

the Unix terminal seems simple at first (just type in commands and run them!).

but the documentation about how the terminal actually works is incredibly scattered and
patchy, and a lot of things aren't documented at all because they're just "conventions"
that "everyone knows". It makes everything take way longer to learn than it should.

this zine's goal is to help you get from:

to

I pressed an arrow key
and it printed out ^[[D??

wait why can't
I select text?

oh yeah, that weird
problem again! I
know exactly how to
deal with it

(this zine comes with a cheat sheet! https://wizardzines.com/terminal-cheat-sheet.pdf)

$ python3 hi.py

hello world

vim fish * python3

bash, cat, vim, top

xterm, iTerm,
GNOME terminal

type
BYTES BYTES

TTY driver shell and other programs
terminal emulator

keyboard
shortcuts

d

click
python

the TTY driver is part of
your operating system:

the terminal emulator &
programs communicate by
reading/writing to a pair
of files

your terminal emulator
is a translator:

The "terminal" is actually a bunch of components that work together.
Let's imagine that you're running python3 blah.py.

(more on page 14) (more on page 24)

it translates all your
typing/clicks into bytes
and it takes all the
bytes the program
sends and displays them
on the screen

Your shell is a program
that you use to start all
other programs.

The shell doesn't do much
after it starts a program.
Programs get a copy of the
shell's environment variables
& a few other things and
then they're on their own.

the TTY driver is in the middle
and copies bytes back & forth
with some small changes

the 3 most
popular shells

bash and zsh are
both "POSIX shells"

fish: the friendly
interactive shell

when you run a program
in the terminal, you're
actually asking your shell
to start it for you

it turns out that starting
programs is a surprisingly
complicated job!

the shell starts programs

this means they follow a
standard for how Unix
shells should behave, but
there are still differences

I'll mention when something
varies between shells!

I love how fish has friendly
defaults that I can use
without configuring it

this is (mostly) not
a fish propaganda
zine though

there are LOTS of shells
but 95% of people use

default
on Linux

default
on Mac
(in 2025)

aims to be
more user
friendly

bash zshor or fish

where to find your
shell's config file

.bashrc vs .bash_profile

here's an trick to figure out
whether bash is using
.bashrc or .bash_profile (or both!)

Add:

to each file, open a new terminal
tab, and see what it prints out!

echo "this is .bash_profile"

echo "this is .bashrc"

wzrd.page/bashrc

which one is a rabbit hole,
huge flow chart at

bash:

zsh:

fish:

~/.bashrc ~/.bash_profile

~/.zshrc

~/.config/fish/config.fish

SHELL
STUFF

PATH is how your shell knows where to find programs

PATH ordering drama gotcha: not everything
uses your shell's PATH

hmm, I used the Rust
installer, where does
that install things?

how to add a program
to your PATH

... but which directory was
the program installed in?

$ python3

SHELL
STUFF

remember how you installed it: ugh, no, don't run THAT
python3, run the other one!

You can prioritize a
directory by adding it to the
beginning of your PATH

cron jobs usually have a
very basic PATH, maybe just
/bin and /usr/bin

in a cron job I'll use the
absolute path:

/home/bork/bin/someprogram

... or do a brute force search:

(usually I put a 2>/dev/null too)

/bin/python3? nope, doesn't exist
/home/bork/bin/python3? nope, doesn't exist
/usr/bin/python3? there it is!!! I'll run that!

PATH=/bin:/home/bork/bin:/usr/bin
update PATH in your shell
config with that directory
restart your shell

for WAY TOO MUCH info
about how to do this, see
https://wzrd.page/pathshell

find the directory the
program is in

It's a list of directories that your shell searches in order.
directories are separated by colons

find / -name python3 | grep bin

show ALL matches on your
PATH for a program, in order

which -a python3

look at your PATH

show each entry on
its own line

path is an array that zsh
syncs with the PATH
environment variable

zsh has nice PATH syntax

needs quotes to work in fish

echo $PATH

path=(
$path
~/.cargo/bin
~/bin

)

echo "$PATH" | tr ':' '\n'

show the first match on
your PATH for a program

at the end:

at the beginning:

in fish the syntax is
different, like:

(but in zsh which acts like type)

add a directory to
your PATH

weird fact: bash and zsh
cache PATH entries

which python3

export PATH=$PATH:/my/dir

export PATH=/my/dir:$PATH

set PATH $PATH /my/dir

show what your shell is
actually going to run

with type

Your shell doesn't always run
a program! Instead of what's
in PATH, sometimes it'll run a
builtin or alias or cached entry

this cache gets cleared every
time you restart your shell and
every time you update PATH so
it rarely causes problems

but if you need to you can
clear it with:

type python3

SHELL
STUFF

hash -r

your shell has a history
of the commands you ran

where is history stored? history doesn't
include everything

how long does your shell
store history for?

when does your shell
save history?

a useful history tool:

atuin

some ways to access history: in bash, the default is
500 commands (not enough!)

bash:
zsh:
fish:

~/.bash_history

run echo $HISTFILE

sometimes I copy over my
shell history when setting
up a new computer!

mine is in ~/.local/share/
fish/fish_history

by default, bash and zsh
only save history to a file
when you exit the shell

fish saves the history
continuously

atuin lets you:
save unlimited history

the contents of the history
file when the shell started
the commands you ran in
this shell session

if I want to use the history
from another terminal tab, I'll
open a new tab

usually it includes:

search history more easily
save commands as soon as
you run them
sync your history (optionally)

if you're using bash, you might
want to set HISTSIZE and
HISTFILESIZE to store more history
in zsh, it's HISTSIZE and SAVEHIST

in fish, the default is
256,000 commands

press the up arrow

run history

use !33 to rerun line 33
from history (bash/zsh)

search it with Ctrl+R

SHELL
STUFF

when you close a terminal
tab all jobs are killed
with a SIGHUP signal

a trick to kill programs
if Ctrl+C doesn't work

you can stop this with disown
or by starting the program
with nohup:

for example I like to convert
100 files in parallel like this:

foreground
background

& runs a program in
the background

programs can either be:

job number
goes heredisown %1

nohup my_program &

your shell lets you run
many programs ("jobs") in
the same terminal tab

for i in `seq 1 100`
do
convert $i.png $i.jpg &

done

SHELL
STUFF

jobs lists backgrounded
& stopped jobs

use the numbers to bring
them to the foreground or
background (like fg %2), kill
them (kill %2), or disown them

press Ctrl+Z to stop the
program

run kill %1 to kill it (or
kill -9 %1 if you're
feeling extra murderous)

$ jobs
[1] Running python blah.py &
[2] Stopped vim

stopped (which is
more like "paused")

running in
background

fgfg

bg

running in
foreground

stopped

Ct
rl
+ Z

a little flowchart

cycle through matching
filenames

tab complete from the
middle of a filename

(doesn't work in bash
unless you configure it)

programs can change how
tab completion works with
plugins called "completions"
this is usually GREAT
(git add <Tab> only
completes modified files!)
but sometimes it's buggy

(or in fish ls thing<Tab>)

Add this to your ~/.inputrc:

ugh how do I
escape that
filename again?

I can handle it!
Just use Tab!

(if you don't do this you get
weird "file not found" errors
for Julia and Evans.txt)

configure bash to cycle through matching filenames

quote filenames with spaces

tab completion can
go wrong

rm f<Tab><Tab><Tab><Tab>

set show-all-if-ambiguous on
set menu-complete-display-prefix on
TAB: menu-complete

cat "Julia Evans.txt"

tab completion works
inside quoted strings

cat "File N<Tab

your shell can help you
type weird filenames

ls *thing*<Tab>

SHELL
STUFF

match all filenames
ending in .png

match .png files in any
subdirectory

you can drag files from
your GUI file manager to

escape the filename

(*.png is called a "glob" and it's
handled by the shell so you can
use it with any program!)

(works in zsh/fish, and in
bash with shopt -s globstar)

This only works if your
terminal emulator supports it.

rm *.png

rm **/*.png

(otherwise mv thinks -file.txt
is an invalid option)

for example if you want to
grep a file for the text "-x"
you can run:

-- means "nothing after this
is an option"

grep -- -x file.txt

handle filenames starting
with a dash with

-- or ./

mv ./-file.txt dest

mv -- -file.txt dest

lots of tools support -- * gotcha: regular
expressions

if you want to pass a
regexp with a * to grep

you need to quote it
otherwise it will be treated
as a glob

grep 'def .*' file.txt

match filenames
starting with a dot

(dotfiles aren't included in
* by default)

ls .*

gotcha: .* in older versions of
bash (pre 5.2) includes . and ..

SHELL
STUFF

terminal programs have
1 input and 2 outputs

on 2>&1 gotcha: programs
often buffer stdout

but not stderr

when you redirect, the
shell opens the file before

the program starts

they're numbered: stdin is 0,
stdout is 1, stderr is 2

when a program writes text to
stdout, it'll often

check if stdout is a TTY
(using the isatty function)
if not, "buffer" the writes until
there's 1KB of data to write,
for performance reasons

(this is the default in libc)

your shell is in
charge of setting up
stdin/stdout/stderr

python3 script.py > out.txt

ok, I'll set stdout
to out.txt for that
program

2>&1 redirects stderr to stdout

you could also do echo "oops" 1>&2
if you want to write a message
to stderr in a script

first I'll open file.txt...

THEN I'll run sudo echo blah

this is why file.txt isn't
opened as root!

sudo echo blah > file.txt

(the numbers are called "file descriptors")

program

program

SHELL
STUFF

3 things you can set the
inputs/outputs to

the TTY (the default:
display output in your
terminal emulator)
a file

a pipe (send output to
another program's input)

cmd1 2>&1 | cmd2

cmd1 | cmd2

cmd > file.txt 2>&1

cmd 2>&1 > file.txt

file.txt

cmd 2> file.txt file.txt

cmd < file.txt
file.txt

three gotchas

sudo echo blah > /root/file.txt

echo blah | sudo tee /root/file.txt

sudo sh -c 'echo blah > /root/file.txt'

doesn't write to /root/file.txt
as root. Instead, do:

cmd > file.txt 2>&1

cat vs <

doesn't write both stdout and stderr
to file.txt. Instead, do:

I almost always
prefer to do:

instead of

it usually works
fine & it feels
better to me

using cat can be
slower if it's a
GIANT file though

cat file.txt | cmd

cmd < file.txt

&> |&
bash and zsh
support &> and |&
to redirect/pipe
both stdout and
stderr

(in fish it's &|
instead of |&)

and

cmd file.txt > file.txt

will delete the contents of file.txt

But I just have "never read from and
redirect to the same file" seared into
my memory.

some people use set -o noclobber
(in bash/zsh) to avoid this

send a file to stdin:

cmd >> file.txt

(append mode)

program TTY

file.txtappend to a file:

file.txt

cmd > file.txt
redirect to a file:

redirect stderr to a file:

redirect stdout AND stderr:

pipe stdout:

pipe stdout AND stderr:

your terminal emulator
has two main jobs

it's in charge of
copy and paste

a little history what are these "bytes"?

turn your actions
(typing & clicking) into
bytes and send them

receive bytes and display
them visually

it's called an "emulator" because
in the 80s a "terminal" was a
separate machine from the
computer

the bytes are either:

text (like cat blah.txt)

escape codes (for example
to tell the terminal what
colour to display the text in)

some terminal emulators
come with a big library of
colourschemes!

if yours doesn't, this site has
colourschemes for many
terminal emulators:

iterm2colorschemes.com

Ctrl and Shift are the only
modifiers I trust in the terminal,
all of the others work differently
depending on the situation

control characters (for
example Ctrl+C is the byte 3)

We still use the same 80s protocol!

your terminal emulator
lets you select text and
copy/paste it (usually with
Ctrl+Shift+C or Cmd+C)

(copy & paste tips on page 18!)

Linux Mac

it manages
colours and fonts!

fun fact: how Ctrl-X
gets translated to bytes

Ctrl-A => 1
Ctrl-B => 2
...
Ctrl-Z => 26

program

programs can easily
"break" your terminal by
printing escape codes

how reset works

It's easy to fix though: run
reset to print a special escape
code that resets everything

prints the
"reset"
escape codes

tells the TTY
driver to reset
(more on page 25)

reset is basically the same
as running these 3 commands:

tput reset
sleep 1
stty sane

oops I made your
cursor disappear

terminal
emulator

some inputs/outputs
are text and some are

special instructions

program

a program's input and outputs are streams of bytes

these special instructions
are called "escape codes"

they're called "escape codes"
because they all start with
the ESC character

five ways people print out ESC

^[\033 ESC \e \x1b

make text
green

examples of special instructions:

make
cursor
invisible

left arrow
key press

everything you type goes into standard input

all the output you see comes from either
standard output or standard error

except for
maybe Ctrl+C/
Z/T/S/U/D/Q

your terminal emulator has
16 configurable colours

the default ANSI colours
often have bad contrast

black
red
green
yellow
blue
purple
cyan
white

normal bright

ls --color often displays
directories in ANSI "blue"
which can look like this:

ANSI "yellow" on white also
often has bad contrast

can you read this?

"minimum contrast"

the only real solution is to use
a terminal emulator with a
"minimum contrast" feature
(like iTerm or Kitty) that will
fix all contrast issues

Picking ANSI colours that
always have good contrast
is impossible.

you can configure them in
your terminal emulator's
settings

run a shell script that prints
escape codes to magically
set up your colours

https://wzrd.page/scripts

-- OR --

(my favourite way!)

usually if a program
is writing to a pipe,
it'll disable colours

better turn off colours
so that I don't
accidentally show
someone ^[[34mtext heregrep

$ grep blah file.txt | less

these are called
"ANSI colours"

programs can use
ANSI colours by printing

an escape code

4 means "blue"
3 means "normal fg colour"

echo -e "\033[34m blue text"

some programs that
have mouse support

the scroll wheel

when you click in the terminal,
it can either be handled by

the programyour terminal
emulator

In some programs (like less) the
scroll wheel does the same thing
as pressing up/down arrow keys
really fast

in other programs (like lazygit)
it uses "mouse reporting" to
report where your mouse was
when you scrolled

UP UP UP UP UP UP UP UP
UP UP UP UP UP UP UP UP

good if you want
to copy text

lots of programs
have mouse support!

resize a pane! right
click for a menu!

click to sort
columns!

click on the
tab bar!

(lazygit, mc,
zellij, btop...)

text editor
with good

mouse support

ugh no I don't
want to focus that
pane, I want to
COPY SOME TEXT!!!

could be something else too, it
depends on your terminal emulator

Shift+click to open a
link in a browser

Alt+click to move the
cursor when editing a
command in your shell

other mouse features your
terminal emulator might have

how to force the terminal
emulator to handle the mouse:

press Shift or Option
(or something)

(or maybe Option)

if there's a mouse click,
send me escape codes to
tell me where it was!

okay! I'll disable all my
usual mouse functions
like "selecting text"!

this is called "mouse reporting"

programs can tell the
terminal emulator to let
them handle the mouse

copy trick 1: pbcopy

safe multiline paste

copy trick 2: syncing
the vim clipboard

pbcopy over SSH

fish, zsh, and newer bash
versions protect you from this:
you have to press Enter before
running the thing you pasted.
This is called "bracketed paste"

It's SO scary when you paste a
bunch of commands by accident
and then it runs them all.

I use vim as a terminal text
editor, and I find it's WAY
easier if I sync my system
clipboard with the vim
clipboard like this:

copying a LOT of text
is way easier if you
don't use the mouse!
Here are 2 tricks for
copying without the
mouse.

copying 400 lines of text by
dragging is nobody's idea of
a good time

sometimes extra whitespace
that you didn't want gets
added at the end of lines

problem: copying with
the mouse can go wrong

tmux can also copy to your
system clipboard.

set clipboard=unnamed

macOS comes with two
programs that can copy
from stdin / paste to
stdout, like this:

you can even implement pbcopy
over SSH (yes really!) with this
bash one-liner.
It uses an escape code called
"OSC 52".
printf "\033]52;c;%s\007"

"$(base64 | tr -d '\n')"

get it at https://wzrd.page/pbcopy

cat main.go | pbcopy

They're SO useful and on Linux
I like to write my own versions
of pbcopy/pbpaste using xsel.
There's also wl-copy/wl-paste.

different terminal
emulators use different

escape codes

your system has a database called
"terminfo" with escape codes in it

on my machine,
the database is in
/usr/share/terminfo

this can break when
SSHing into an old system

with a new terminal
emulator

how programs know what
terminal you're using:

TERM

some ways to fix TERM
issues

if you print out ESC[2J
I'll clear the screen!

here's how it plays out when you press Ctrl+L to clear the screen:

ah, she wants to clear the screen! I'll look
up how to do that in the terminfo database...

just set TERM=xterm-256color,
it'll often sort of work

install the terminfo file for
your terminal emulator on the
system

use a different terminal
emulator

ok, clearing
the screen!

program

terminal emulator

your terminal emulator sets
the TERM environment variable
when it starts

fun fact: terminal emulators
often say they're "xterm-256color"
even if they're not

I am using
ghostty

(in a VERY
annoying
way)

NOPE never
heard of it

for me it's
ESC[HESC[J!

ESC[HESC[J

program

knowing what type
of program you're in

really helps

REPLs full screen programs

noninteractive programs programs that play by
their own rules

Ctrl+C doesn't always quit

why doesn't Ctrl+C
quit??? Oh, I'm in a
REPL, I should use
Ctrl+D instead.

Ctrl+D usually quits

you can probably use
basic readline shortcuts
to edit text

(sqlite, ipython, bash)

vim doesn't act like any
other program.

usually I avoid these unless
(like with vim) I've made a
special effort to learn them

gotcha: you can get "stuck"
waiting for input on stdin if
you forget to specify an input

(grep, find)

(like if you run cat by itself)

q might quit

REPLs and full-screen
programs often use
Ctrl+C to mean "stop the
current operation" instead
of "quit the program"

(top, ncdu)

gotcha: if mouse reporting
is on, you can't select text
without pressing Shift

Ctrl+C usually quits

? might open the help

REPL stands for Read code,
Evaluate it, Print the output,
Loop (repeat)

many programs use less without telling you how to know
you're in less

a few less tips how to tell a program
not to use less

less lets you scroll through text, so programs will use less by
default any time they want to display a lot of text

it's called less because it's an improved version of more

you can set the PAGER
environment variable to
something else to tell
programs to use that instead

I've never had any reason to
set PAGER though

programs will also drop
you into vim sometimes

the default text editor is
often vim. If you don't like
vim you can set the EDITOR
environment variable

your favourite editor here

export EDITOR=micro

I want to display a huge
diff... I'll show it in less!

I need to display
a man page... I'll
use less! if it's suddenly full screen and

there's this little colon in the
bottom left, it might be less

quit:

scroll: arrow keys/spacebar/
mouse wheel

q

h

/banana ENTER

n/N

g/G

search:

help:

next/prev match:
go to start/end:
also piping to less -R will interpret
escape codes like colours

mangit

editing text in a REPL
doesn't always work well

this is because every
program has to implement

text editing itself

rlwrap adds readline
keyboard shortcuts

you do get a few things
automatically

built-in programs on Mac
don't use readline

when I press my
ARROW KEYS it just
prints out ^[[D???
what?

REPLs mostly all have the
same keyboard shortcuts

but I just want arrow
keys to work?? shouldn't
that be automatic?

NOPE you
gotta do it

terminal
program
author

there's a very popular library
called "readline", and mostly
everyone either uses it or
imitates how it works

for example on my machine
the dash shell doesn't use
readline but you can make it
better by running:

this is probably because
readline is GPL licensed

They use libedit, which is
worse. I like to install a
sqlite version with readline
support and use that instead.

(for example sqlite3)

rlwrap dash
for example Ctrl+A ("go to
beginning of line") comes from
readline

Ctrl+W (delete word)

(occasionally backspace won't
work and you have to use
Ctrl+H instead)

see page 26 for what
"automatically" means

Ctrl+U (delete line)

backspace

Ctrl
backspace

+ W
Ctrl+ U

Ctrl+ C quit (SIGINT)

Ctrl+ Z stop process (SIGTSTP)
(resume with fg or bg
or kill with kill)

Ctrl+ L

Ctrl+ +Shift
+Cmd
C/V
C/V

Ctrl+ R

Ctrl+ D quit (in a REPL)

Enter ~ . exit frozen
SSH session

more on
page 20

$ ps aux | grep THING
bork 7213 ... THING
$ kill -9 7213

q quit (in some full
screen programs)

Option

scroll wheel

+ click
Alt + click

clear screen

search history

unfreeze screen (that
you froze with Ctrl+S)

more on page 25

Ctrl+ Q

in your terminal emulator,
it's usually:

place cursor

scroll

or
or the nuclear option:

or

delete previous word

(except in text editors)

editing text (always works)

quitting

other useful stuff

mouse stuff that
might work

copy and paste

delete line
Ctrl

Home
+ A

or beginning of line

arrow keys

Ctrl+ arrow
keys left/right a word

or sometimes arrow
keysAlt +

arrow
keysOption

Alt+b Alt+f/

+or

or

Ctrl
End
+ E

or
end of line

delete line forward

(these often work in a
readline-like situation)

Ctrl+ K

paste (from Ctrl+K
or Ctrl+U)

Ctrl+ Y

might work if
Backspace doesn't

Ctrl+ H

also many shells have a "vi mode"
if that's your jam

editing text

some things the TTY driver is in charge of

a "TTY" is the program's
side of the pair

storing the terminal window's size
(you might think "these are all unrelated" and you'd be right)

sending a SIGHUP signal when you close your terminal

a basic mode for entering text called "canonical mode"

pausing the output and confusing you when you press Ctrl+S

tracking which process is in the "foreground" and sending
what you type there

TTY
driver TTY

programterminal
emulator

the TTY driver is why
Ctrl+C does the same thing

relatively consistently

when you start your terminal
emulator, it asks the OS to
create a "pseudoterminal pair",
which is a pair of special files programs use it to:

communicate with the
terminal emulator by
reading/writing bytes
configure the TTY driver
(more on the next page!)

Run tty to see the current TTY!

you press Ctrl+C,
I send a signal!

well, unless the
program tells me it
wants the raw bytes!

the TTY driver is the
most obscure part of

the system

You almost never need to
think about it, but when I've
wanted to do something weird
(like put a terminal in a web
browser) understanding the
TTY driver is SO USEFUL

your TTY driver has
configuration

programs have to
configure the TTY driver
to get friendly features

fun fact: changing
Ctrl+C

Ctrl+S

you can see how it's
configured by running:

by default, pressing Ctrl+S
will freeze your terminal
(and Ctrl+Q will unfreeze)

I want arrow keys to
work in my program!

better tell the TTY
driver to turn off
canonical mode!

I have never wanted this in
my life, you can turn it off
with stty -ixon

the TTY driver's
settings are called
"termios settings"

technically you can use stty
to set a different keyboard
shortcut for Ctrl+C, like "u"

this is extremely chaotic and
I can't imagine a reason that
I would ever do this though

stty intr u

(fish turns it off by default)

for example it'll print out
the current window size!

stty -a

more on the next page

for all the gnarly details:

I've only needed to
use stty once in
the last 20 years
and I mostly don't
understand its
output but I think
it's a fun view into
terminal internals!but if you're writing a

terminal program libraries like
readline or ncurses will handle
setting up the TTY driver

man termios

This is not 100% true!
The TTY driver technically
has a very limited text
editing system called
"canonical mode" that hasn't
changed since the 80s

you type in text
(helloo<Backspace><Enter>)

the TTY driver lets you edit
the text until you press
<Enter>

the TTY driver sends the
line of text to the program

how canonical mode
works

We said earlier that every
program has to implement
text editing (on page 21)

what using canonical mode
feels like

I pressed an arrow
key and it just
printed out ^[[D???

what's an
arrow key? TTY

driver

canonical mode is
incredibly limited

The only ways it lets you
edit text are:

The good thing is those 3
things almost always work.

backspace
Ctrl+W (delete word)
Ctrl+U (delete line)

interactive programs
almost never use
canonical mode...

... instead, programs
receive bytes as soon

as you type them

okay, ^[[D, that means
"left arrow", I'll tell the
terminal emulator to
move the cursor...

(usually by using a library
like readline)

You can try out canonical mode
by running cat and typing.

I want my users to be
able to use their arrow
keys! this isn't the 80s!

some things I think are cool:

maybe you'll build the next tool that makes the terminal better!

there are lots of people rebuilding classic command line tools, like I've
been trying eza instead of ls (more at https://wzrd.page/tools)

and as a final plug: the fish shell really changed my life in the terminal.
It isn't for everyone but I've used it every day for the last 10 years and
I love it (more at https://wzrd.page/ilovefish)

some terminal emulators have really amazing features, like I think the
way iTerm2 allows you to set a minimum color contrast is incredibly useful

The terminal is honestly a bit of a mess (some parts of it are stuck in the 80s with
no clear way out!) but lots of people are building tools to make things better.

Pairing: Marie Claire LeBlanc Flanagan

and thanks to all 95 beta readers

Cover illustration: Vladimir Kasikovic

Technical review: Simon Tatham
Copy editing: Lesley Trites

acknowledgements

