comparisons.
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Step 3: Reinforcement Learning Model

In the final stage, the model is presented with a random prompt
and returns a response. The response is generated using the pol-
icy that the model has learned in step 2. The policy represents a
strategy that the machine has learned to use to achieve its goal of
maximizing its reward. Based on the reward model developed in
step 2, a scaler reward value is then determined for the prompt
and response pair. The reward then feeds back into the model to
evolve the policy.

In short: Step 3 optimizes a policy against the reward model
using reinforcement learning with Proximal Policy Optimization
(PPO). PPO is a policy gradient method for reinforcement learn-
ing which alternate between sampling data through interaction
with the environment and optimizing an objective function using
stochastic ascent. Whereas standard policy gradient methods per-
form one gradient update per data sample, PPO propose a novel
objective function that enables multiple epochs of minibatch
updates:

e A new prompt is sampled from the dataset.

e The policy generates an output. A policy is a strategy that an
agent uses in pursuit of goals.

e The reward model calculates a reward for the output.

e The reward is used to update the policy using PPO. Kullback-
Leibler penalty for SFT model is used to avoid overfitting.

In training with reinforcement learning (RL), the following
objective function is maximized:

objective(9) = Eey)~p, g, [ro(x.) — B log (g ) /7T (1))
+ yEwapretrain [log (”gL (x))i|

with the learned RL policy ngL, the supervised trained model
a5FT and pretraining distribution Dpyretrain- The KL reward
coefficient 8 and the pretraining loss coefficient y control the
strength of the KL penalty and pretraining gradients. Fiir PPO
models, y is set to 0.
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5.3.3 Challenges of ChatGPT for Education
Policies

The analyses in the previous sections show that the chatbot
ChatGPT is not magic, but is based on computable algorithms
of stochastics and statistical learning theory. Therefore, its per-
formance and limitations can also be clearly assessed. Neither
euphoria nor excessive timidity are therefore appropriate to the
matter. ChatGPT has caused unease especially in media, culture,
and education. The question lurks everywhere whether profes-
sions in these fields could be replaced by chatbots in the future.
Against the background of the foundational analysis of chatbots,
the following will assess the significance of ChatGPT for con-
crete job profiles in education and training.

For entry into a profession, personnel managers play a cen-
tral role in the various companies. They assess the suitability
of applicants on the basis of written documents and personnel
interviews. In the process, a standardisation of questions can
be observed, to which desired standard answers can be given.
However, a standardised assessment procedure can easily be
simulated with the current services of chatbots. Standard ques-
tions must therefore be avoided. Interactions in the assessment
must play a stronger role than written surveys according to
standard questionnaires. In the end, human resource manage-
ment is also not about text generation, but decisions. However,
there will be dips and changes in personnel marketing. A job
advertisement or careers website can be easily and profession-
ally written by ChatGPT.

ChatGPT already writes simple programmes in computer sci-
ence. In fact, the programming profession and the systems archi-
tect profession can be expected to change without being replaced
by Al Indeed, ChatGPT can already provide (simple) building
blocks of programming to be used in writing more complex pro-
grams. At the same time, however, this will make the program-
ming profession more demanding and professional. It should
also be taken into account that the neural networks of chatbots
will only be one example of programmes that will change the
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work of programmers in the future. However, programme veri-
fication will be all the more important in the future. The small-
est errors in elementary building blocks that are “automatically”
generated by chatbots such as ChatGPT can have a catastrophic
effect on the entire software if they are not recognised in time.
Therefore, a high qualification of programmers is indispensable.

In the media and journalists’ associations, ChatGPT is some-
times perceived as a threat. In fact, this chatbot writes desired
articles and essays in perfect national language. Routine articles
could definitely be done automatically. If the journalist wishes,
the linguistic style could also be adapted to a particular writer.
So, in the sense of the Turing test, these writers are replaceable.
Bans on the chatbot, which are demanded by some professional
associations, are of little help here. Rather, one must learn to
deal with this technology and improve one’s own performance.
For more demanding texts, ChatGPT could help pre-structure
and incorporate the necessary data. The editor should exercise
control and responsibility (also in the legal sense). In particular,
false information that would otherwise be reproduced and passed
on by the AI should be weeded out. One could also distribute
chatbots in the network, which “spontaneously” make statements
in the desired context and pass on propaganda and disinforma-
tion. So the challenges in the media sector are great, but so are
the opportunities for improving quality. In journalism train-
ing, the chatbot could generate sample articles on certain top-
ics, which are then critically assessed by the students in order to
improve their later work.

It becomes particularly sensitive in professions where lan-
guage is used to convey feelings and empathy, such as psy-
chologists and psychotherapists. Weizenbaum’s early language
programme ELIZA was already intended to simulate a psycho-
therapist. At the time, Weizenbaum was appalled at how this
simple programme was accepted as a psychotherapeutic inter-
locutor: People projected their own desires and fears into this
programme. With ChatGPT, automated interlocutors become
conceivable that can be used as substitutes for human interlocu-
tors. This could be an extremely problematic business model for
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a psychotherapist who uses chatbots en masse in order to col-
lect fees for such conversations. This would not only be profit-
seeking, but extremely dangerous for psychologically vulnerable
patients. Tests show that the chatbot also generates false and
skewed information. The chatbot could be used as a transcriber
of conversations or for advice based on available data, which
would then have to be critically proofread. In all these applica-
tions, it must be clear that the chatbot only performs statistical
data analysis based on large data masses with pattern recogni-
tion. It can therefore only understand and convey feelings and
empathy to the extent that previously trained texts spoke about
them. In training, answers from the chatbot can be critically
assessed by students in order to train their own psychotherapeu-
tic judgement.

Language-dependent professions are also legal professionals
as e.g. lawyers, prosecutors or judges. Thus, it is conceivable to
entrust ChatGPT with the task of a business lawyer. A company
wishes to have articles of association for a certain legal form
of a company (e.g. in Germany a GmbH). For this, a company
describes its profile by answering certain standard questions. The
chatbot then automatically drafts the company’s articles of asso-
ciation. Legal databases already exist in Germany, but they gen-
erate many answers and options to queries, which a lawyer must
laboriously work through. Since public prosecutors and judges,
for example, suffer from the enormous flood of pending cases
and trials, they could all be too happy to rely on the quick and
seemingly efficient help of a chatbot. And that would be really
dangerous.

The reasons are obvious: Law in particular shows the clear
limits of today’s chatbots. The language of law is extremely
complex and standardised. What seems like a plausible and well-
formulated answer to the layperson can be wrong, skewed and
misleading. Similar to “solving maths problems” in mathemat-
ics, “solving legal cases” is therefore a central field of training at
university for students of law. Here, too, ChatGPT can be used
in a didactically meaningful way by critically analysing and
discussing the chatbot’s answers in the seminar or in exercise
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groups by the students in order to improve their own problem-
solving skills. The chatbot can also help to write linguistic
summaries of complex judgements and legal cases for specific
purposes. But especially in the legal field, it is ultimately a mat-
ter of responsibility up to and including liability, which cannot
be delegated to an automaton.

The possibilities of ChatGPT in schools and universities are
currently causing great concern. Not only essays at schools, but
also seminar papers up to Bachelor’s, Master’s and PhD degrees
can be generated in writing at a high level in social sciences, cul-
tural studies and the humanities, as long as it is text production.
These papers usually pass the Turing test.! Some universities
in e.g. Germany and Italy reacted by banning ChatGPT, which
might be understandable but should be considered as completely
wrong. Here, too, we have to learn to understand and deal with
chatbots as an advanced cultural technique.

Even the philosopher Plato was upset in his time of Antiquity
about the use of writing instead of an oral dialogue because he
saw it as distorting true thought. Later came the art of printing,
and finally text processing on typewriters and then on PCs. The
older generation has experienced all these cultural techniques:
at primary school one first wrote on a slate, then came exercise
books with pencils and fountain pens, finally a dissertation on
a mechanical typewriter and then came word processing on the
personal computer (PC). Today, meetings can be held online
anywhere in the world. Of course, the respective advantages and
disadvantages of these cultural techniques shift. Wikepedia, too,
is now used worldwide after fierce initial criticism. Today, even
highly specialised scientists use this tool to inform themselves

Tronically, when students hand in essays written by ChatGPT they can eas-
ily be convicted if the essays do not contain the “usual” orthographic mis-
takes of contemporary students. However, it should only be question of time
that they ask ChatGPT for essays “written with the usual mistakes of an
average student”.
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first. Moreover, Wikipedia, for example, has been considerably
improved since its beginnings. We have learned to use this infor-
mation transfer wisely, without relying on it blindly.

Once again: the book glorified by humanitic scholars with
its book culture was judged by one of the founders of Western
philosophy to be an extremely questionable form of exchang-
ing ideas. Perhaps it is not far-fetched to think that, similar to
technologies in engineering, cultural technologies also have their
time in the humanities. In technology, we speak of bridging tech-
nologies that prove themselves over a certain period of time, but
are then replaced by new technologies under changed conditions.

For example, we are currently experiencing the replacement
of the diesel engine, which was an ingenious and revolutionary
technology for over a hundred years, but is now reaching its lim-
its under the conditions of environmental change and the possi-
bility of, e.g., electric motors, batteries and renewable energies.
However, the critical discussion about batteries in this example
shows that this is not the last word, but only another bridging
technology that will again reach its limits. The history of nuclear
power is similar.

The possibilities of ChatGPT at school and university should
therefore not lead to bans, but to the critical question: Are exami-
nations, as we traditionally know them, still up-to-date and
appropriate in a changed working world with different techni-
cal conditions. The situation is quite the same as when pocket
calculators entered the stage. Of course, they didn’t replace
the need to teach elementary calculation skills; but they can be
safely used at higher school levels. And it took a while that edu-
cational studies were able to find the adequate balance between
banning and allowing pocket calculators in class. To have simi-
lar studies for chatbots as ChatGPT, first of all, a fundamental
discussion is required that asks about the possibilities and limits
of this technology. We need to know the algorithms in order to
be able to assess the possibilities and limits. This requires basic
theoretical knowledge, but also practical experience in dealing
with these programmes. So learners should first be given a basic
understanding of machine learning and the special algorithms of
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chatbots like ChatGPT. Then comes their own experimentation
with orders to the chatbot and the evaluation of its answers.

It is important to understand, for example, that this is rein-
forcement learning, in which new and modified answers are
given through constant questioning, which in the best case
improve. However, this depends on the chatbot’s knowledge
base, which was previously taught to the chatbot through super-
vised learning in a training phase with a human supervisor.
It follows that an initial response from the chatbot is not yet
directly usable, but requires post-processing and correction.
In this iterated way, sample solutions in the various disciplines
could be generated in dialogue with the chatbot. The challenge is
to keep the control of these dialogues and to resist the temptation
to trust chatbots with reflection.

An appropriate use of ChatGPT in examinations therefore
depends on the boundary conditions [8]. Only in oral examina-
tions and written examinations can the examiner largely ensure
that there is no cheating. However, it is also a question of scale
whether in some subjects hundreds or even thousands of candi-
dates have to be examined or a manageable small number. For
written assignments, it depends on the subject how sure one can
be. In fact, it becomes difficult with text generation tasks in the
cultural sciences and humanities. Empirical papers in the social
sciences and economics are based on empirical data that can be
controlled by checking sources.

Incidentally, in the natural sciences, for example, it is quite
conceivable that in the case of specialist articles, the linguistic
formulations in the terminology typical for the subject or the
structuring of the article in the manner typical for the subject
could be generated by a chatbot, while the results of the actual
new laboratory discovery only have to be inserted. Accordingly,
there are examination performances in which verbalisations only
make up a part of the examination performance. This refers to
laboratory experiments, statistical analyses or programming.
It must be admitted, however, that the chatbot undermines
the ability to argue and present thoughts in writing and oral
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presentation. It is not able to reconstruct the logical structure
of an argument (but rather gives just sentences which appear
to represent an argument according to the statistically learned
examples). In fact, chatbots still fail on essentially all the reflec-
tive questions discussed earlier in this book, which one can eas-
ily check by asking them: “Why?” But arguing skills are, for
example, quite central for leadership tasks in a company. Exams
that no longer reflect these skills are therefore of little help to a
company. Here, the limits of chatbots must be critically evalu-
ated and other forms of examinations, such as examination inter-
views, must be demanded.

From subject to subject, it must be examined exactly how the
respective subject competence can be replaced by a chatbot. It
must not be forgotten that examination performance is also an
important tool for students to recognise their own abilities, tal-
ents and limitations in order to find a suitable career later on.
The objectivity of examinations must remain an important yard-
stick for awarding scholarships and university positions, for
example. From a legal point of view, it must therefore be ensured
that the misuse of technical aids such as ChatGPT can be estab-
lished with legal certainty. Already under the impression of the
pandemic, a legal order was passed in Bavaria to be able to take
electronic distance examinations. Accordingly, a legal frame-
work must be created to regulate the use of chatbots such as
ChatGPT in university examinations. Questions of equal oppor-
tunities and compliance with data protection standards will play
a crucial role.

The example of ChatGPT clearly shows the stage of devel-
opment that Al tools are at: They are by no means in a position
to replace humans in decisive ultimate responsibility. However,
solutions to problems are now being developed in an interaction
between humans and Al. The biological image of a symbiosis
is quite appropriate here. This interaction of artificial and natu-
ral intelligence must also be reflected in education and training,
including the assessment of examination results.
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5.4 Quo Vadis Al?

5.4.1 An Optimistic Vision

... daB, wenn unter allen moglichen Welten nicht eine die beste wire,
GOtt gar keine producirt haben wiirde.
GotTFRIED WILHELM LEBNIZ [16, p. 182]

In the introduction, the future goal of Al research was stated
to connect statistical learning algorithms with logical and
knowledge-based methods. The combination of symbolic and
subsymbolic Al is also called hybrid Al Epistemologically,
it corresponds to a “hybrid” cognitive system like the human
organism, in which the (“unconscious”) processing of perceptual
data is combined with (“conscious”) logical reasoning. Hybrid
Al is therefore higher degrees of intelligence than the reduction
to symbolic or sub-symbolic Al. Nevertheless, all three forms
of AI are currently in practical use side by side, depending on
the respective requirements of the application area. In the auto-
motive industry and medicine, for example, knowledge-based
expert systems and statistical machine learning are used for
different applications side by side. Hybrid Al is already being
pursued in robotics, which will in the future be supported by
neuromorphic structures and quantum technology.

The construction of a technical brain is conceivable, which
is not based on neurobiological neuronal networks like a natural
brain, but on neuronal quantum networks. The advantage of this
would be that they could do everything, what classical neural
networks (i.e. biological brains) could do, but with all the addi-
tional advantages of quantum physics, such as speed (through
e.g. superpositions, entanglements and quantum tunnelling). By
the way: Roger Penrose speculated on whether natural brains
could be formed according to the laws of quantum physics.
Probably not, because brains are much too warm and suscepti-
ble to perturbations. But that is not the question here. Engineers
do not want to explain the (human) brain like neurobiologists
and philosophers. Rather, they want to build a functional speci-
men for specific purposes! Al research and computer science see
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themselves today largely as engineering sciences. In this case,
the performance and limits of the product depend on the type of
network. Mathematical proofs already exist for the limits of indi-
vidual such network types. We then know again what they can
and what they cannot do. However, so far no general limits can
be derived for this type of AL

What is becoming apparent in research, the economy and
society is increasing cooperation between humans and machines.
Already with the number sieve, mathematical security was
achieved by linking many technical and human computers.
At the end of this development, therefore, it is not, as is often
feared, a matter of an artificial intelligence that replaces the
human being: technology needs mathematics since Archimedes,
but mathematics is also increasingly dependent on technology
and influenced by it in its development (e.g. the solution of the
factorisation problem depends on the technical realisation of a
quantum Fourier algorithm).

Symbolic Al (e.g. automatic reasoning, knowledge-based
systems) and sub-symbolic Al (e.g. statistical learning) are com-
bined in hybrid AI (e.g. embodied Al). But Al does not develop
in isolation. Humans also change their thinking and adapt to
the thought structures of machines and programmes. Humans
do therefore not only rebuild their organism through technical,
biological and chemical implants, but also changes his cogni-
tive and intelligent abilities through technology. The use of these
tools changes us and our thinking.

This also shapes mathematics and its methods and gives
them their direction of development. In the eighteenth and nine-
teenth centuries, the development of mathematics was decisively
shaped by the problems of classical physics. At the begin-
ning of the twentieth century, the influence of quantum physics
came into play, but also the mathematical problems of econom-
ics and the social sciences were added. With computer technol-
ogy and Al algorithms, a new evolutionary thrust is possible:
man and machine are increasingly developing in a symbiosis.
Man changes Al and machine. But machine and Al also change
humans.
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In the end, however, everything runs in the direction of a
hybrid intelligence which will develop evolutionarily in a symbi-
osis with human intelligence, symbolic, sub-symbolic and hybrid
AlL

Hybrid intelligence will not come in the distant future, but
has already been partially realised or is in the process of being
realised. It describes a path, not a final singularity like the so-
called “superintelligence”. As always in evolution, breaks and
falls are not excluded. Therefore, judgement with clear concepts
is required in order to avoid the collateral damage of evolution.

5.4.2 A Sceptical View

Je n’ai vu aucuns (mortals) qui n’aient plus de désir que de vrais
besoins, et plus de besoins que de satisfactions. J’arriverai peut-etre
un jour au pays ou il ne manque rien; mais jusqu’a présent personne
ne m’a donné de nouvelles positives de ce pay-a.

VoLTAIRE [17, p. 108 f.]

From the given description of Artificial Intelligence it follows,
that only in a hybrid form, which combines classical, rule-based
techniques with the new, statistics-based methods, it will be able
to expand its field of application in the long term.

Up to now, Al algorithms have been characterised by solv-
ing special problems in which they are actually far superior to
humans.? Since the beginnings of Al in the 1950s, however,
human intelligence has always been associated with the ability
of the all-rounder: Some computer programs are supposed to cal-
culate faster, others are supposed to recognise images better and
still others should be able to translate Chinese. Humans can also
do this in principle, albeit more slowly and in a more limited

2 Alan Turing had already pointed out from the beginning that there are spe-
cific areas in which the comparison of computers and humans is not mean-
ingful [18, p. 435]: “We do not wish to penalise the machine for its inability
to shine in beauty competitions, nor to penalise a man for losing in a race
against an aeroplane.®.
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way with a seemingly unlimited background knowledge which
enables them to have what is called “common sense” or general
knowledge.

For this reason, the AI community first tried its hand at a
“general problem solver” in the 1950s. But this attempt at an Al
programme that was supposed to solve a wide variety of prob-
lems was more than modest. In the ironic words of Horace more
than 2000 years ago in his Ars poetica: ,,The mountain gave birth
and gave birth to a mouse.” The useful “lab mice” that emerged
during this first attempt at AI were Al languages such as LISP
and Prolog. Therefore, the search for a computer program with
common sense and all-rounder capabilities was soon abandoned,
and research concentrated initially on specialisation with expert
systems.

As has already been emphasised several times, the break-
throughs of the new Al would not have been possible without the
enormous increase in computing power and memory capacity in
recent years. Therefore, it makes sense to use this approach to
develop an Al for versatile tasks that has a general understanding
of language like that of a human being with the ability of mul-
tifaceted problem solving. This would overcome a central limit
of previous Al, known as the common sense problem. Al algo-
rithms and Big Data are once again the great hope of the indus-
try. Not only large companies, but also global powers such as the
USA and China are therefore currently starting to invest billions
in storage and computing capacities with the development of
corresponding algorithms. Al algorithms are being developed to
solve the common sense problem.

To this end, research and companies in Germany have joined
together to form a consortium under the name OpenGPT-X,
which is funded by the state as part of the Gaia-X initiative. The
aim is to develop a general language model for German, which
should also benefit smaller and medium-sized German compa-
nies and be internationally competitive. The Fraunhofer Institute
for Intelligent Analysis and Information Systems (St. Augustin)
coordinates a research cluster consisting of the Research Center
Jiillich, the TU Dresden, the German Research Center for
Artificial Intelligence (DFKI), the Al companies Aleph Alpha,
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Alexander Thamm and Control-Expert, the Internet service pro-
vider 1&1 IONOS, the Westdeutscher Rundfunk (WDR) and the
German Al Association.

As is often the case, the USA has already set the standard:
The Californian Al company OpenAl developed a huge neural
network called GPT (Generative Pretrained Transformer) with
175 billion parameters, to be better trained with more and more
data. The parameters can essentially be thought of as the weights
with which the synaptic connections of the neurons in a neural
network are connected. In early 2021, Google came out with a
language model called the Switch Transformer, which has 1.6
trillion parameters. This system is only surpassed worldwide
by the Chinese Beijing’s WuDao 2.0 from the Chinese Beijing
Academy of Artificial Intelligence (BAAI) with 1.75 trillion
parameters. This makes the Chinese competitor ten times as
large as GPT 3 and can be trained not only with speech data but
also with image data.

Compared to earlier language models, the language under-
standing and processing of GPT 3 remains remarkable.
Developers in Germany such as Aleph Alpha assume, however,
that only successor models such as GPT 4 or GPT 5 will actu-
ally be able to process all of the world’s knowledge, and thus
reach the level of common sense or human general knowl-
edge. The computing power required for this in Germany can
only be achieved by a supercomputer such as JUWEL (Jiilich
Wizard for European Leadership Science), which is one of the
ten most powerful (classical) supercomputers in the world. The
coordinators of OpenGPT-X thus rely on an infrastructure of
supercomputers, which is necessary to realise the training of
large language models.The next step is to technically capture
the diversity of European languages. The aim is to standardise
this diversity in a “European Language Grid“ (ELG) in order
to remain internationally competitive. In the end, this language
technology is certainly an important contribution,to preserve
smaller European languages that are threatened with extinction
and thus to safeguard Europe’s cultural heritage.

On the other hand, this effort overcomes billions and trillions
of parameters in neural networks with enormous computing
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power of supercomputers does not overcome a fundamental
limit of current Al, which has been pointed out several times:
How can e.g. children with relatively little data and background
knowledge develop an understanding of contexts that enables
them to understand irony, jokes or threats in a communication
situation? Mass (Big Data) instead of class is not enough to
explain this phenomenon. Even if successors to GPT 3 should
succeed in achieving an understanding of irony and wit with a
gigantic effort of technology, then this technology, there would
still remain the “miracle” of the human brain, which achieves
the same (?) performance with low current and little data. Now,
one could, as in the previous section, look to the section, one
could refer to the future of neuromorphic computer structures.
This would be on the side of an optimistic future strategy, which,
however, is not foreseeable under today’s technical conditions.

What is practically foreseeable is the development of self-
driving cars, on which the automobile industry is relying world-
wide. Volkswagen expects to reach Level 4 of self-driving
vehicles by the end of the 2020s. However, this only means that
vehicles can drive themselves on precisely defined roads and sit-
uations [2, Sect. 9.2]. The decisive factor here is the performance
of sensors with cameras, radar and lidar. Neural networks are
also required for this, e.g. to correctly estimate the distance to
vehicles in traffic and to adjust speeds.

In the end, it is also a matter of the common sense of a human
driver who, with sufficient experience, solves such questions
intuitively and unconsciously. This is precisely what Hubert
Dreyfus had pointed out in order to demonstrate the limits of
formal programmes. Tesla now also wants to overcome this
limit through supercomputers and Big Data. To this end the
infrastructure of a supercomputer with 5760 graphics proces-
sors will be specifically designed to train Tesla’s massive neu-
ral networks. Once again, therefore, the strategy is to push the
previous limits of Al with ever larger models, data volumes and
computers. In this case, the aim is to achieve the visual abilities
of humans when driving a car. On this basis, Tesla wants to real-
ize fully autonomous driving in 2035, if by then the even faster
supercomputer infrastructure already planned is in place. Even
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in that case, the enormous amount of technology and energy that
is necessary to get anywhere near simple human capabilities is
amazing.

However, there are still substantial limits to artificial
intelligence.

With regard to the practical limits discussed in Chap. 2,
one could move away from a conceptual analysis in the sense
of expert systems, which complements machine learning. It
might be hoped that the concepts of causality, which are widely
discussed in philosophy today, will also be preserved in Al
However, scepticism is called for if one expects the statisti-
cal methods to overcome the difficulties which determined the
fate of expert systems. Similarly, a hybrid AI will not be able to
move from “big data” to “small data”, because even if symbolic
Al were to succeed in achieving results with little data, there
would still be a need for data, there is no possibility of applica-
tion in this field for small data. Possible applications for machine
learning do not arise in this area. Similarly, the analysis of the
data quality, as well as overcoming the ‘frame problem’, requires
theoretical preparation, which can ultimately only be provided
by a background theory.

As far as the theoretical limits are concerned, it is first of all
true that new technologies such as quantum computing can push
the boundaries of complexity, but they do not really overcome
them: At best, one only encounters the same hurdles as before
at another class of complexity; and with regard to the limits of
computability, nothing changes anyway. In this respect, the area
in which expert systems algorithmically generate new results
may be extended; however, fundamental barriers will remain. In
the combination of statistics-based and symbolic Al, there is cer-
tainly the potential for small advances where computers are still
holding out their arms today. But this combination is not a tool
for overcoming theoretical limits as such. It is important to point
out that the existence of such limits is precisely the basis for any
successful cryptographic protocol. Insofar as there is an interest
in a protected exchange of information (in banking, for exam-
ple), unsolvable problems in the sense of complexity theory are
necessary in order to guarantee security.
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Fig.5.1 AI’s sub-disciplines and their relationship [19, p. 6]

For a number of the conceptual problems of statistics-based
Al discussed in Chap. 4, in principle, conceptual systems mod-
elled on expert systems could provide a solution. But, as already
mentioned, there has been no substantial progress in this area.
The actual “intelligent” part, i.e. the creation of the appropriate
conceptual system, remains the responsibility of humans.

In addition, hybrid Al requires a genuine dove tailing of
symbolic and sub-symbolic Al In the proposal of the European
Commission for a new definition of Al mentioned at the begin-
ning of this book, there is an illustration that underestimates this
interlocking, if machine learning and reasoning are placed in
separate boxes, unconnected and in opposite (Fig. 5.1).
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