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1. Linux Command Line 
Linux is the foundation of DevOps operations. These commands help you navigate systems, 
manage files, configure permissions, and automate tasks. 

Basic Linux Commands 
1.​ pwd - Print the current working directory. 
2.​ ls - List files and directories. 

○​ ls -la - List all files (including hidden) in long format. 
3.​ cd - Change directory. 

○​ cd .. - Go up one directory. 
○​ cd ~ or cd - Go to the home directory. 

4.​ touch - Create an empty file. 
5.​ mkdir - Create a new directory. 

○​ mkdir -p /path/to/nested/dir - Create parent directories as needed. 
6.​ rm - Remove files or directories. 

○​ rm -f <file> - Force remove a file. 



○​ rm -r <dir> - Recursively remove a directory. 
○​ rm -rf <dir> - Force and recursively remove a directory. 

7.​ rmdir - Remove empty directories. 
8.​ cp - Copy files or directories. 

○​ cp <source> <destination> 
○​ cp -r <dir_source> <dir_destination> - Recursively copy a directory. 

9.​ mv - Move or rename files and directories. 
○​ mv <old_name> <new_name> - Rename. 
○​ mv <source> <destination_dir> - Move. 

10.​cat - Display the content of a file. 
11.​echo - Display a line of text. 

○​ echo "text" > file.txt - Overwrite file with text. 
○​ echo "text" >> file.txt - Append text to file. 

12.​clear - Clear the terminal screen. 

Intermediate Linux Commands 
13.​chmod - Change file permissions. 

○​ chmod +x script.sh - Make a script executable. 
○​ chmod 755 <file> - Set permissions (Owner: rwx, Group: r-x, Others: r-x). 

14.​chown - Change file ownership. 
○​ chown <user>:<group> <file> 

15.​find - Search for files and directories. 
○​ find . -name "*.txt" - Find all files ending in .txt in the current directory. 

16.​grep - Search for text in a file. 
○​ grep "error" /var/log/syslog - Search for "error" in a file. 
○​ grep -r "text" /path/to/dir - Recursively search for "text" in a directory. 

17.​wc - Count lines, words, and characters in a file. 
○​ wc -l <file> - Count lines only. 

18.​head - Display the first few lines of a file. 
○​ head -n 20 <file> - Display first 20 lines. 

19.​tail - Display the last few lines of a file. 
○​ tail -n 20 <file> - Display last 20 lines. 
○​ tail -f <file> - Follow the file and output new lines in real-time. 

20.​sort - Sort the contents of a file. 
21.​uniq - Remove duplicate lines from a file (requires sorted input). 

○​ sort file.txt | uniq -c - Count unique lines. 
22.​diff - Compare two files line by line. 
23.​tar - Archive files into a tarball. 

○​ tar -cvf archive.tar /path/to/dir - Create. 
○​ tar -xvf archive.tar - Extract. 
○​ tar -czvf archive.tar.gz /path/to/dir - Create and gzip. 
○​ tar -xzvf archive.tar.gz - Extract gzipped archive. 

24.​zip/unzip - Compress and extract ZIP files. 



25.​df - Display disk space usage. 
○​ df -h - Human-readable format. 

26.​du - Display directory size. 
○​ du -sh /path/to/dir - Human-readable summary of a directory's total size. 

27.​top - Monitor system processes in real time. 
28.​ps - Display active processes. 

○​ ps aux - Show all processes from all users. 
29.​kill - Terminate a process by its PID. 

○​ kill <PID> - Graceful shutdown (SIGTERM). 
○​ kill -9 <PID> - Force kill (SIGKILL). 

30.​ping - Check network connectivity. 
31.​wget - Download files from the internet. 
32.​curl - Transfer data from or to a server. 

○​ curl -L <url> - Follow redirects. 
○​ curl -o <file> <url> - Download to a file. 

33.​scp - Securely copy files between systems. 
○​ scp <local_file> <user>@<remote_host>:/path/ 

34.​rsync - Synchronize files and directories. 
○​ rsync -avz <source_dir>/ <user>@<remote_host>:/path/ 

Advanced Linux Commands 
35.​awk - Text processing and pattern scanning. 
36.​sed - Stream editor for filtering and transforming text. 

○​ sed 's/foo/bar/g' file.txt - Replace "foo" with "bar" globally in a file. 
37.​cut - Remove sections from each line of a file. 
38.​tr - Translate or delete characters. 
39.​xargs - Build and execute command lines from standard input. 
40.​ln - Create symbolic or hard links. 

○​ ln -s /path/to/original /path/to/link - Create a symbolic link. 
41.​df -h - Display disk usage in human-readable format. (Duplicate from intermediate) 
42.​free - Display memory usage. 

○​ free -h - Human-readable. 
43.​iostat - Display CPU and I/O statistics. 
44.​netstat - Network statistics. 

○​ netstat -tulnp - Show listening TCP/UDP ports and the programs using them. 
45.​ifconfig/ip - Configure network interfaces. 

○​ ip addr show - (Modern) Show IP addresses. 
46.​iptables - Configure firewall rules. 
47.​systemctl - Control the systemd system and service manager. 

○​ systemctl start <service> 
○​ systemctl stop <service> 
○​ systemctl restart <service> 
○​ systemctl status <service> 



○​ systemctl enable <service> - Start on boot. 
○​ systemctl disable <service> - Don't start on boot. 

48.​journalctl - View system logs (from systemd). 
○​ journalctl -u <service> - View logs for a specific service. 
○​ journalctl -f - Follow all logs. 

49.​crontab - Schedule recurring tasks. 
○​ crontab -e - Edit user's crontab. 

50.​at - Schedule tasks for a specific time. 
51.​uptime - Display system uptime. 
52.​whoami - Display the current user. 
53.​users - List all users currently logged in. 
54.​hostname - Display or set the system hostname. 
55.​env - Display environment variables. 
56.​export - Set environment variables. 

Networking Commands 
57.​ip addr - Display or configure IP addresses. 
58.​ip route - Show or manipulate routing tables. 
59.​traceroute - Trace the route packets take to a host. 
60.​nslookup - Query DNS records. 
61.​dig - Query DNS servers (more detailed than nslookup). 
62.​ssh - Connect to a remote server via SSH. 

○​ ssh <user>@<host> 
○​ ssh -i /path/to/key.pem <user>@<host> - Use an identity file. 

63.​ftp - Transfer files using the FTP protocol. 
64.​nmap - Network scanning and discovery. 
65.​telnet - Communicate with remote hosts. 
66.​netcat (nc) - Read/write data over networks. 

File Management and Search 
67.​locate - Find files quickly using a database. 
68.​stat - Display detailed information about a file. 
69.​tree - Display directories as a tree. 
70.​file - Determine a file's type. 
71.​basename - Extract the filename from a path. 
72.​dirname - Extract the directory part of a path. 

System Monitoring 
73.​vmstat - Display virtual memory statistics. 
74.​htop - Interactive process viewer (alternative to top). 
75.​lsof - List open files. 

○​ lsof -i :<port> - Find which process is using a specific port. 



76.​dmesg - Print kernel ring buffer messages. 
77.​uptime - Show how long the system has been running. (Duplicate) 
78.​iotop - Display real-time disk I/O by processes. 

Package Management 
79.​apt (Debian/Ubuntu) - Package manager. 

○​ apt update 
○​ apt upgrade 
○​ apt install <package> 
○​ apt remove <package> 

80.​yum/dnf (RHEL/CentOS/Fedora) - Package manager. 
○​ dnf install <package> 

81.​snap - Manage snap packages. 
82.​rpm - Manage RPM packages. 

Disk and Filesystem 
83.​mount/umount - Mount or unmount filesystems. 
84.​fsck - Check and repair filesystems. 
85.​mkfs - Create a new filesystem. 
86.​blkid - Display information about block devices. 
87.​lsblk - List information about block devices. 
88.​parted - Manage partitions interactively. 

Scripting and Automation 
89.​bash - Command interpreter and scripting shell. 
90.​sh - Legacy shell interpreter. 
91.​cron - Automate tasks. (Duplicate) 
92.​alias - Create shortcuts for commands. 
93.​source - Execute commands from a file in the current shell. 

Development and Debugging 
94.​gcc - Compile C programs. 
95.​make - Build and manage projects. 
96.​strace - Trace system calls and signals. 
97.​gdb - Debug programs. 
98.​git - Version control system. 
99.​vim/nano - Text editors for scripting and editing. 

Other Useful Commands 
100.​ uptime - Display system uptime. (Duplicate) 
101.​ date - Display or set the system date and time. 
102.​ cal - Display a calendar. 



103.​ man - Display the manual for a command. 
104.​ history - Show previously executed commands. 
105.​ alias - Create custom shortcuts for commands. (Duplicate) 

Linux Playbook Scenarios & Scripts 
Common Scenarios 

●​ Find which process is using port 80:​
sudo lsof -i :80​
# OR​
sudo netstat -tulnp | grep :80​
 

●​ Find the top 10 largest files/directories:​
# Find top 10 largest directories in /​
sudo du -Sh / | sort -rh | head -n 10​
​
# Find top 10 largest files in /​
sudo find / -type f -exec du -Sh {} + | sort -rh | head -n 10​
 

●​ Live-watch a log file for a specific error:​
tail -f /var/log/app.log | grep -i 'ERROR'​
 

●​ Find all files modified in the last 2 days:​
find /path/to/search -mtime -2​
 

●​ Count unique IPs accessing a web server (from access log):​
awk '{print $1}' /var/log/nginx/access.log | sort | uniq -c | sort -nr | head -n 20​
 

Basic Bash Script Example (backup.sh) 

A simple script to back up a directory. 

#!/bin/bash​
​
# Set variables​
SRC_DIR="/var/www/html"​
DEST_DIR="/mnt/backups/web"​
DATE=$(date +%Y-%m-%d-%H%M%S)​
BACKUP_FILE="$DEST_DIR/web_backup_$DATE.tar.gz"​
​
# Create backup directory if it doesn't exist​
mkdir -p $DEST_DIR​
​



# Create the compressed archive​
echo "Starting backup of $SRC_DIR..."​
tar -czvf $BACKUP_FILE $SRC_DIR​
​
# Check if backup was successful​
if [ $? -eq 0 ]; then​
  echo "Backup successful! File: $BACKUP_FILE"​
else​
  echo "Backup FAILED."​
fi​
​
# Optional: Remove backups older than 7 days​
find $DEST_DIR -name "web_backup_*.tar.gz" -mtime +7 -exec rm {} \;​
echo "Old backups cleaned up."​
 

To run it: 

1.​ chmod +x backup.sh 
2.​ ./backup.sh 

2. Git Version Control 
Git is your code time machine. It tracks every change, enables team collaboration, and lets 
you undo mistakes. 

Basic Git Commands 
1.​ git init - Initializes a new Git repository. 
2.​ git clone <url> - Copies a remote repository. 
3.​ git status - Displays the state of the working directory. 
4.​ git add <file> - Adds changes to the staging area. 

○​ git add . - Stage all changes. 
5.​ git commit -m "Message" - Records changes to the repository. 
6.​ git config - Configures user settings. 

○​ git config --global user.name "Your Name" 
○​ git config --global user.email "you@example.com" 

Git Log and Diff 
7.​ git log - Shows the commit history. 

○​ git log --oneline --graph --decorate - A cleaner, graphical view. 
8.​ git show <commit-hash> - Displays details about a specific commit. 
9.​ git diff - Shows changes between commits, staging, and working directory. 

○​ git diff - Changes in working dir vs. staging area. 



○​ git diff --staged - Changes in staging area vs. last commit. 
10.​git reset - Unstages changes or resets commits. 

○​ git reset HEAD <file> - Unstage a file. 
○​ git reset --hard <commit-hash> - DANGEROUS: Discard all changes back to a 

specific commit. 

Branching and Merging 
11.​git branch - Lists branches or creates a new branch. 

○​ git branch <branch-name> - Create a new branch. 
○​ git branch -d <branch-name> - Delete a branch. 

12.​git checkout <branch-name> - Switches to a branch. 
○​ git checkout -b <branch-name> - Create a new branch and switch to it. 

13.​git switch <branch-name> - (Modern) Switches branches. 
14.​git merge <branch-name> - Combines changes from one branch into another. 
15.​git rebase <branch-name> - Moves or combines commits from one branch onto 

another. 
16.​git cherry-pick <commit-hash> - Applies specific commits from one branch to another. 

Remote Repositories 
17.​git remote - Manages remote repository connections. 

○​ git remote add <name> <url> (e.g., git remote add origin ...) 
18.​git push <remote> <branch> - Sends changes to a remote repository. 

○​ git push -u origin <branch-name> - Push and set upstream. 
19.​git pull <remote> <branch> - Fetches and merges changes from a remote. 
20.​git fetch <remote> - Downloads changes from a remote without merging. 
21.​git remote -v - Lists the URLs of remote repositories. 

Stashing and Cleaning 
22.​git stash - Temporarily saves changes not yet committed. 
23.​git stash pop - Applies stashed changes and removes them from the stash list. 
24.​git stash list - Lists all stashes. 
25.​git clean -f - Removes untracked files from the working directory. 

○​ git clean -fd - Also remove untracked directories. 

Tagging 
26.​git tag -a <tag-name> -m "Message" - Creates an annotated tag. 
27.​git tag -d <tag-name> - Deletes a tag. 
28.​git push --tags - Pushes tags to a remote repository. 

Advanced Git Commands 
29.​git bisect - Finds the commit that introduced a bug. 
30.​git blame <file> - Shows which commit and author modified each line. 



31.​git reflog - Shows a log of changes to HEAD (good for recovering lost commits). 
32.​git submodule - Manages external repositories as submodules. 
33.​git archive - Creates an archive of the repository files. 
34.​git gc - Cleans up unnecessary files and optimizes the repository. 

GitHub-Specific Commands (using gh CLI) 
35.​gh auth login - Logs into GitHub via the command line. 
36.​gh repo clone <user/repo> - Clones a GitHub repository. 
37.​gh issue list - Lists issues in a GitHub repository. 
38.​gh pr create - Creates a pull request on GitHub. 
39.​gh repo create - Creates a new GitHub repository. 

Git Playbook Workflows 
Workflow 1: Starting a New Feature (GitHub Flow) 

1.​ Sync your main branch:​
git switch main​
git pull origin main​
 

2.​ Create your feature branch:​
git switch -b feature/my-new-thing​
 

3.​ Do your work (edit files, etc.). 
4.​ Add and commit your changes:​

git add .​
git commit -m "Feat: Add component for my-new-thing"​
 

5.​ Push your branch to the remote:​
git push -u origin feature/my-new-thing​
 

6.​ Create a Pull Request: Go to GitHub to open a PR from your branch into main. 

Workflow 2: Undoing a Mistake 

●​ Case A: You just committed, but want to change the message.​
git commit --amend -m "A better commit message"​
 

●​ Case B: You want to add more files to the last commit.​
git add new-file.txt​
git commit --amend --no-edit​
 

●​ Case C: You want to completely undo the last commit (and keep changes).​
git reset --soft HEAD~1​
# Your files are unchanged, commit is undone.​



 
●​ Case D: You want to undo a commit that is already public (pushed). 

○​ Do not use git reset! Use git revert. 

git revert <commit-hash-to-undo>​
# This creates a *new* commit that is the inverse of the bad one.​
git push​
 

3. Docker Containerization 
Docker packages applications into portable containers. These commands help build, ship, and 
run applications consistently. 

Basic Docker Commands 
1.​ docker --version - Displays the installed Docker version. 
2.​ docker info - Shows system-wide information about Docker. 
3.​ docker pull <image:tag> - Downloads an image. 
4.​ docker images - Lists all downloaded images. 
5.​ docker run <image> - Creates and starts a new container. 

○​ docker run -it <image> bash - Run interactively with a shell. 
○​ docker run -d -p 8080:80 <image> - Run detached, mapping port 8080 (host) to 

80 (container). 
6.​ docker ps - Lists running containers. 
7.​ docker ps -a - Lists all containers (running and stopped). 
8.​ docker stop <container_id_or_name> - Stops a running container. 
9.​ docker start <container_id_or_name> - Starts a stopped container. 
10.​docker rm <container_id_or_name> - Removes a container. 

○​ docker rm $(docker ps -aq) - Remove all stopped containers. 
11.​docker rmi <image_id_or_name> - Removes an image. 
12.​docker exec -it <container> <command> - Runs a command inside a running container. 

Intermediate Docker Commands 
13.​docker build -t <image_name:tag> . - Builds an image from a Dockerfile. 
14.​docker commit <container> <new_image:tag> - Creates an image from a container's 

changes. 
15.​docker logs <container> - Fetches logs from a container. 

○​ docker logs -f <container> - Follow logs. 
16.​docker inspect <container_or_image> - Returns detailed information. 
17.​docker stats - Displays live resource usage statistics. 
18.​docker cp <src_path> <container>:<dest_path> - Copies files. 

○​ docker cp <container>:<src_path> <dest_path> 
19.​docker rename <old_name> <new_name> - Renames a container. 
20.​docker network ls - Lists all Docker networks. 



21.​docker network create <network_name> - Creates a new network. 
22.​docker network inspect <network_name> - Shows details about a network. 
23.​docker network connect <network> <container> - Connects a container to a network. 
24.​docker volume ls - Lists all Docker volumes. 
25.​docker volume create <volume_name> - Creates a new volume. 
26.​docker volume inspect <volume_name> - Provides details about a volume. 
27.​docker volume rm <volume_name> - Removes a volume. 

Advanced Docker Commands 
28.​docker-compose up - Starts services defined in docker-compose.yml. 

○​ docker-compose up -d - Run in detached mode. 
29.​docker-compose down - Stops and removes services. 

○​ docker-compose down -v - Also remove volumes. 
30.​docker-compose logs - Displays logs for services. 
31.​docker-compose exec <service_name> <command> - Runs a command in a service. 
32.​docker save -o <file.tar> <image> - Exports an image to a tar file. 
33.​docker load -i <file.tar> - Imports an image from a tar file. 
34.​docker export <container> > <container.tar> - Exports a container's filesystem. 
35.​docker import <container.tar> <new_image> - Creates an image from an exported 

container. 
36.​docker system df - Displays disk usage by Docker. 
37.​docker system prune - Cleans up unused resources. 

○​ docker system prune -af - Prune all (images, containers, volumes) without 
prompting. 

38.​docker tag <old_image:tag> <new_image:tag> - Assigns a new tag to an image. 
39.​docker push <image:tag> - Uploads an image to a Docker registry. 
40.​docker login - Logs into a Docker registry. 
41.​docker logout - Logs out of a Docker registry. 
42.​docker swarm init - Initializes a Docker Swarm. 
43.​docker service create - Creates a new service in Swarm. 
44.​docker stack deploy -c <compose.yml> <stack_name> - Deploys a stack. 
45.​docker stack rm <stack_name> - Removes a stack. 
46.​docker checkpoint create <container> <checkpoint> - Creates a checkpoint. 
47.​docker checkpoint ls <container> - Lists checkpoints. 
48.​docker checkpoint rm <container> <checkpoint> - Removes a checkpoint. 

Docker Playbook Examples 
Example 1: Dockerfile for a simple Node.js App 

# Use an official Node.js runtime as a parent image​
FROM node:18-alpine​
​
# Set the working directory in the container​



WORKDIR /usr/src/app​
​
# Copy package.json and package-lock.json to the working directory​
COPY package*.json ./​
​
# Install any needed dependencies​
RUN npm install​
​
# Copy the rest of the application's source code​
COPY . .​
​
# Make port 3000 available to the world outside this container​
EXPOSE 3000​
​
# Define the command to run the app​
CMD [ "node", "server.js" ]​
 

Example 2: docker-compose.yml for a Web App + Database 

This example starts a WordPress site and a MySQL database, connecting them with a network 
and persisting data with volumes. 

version: '3.8'​
​
services:​
  # WordPress Service​
  wordpress:​
    image: wordpress:latest​
    ports:​
      - "8000:80"  # Map host port 8000 to container port 80​
    restart: always​
    environment:​
      WORDPRESS_DB_HOST: db:3306​
      WORDPRESS_DB_USER: wordpress​
      WORDPRESS_DB_PASSWORD: somepassword​
      WORDPRESS_DB_NAME: wordpress​
    volumes:​
      - wordpress_data:/var/www/html  # Persist WordPress files​
    networks:​
      - app_network​
    depends_on:​
      - db​
​



  # MySQL Database Service​
  db:​
    image: mysql:8.0​
    restart: always​
    environment:​
      MYSQL_DATABASE: wordpress​
      MYSQL_USER: wordpress​
      MYSQL_PASSWORD: somepassword​
      MYSQL_ROOT_PASSWORD: rootpassword​
    volumes:​
      - db_data:/var/lib/mysql  # Persist database data​
    networks:​
      - app_network​
​
# Define networks​
networks:​
  app_network:​
    driver: bridge​
​
# Define volumes​
volumes:​
  wordpress_data:​
  db_data:​
 

4. Kubernetes (K8s) Orchestration 
Kubernetes automates deployment, scaling, and management of containerized applications. 

Basic Kubernetes Commands (kubectl) 
1.​ kubectl version - Displays Kubernetes client/server version. 
2.​ kubectl cluster-info - Shows cluster information. 
3.​ kubectl get nodes - Lists all nodes in the cluster. 
4.​ kubectl get pods - Lists all pods in the default namespace. 

○​ kubectl get pods -n <namespace> - List pods in a specific namespace. 
○​ kubectl get pods -A - List pods in all namespaces. 
○​ kubectl get pods -o wide - Get more details (IP, node). 

5.​ kubectl get services - Lists all services. 
6.​ kubectl get namespaces - Lists all namespaces. 
7.​ kubectl describe pod <pod-name> - Shows detailed information about a pod. 
8.​ kubectl logs <pod-name> - Displays logs for a pod. 

○​ kubectl logs -f <pod-name> - Follow logs. 



9.​ kubectl create namespace <name> - Creates a new namespace. 
10.​kubectl delete pod <pod-name> - Deletes a pod. 

Intermediate Kubernetes Commands 
11.​kubectl apply -f <file.yaml> - Applies changes from a YAML file. 
12.​kubectl delete -f <file.yaml> - Deletes resources from a YAML file. 
13.​kubectl scale deployment <name> --replicas=3 - Scales a deployment. 
14.​kubectl expose deployment <name> --type=LoadBalancer --port=80 - Exposes a 

deployment. 
15.​kubectl exec -it <pod-name> -- /bin/bash - Executes a command in a pod. 
16.​kubectl port-forward <pod-name> 8080:80 - Forwards a local port to a pod. 
17.​kubectl get configmaps - Lists all ConfigMaps. 
18.​kubectl get secrets - Lists all Secrets. 
19.​kubectl edit <resource>/<name> - Edits a resource definition. 
20.​kubectl rollout status deployment/<name> - Displays deployment rollout status. 

Advanced Kubernetes Commands 
21.​kubectl rollout undo deployment/<name> - Rolls back a deployment. 
22.​kubectl top nodes - Shows resource usage for nodes. 
23.​kubectl top pods - Displays resource usage for pods. 
24.​kubectl cordon <node-name> - Marks a node as unschedulable. 
25.​kubectl uncordon <node-name> - Marks a node as schedulable. 
26.​kubectl drain <node-name> --ignore-daemonsets - Safely evicts all pods from a 

node. 
27.​kubectl taint nodes <node-name> <key>=<value>:<effect> - Adds a taint to a node. 
28.​kubectl get events - Lists all events. 
29.​kubectl apply -k <dir> - Applies resources from a kustomization directory. 
30.​kubectl config view - Displays the kubeconfig file. 
31.​kubectl config use-context <cluster-name> - Switches the active context. 
32.​kubectl debug pod/<pod-name> - Creates a debugging session for a pod. 
33.​kubectl delete namespace <name> - Deletes a namespace. 
34.​kubectl patch <resource> <name> -p '{"spec": ...}' - Updates a resource. 
35.​kubectl rollout history deployment/<name> - Shows deployment rollout history. 
36.​kubectl autoscale deployment <name> --cpu-percent=50 --min=1 --max=10 - 

Creates a HorizontalPodAutoscaler. 
37.​kubectl label pod <pod-name> <key>=<value> - Adds or modifies a label. 
38.​kubectl annotate pod <pod-name> <key>=<value> - Adds or modifies an annotation. 
39.​kubectl delete pv <pv-name> - Deletes a PersistentVolume. 
40.​kubectl get ingress - Lists all Ingress resources. 
41.​kubectl create configmap <name> --from-literal=<key>=<value> - Creates a 

ConfigMap. 
42.​kubectl create secret generic <name> --from-literal=<key>=<value> - Creates a 

Secret. 



43.​kubectl api-resources - Lists all available API resources. 
44.​kubectl api-versions - Lists all API versions. 
45.​kubectl get crds - Lists all Custom Resource Definitions (CRDs). 

Kubernetes Playbook Examples (YAML Manifests) 
Example 1: deployment.yaml 

This manifest creates a Deployment that runs 3 replicas of the Nginx container. 

apiVersion: apps/v1​
kind: Deployment​
metadata:​
  name: nginx-deployment​
  labels:​
    app: nginx​
spec:​
  replicas: 3​
  selector:​
    matchLabels:​
      app: nginx​
  template:​
    metadata:​
      labels:​
        app: nginx​
    spec:​
      containers:​
      - name: nginx​
        image: nginx:1.23​
        ports:​
        - containerPort: 80​
 

To apply: kubectl apply -f deployment.yaml 

Example 2: service.yaml 

This manifest creates a Service of type NodePort to expose the nginx-deployment outside the 
cluster. 

apiVersion: v1​
kind: Service​
metadata:​
  name: nginx-service​
spec:​



  type: NodePort​
  selector:​
    app: nginx  # This MUST match the labels in the Deployment's template​
  ports:​
    - protocol: TCP​
      port: 80       # Port the service is available on *inside* the cluster​
      targetPort: 80 # Port the container is listening on​
      # nodePort: 30080 # Optional: specify a port (30000-32767)​
 

To apply: kubectl apply -f service.yaml 

5. Helm (The K8s Package Manager) 
Helm simplifies installing and managing complex Kubernetes applications using "charts". 

Basic Helm Commands 
1.​ helm help - Displays help. 
2.​ helm version - Shows Helm client/server version. 
3.​ helm repo add <name> <url> - Adds a new chart repository. 
4.​ helm repo update - Updates all chart repositories. 
5.​ helm repo list - Lists all added repositories. 
6.​ helm search hub <keyword> - Searches for charts on Helm Hub. 
7.​ helm search repo <keyword> - Searches charts in your repositories. 
8.​ helm show chart <repo/chart> - Displays information about a chart. 

Installing and Upgrading Charts 
9.​ helm install <release-name> <repo/chart> - Installs a chart. 
10.​helm upgrade <release-name> <repo/chart> - Upgrades an existing release. 
11.​helm upgrade --install <release-name> <repo/chart> - Installs or upgrades. 
12.​helm uninstall <release-name> - Uninstalls a release. 
13.​helm list - Lists all installed releases. 

○​ helm list -n <namespace> or helm list -A 
14.​helm status <release-name> - Displays the status of a release. 

Working with Helm Charts 
15.​helm create <chart-name> - Creates a new Helm chart directory. 
16.​helm lint ./<chart-name> - Lints a chart for errors. 
17.​helm package ./<chart-name> - Packages a chart into a .tgz file. 
18.​helm template <release-name> ./<chart-name> - Renders YAML files without 

installing. 
19.​helm dependency update ./<chart-name> - Updates dependencies. 



Advanced Helm Commands 
20.​helm rollback <release-name> <revision_number> - Rolls back a release. 
21.​helm history <release-name> - Displays the history of a release. 
22.​helm get all <release-name> - Gets all information for a release. 
23.​helm get values <release-name> - Displays the values used in a release. 
24.​helm test <release-name> - Runs tests defined in a chart. 

Helm Chart Repositories 
25.​helm repo remove <name> - Removes a chart repository. 
26.​helm repo update - (Duplicate) Updates local cache. 
27.​helm repo index <dir> - Creates an index file for a chart repository. 

Helm Values and Customization 
28.​helm install <name> <chart> --values <values.yaml> - Installs with custom values. 
29.​helm upgrade <name> <chart> -f <values.yaml> - Upgrades with custom values. 
30.​helm install <name> <chart> --set <key>=<value> - Installs with a direct value. 
31.​helm upgrade <name> <chart> --set <key>=<value> - Upgrades with a direct value. 

Helm Template and Debugging 
32.​helm uninstall <release-name> --purge - (Note: --purge is deprecated in Helm 3, 

uninstall does this by default). 
33.​helm template <name> <chart> --debug - Renders templates with debug output. 
34.​helm install <name> <chart> --dry-run - Simulates an install. 
35.​helm upgrade <name> <chart> --dry-run - Simulates an upgrade. 

Helm and Kubernetes Integration 
36.​helm list --namespace <ns> - Lists releases in a namespace. 
37.​helm uninstall <name> --namespace <ns> - Uninstalls from a namespace. 
38.​helm install <name> <chart> --namespace <ns> - Installs into a namespace. 
39.​helm upgrade <name> <chart> --namespace <ns> - Upgrades in a namespace. 

Helm Chart Development 
40.​helm package --sign - Packages and signs a chart. 
41.​helm create --starter <path> - Creates a chart from a starter template. 
42.​helm push <chart.tgz> <repo_name> - Pushes a chart to a repository. 

Helm with Kubernetes CLI 
43.​helm list -n <namespace> - (Duplicate) Lists releases in a namespace. 
44.​helm install <name> <chart> --kube-context <context> - Installs to a specific cluster 

context. 
45.​helm upgrade <name> <chart> --kube-context <context> - Upgrades in a specific 



context. 

Helm Chart Dependencies 
46.​helm dependency build ./<chart-name> - Builds dependencies. 
47.​helm dependency list ./<chart-name> - Lists all dependencies. 

Helm History and Rollbacks 
48.​helm rollback <name> <revision> --recreate-pods - Rolls back and recreates pods. 
49.​helm history <name> --max <number> - Limits history output. 

Helm Playbook Workflow 
Workflow: Install a Customized Prometheus Stack 

1.​ Add the Prometheus community repository:​
helm repo add prometheus-community 
[https://prometheus-community.github.io/helm-charts](https://prometheus-community.gi
thub.io/helm-charts)​
helm repo update​
 

2.​ Search for the kube-prometheus-stack chart:​
helm search repo prometheus-community/kube-prometheus-stack​
 

3.​ Get the default values and save them to a file:​
helm show values prometheus-community/kube-prometheus-stack > prom-values.yaml​
 

4.​ Edit the prom-values.yaml file: 
○​ For example, you might want to disable Grafana or set persistence. 
○​ nano prom-values.yaml 
○​ Find grafana: and set enabled: false 

5.​ Install the chart into a monitoring namespace:​
kubectl create namespace monitoring​
helm install my-prometheus prometheus-community/kube-prometheus-stack \​
  -n monitoring \​
  -f prom-values.yaml​
 

6.​ Check the status:​
helm status my-prometheus -n monitoring​
kubectl get pods -n monitoring​
 

7.​ Uninstall the release:​
helm uninstall my-prometheus -n monitoring​
 



6. Terraform (Infrastructure as Code) 
Terraform lets you build, change, and version cloud and on-prem infrastructure safely and 
efficiently. 

Basic Terraform Commands 
50.​terraform --help - Displays general help. 
51.​terraform init - Initializes the working directory (downloads providers). 
52.​terraform validate - Validates configuration files syntax. 
53.​terraform plan - Creates an execution plan. 
54.​terraform apply - Applies the changes. 

○​ terraform apply -auto-approve - Apply without interactive approval. 
55.​terraform show - Displays the current state. 
56.​terraform output - Displays output values. 
57.​terraform destroy - Destroys the infrastructure. 
58.​terraform refresh - Updates state file with real infrastructure. 
59.​terraform taint <resource_address> - Marks a resource for recreation. 
60.​terraform untaint <resource_address> - Unmarks a tainted resource. 
61.​terraform state - Manages state files. 
62.​terraform import <resource_address> <resource_id> - Imports existing infrastructure. 
63.​terraform graph - Generates a graphical representation. 
64.​terraform providers - Lists providers. 
65.​terraform state list - Lists all resources in the state. 
66.​terraform backend - Configures the state backend. 
67.​terraform state mv <source> <destination> - Moves an item in the state. 
68.​terraform state rm <resource_address> - Removes an item from the state. 
69.​terraform workspace - Manages workspaces. 
70.​terraform workspace new <name> - Creates a new workspace. 
71.​terraform module - Manages modules. 
72.​terraform init -get-plugins=true - (Note: This is default behavior in modern Terraform). 
73.​TF_LOG=DEBUG - Set log level via environment variable. 
74.​TF_LOG_PATH=<path> - Set log file path. 
75.​terraform login - Logs into Terraform Cloud/Enterprise. 
76.​terraform remote - (Legacy) Manages remote state. 
77.​terraform push - (Legacy) Pushes modules. 

Terraform Playbook Example (HCL) 
This example defines an AWS S3 bucket. 

File: main.tf 

# 1. Configure the AWS Provider​



terraform {​
  required_providers {​
    aws = {​
      source  = "hashicorp/aws"​
      version = "~> 5.0"​
    }​
  }​
}​
​
provider "aws" {​
  region = "us-east-1"​
}​
​
# 2. Define a variable for the bucket name​
variable "bucket_name" {​
  description = "The name for the S3 bucket"​
  type        = string​
  default     = "my-unique-tf-playbook-bucket-12345"​
}​
​
# 3. Create the S3 bucket resource​
resource "aws_s3_bucket" "my_bucket" {​
  bucket = var.bucket_name​
​
  tags = {​
    Name        = "My Terraform Bucket"​
    Environment = "Dev"​
  }​
}​
​
# 4. Output the bucket name​
output "bucket_name" {​
  value = aws_s3_bucket.my_bucket.bucket​
}​
 

Terraform Workflow: 

1.​ terraform init - Initializes and downloads the AWS provider. 
2.​ terraform plan - Shows that it will create 1 S3 bucket. 
3.​ terraform apply - Prompts for approval, then creates the bucket. 
4.​ terraform output - Displays the name of the created bucket. 
5.​ terraform destroy - Prompts for approval, then deletes the bucket. 



7. Ansible (Configuration Management) - NEW 
SECTION 
Ansible is an open-source tool that automates software provisioning, configuration 
management, and application deployment. It is agentless, meaning it connects to servers 
over SSH. 

Core Concepts 
●​ Inventory: A file (like hosts.ini) that lists the servers Ansible manages. 
●​ Playbook: A YAML file that defines a set of tasks to be executed on a server. 
●​ Task: A single action to be performed (e.g., install a package, copy a file). 
●​ Module: The code that Ansible runs for a task (e.g., apt, copy, systemd). 
●​ Role: A collection of playbooks, templates, and variables to organize complex 

configurations. 

Common Commands 
●​ ansible --version - Check version. 
●​ ansible all -m ping -i inventory.ini - Ping all hosts in the inventory (ad-hoc command). 
●​ ansible-playbook -i inventory.ini playbook.yml - Run a playbook. 
●​ ansible-playbook -i inventory.ini playbook.yml --check - Dry-run: see what would 

change. 
●​ ansible-galaxy install <role_name> - Install a role from Ansible Galaxy. 

Ansible Playbook Example (YAML) 
This playbook installs and starts Nginx on a group of web servers. 

File: inventory.ini 

[webservers]​
web1.example.com​
web2.example.com​
 

File: playbook.yml 

---​
- name: Configure Web Servers​
  hosts: webservers  # This matches the group in the inventory​
  become: yes      # This means "run as sudo"​
  tasks:​
    - name: Install nginx (Debian/Ubuntu)​
      ansible.builtin.apt:​



        name: nginx​
        state: present​
        update_cache: yes​
      when: ansible_os_family == "Debian"​
​
    - name: Install nginx (RHEL/CentOS)​
      ansible.builtin.yum:​
        name: nginx​
        state: present​
      when: ansible_os_family == "RedHat"​
​
    - name: Start and enable nginx service​
      ansible.builtin.systemd:​
        name: nginx​
        state: started​
        enabled: yes​
​
    - name: Copy custom index.html page​
      ansible.builtin.template:​
        src: index.html.j2  # A template file​
        dest: /var/www/html/index.html​
        mode: '0644'​
 

File: index.html.j2 (This is a Jinja2 template) 

<html>​
<head><title>Welcome</title></head>​
<body>​
  <h1>This server is {{ ansible_hostname }}</h1>​
  <p>Managed by Ansible.</p>​
</body>​
</html>​
 

To run: ansible-playbook -i inventory.ini playbook.yml 

8. CI/CD (Continuous Integration/Deployment) - NEW 
SECTION 
CI/CD is a practice that automates the software build, test, and deployment pipeline. GitHub 
Actions is a popular tool built directly into GitHub. 



Core Concepts (Using GitHub Actions) 
●​ Workflow: An automated process defined in a YAML file in the .github/workflows/ 

directory. 
●​ Event: The trigger for a workflow (e.g., on: push, on: pull_request). 
●​ Job: A set of steps that run on a runner. 
●​ Step: A single task (either a shell command or a pre-built action). 
●​ Action: A reusable piece of code (e.g., actions/checkout@v3). 
●​ Runner: The server (Linux, Windows, macOS) that executes the job. 

CI/CD Playbook Example (GitHub Actions) 
This workflow triggers on a push to the main branch. It builds a Node.js app, runs tests, builds 
a Docker image, and pushes it to Docker Hub. 

File: .github/workflows/main.yml 

name: CI/CD Pipeline​
​
# 1. Trigger the workflow on push to the 'main' branch​
on:​
  push:​
    branches: [ "main" ]​
  pull_request:​
    branches: [ "main" ]​
​
jobs:​
  # 2. Job to build and test the application​
  build-and-test:​
    runs-on: ubuntu-latest​
    steps:​
      - name: Check out repository code​
        uses: actions/checkout@v4​
​
      - name: Set up Node.js​
        uses: actions/setup-node@v4​
        with:​
          node-version: '18'​
​
      - name: Install dependencies​
        run: npm install​
​
      - name: Run tests​
        run: npm test​



​
  # 3. Job to build and push the Docker image​
  build-and-push-docker:​
    needs: build-and-test  # This job only runs if 'build-and-test' succeeds​
    runs-on: ubuntu-latest​
    if: github.ref == 'refs/heads/main' # Only run on push to main, not PRs​
    steps:​
      - name: Check out repository code​
        uses: actions/checkout@v4​
​
      - name: Log in to Docker Hub​
        uses: docker/login-action@v3​
        with:​
          username: ${{ secrets.DOCKER_USERNAME }}​
          password: ${{ secrets.DOCKER_PASSWORD }}​
​
      - name: Build and push Docker image​
        uses: docker/build-push-action@v5​
        with:​
          context: .​
          file: ./Dockerfile​
          push: true​
          tags: your-dockerhub-username/my-app:latest​
 

To use: 

1.​ Add this file to your repository at .github/workflows/main.yml. 
2.​ Add DOCKER_USERNAME and DOCKER_PASSWORD to your GitHub repository's 

Settings > Secrets and variables > Actions secrets. 

9. Monitoring & Observability - NEW SECTION 
●​ Monitoring: Tells you if something is wrong (e.g., CPU is at 90%). 
●​ Observability: Tells you why something is wrong (e.g., a specific function is in a loop). 

Core Tools 
●​ Prometheus: A time-series database that pulls (scrapes) metrics from your applications. 
●​ Grafana: A visualization tool that queries Prometheus (and other sources) to create 

dashboards. 
●​ ELK/EFK Stack: 

○​ Elasticsearch: A database for storing logs. 
○​ Logstash / Fluentd: Tools for collecting and processing logs. 
○​ Kibana: A visualization tool for logs. 



Prometheus & PromQL 
Prometheus uses a powerful query language called PromQL. 

Common PromQL Queries: 

●​ Get the per-second rate of HTTP requests over the last 5 minutes:​
rate(http_requests_total[5m])​
 

●​ Get the 95th percentile request latency:​
histogram_quantile(0.95, sum(rate(http_request_duration_seconds_bucket[5m])) by (le))​
 

●​ Show how many instances of each job are "up" (running):​
sum(up) by (job)​
 

●​ Get free memory on nodes (using Node Exporter):​
node_memory_MemFree_bytes​
 

Grafana 
Grafana is the visualization layer. You don't "run commands" in it, but you use it to: 

1.​ Add Prometheus as a data source. 
2.​ Create dashboards with panels. 
3.​ Write PromQL queries in the panels to build graphs. 
4.​ Set up alerts based on query thresholds. 

Logging (ELK/EFK) 
The goal is to centralize logs. 

1.​ Fluentd/Logstash runs on your nodes (or as a sidecar in K8s). 
2.​ It collects logs from files (/var/log/*.log) or container output. 
3.​ It parses, enriches, and forwards these logs to Elasticsearch. 
4.​ Kibana provides a web UI to search and visualize all your logs in one place. 

 

Thank you. Lets Connect​
www.linkedin.com/in/bhooshan-pattanashetti 
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