—

The'Secret Ilules
of ﬂle 'I'ermma ’-

V by Julia‘Evans
\ ¢

(~
fires
\

about this zine

the Unix terminal seems simple at first (just type in commands and run them!).

but the documentation about how the terminal actually works is incredibly scattered and
patchy, and a lot of things aren't documented at all because they're just "conventions"
that "everyone knows'". It makes everything take way longer to learn than it should.

this zine's goal is to help you get from:

I pressed an arrow Key
o and it printed out ~[[D?77?

0°9 fwait why can't
1 select text?

oh yeah, that weird
problem again! 1

know exactly how to
deal with it

Q

(this zine comes with a cheat sheet! https://wizardzines.com/terminal-cheat-sheet.pdf)

table of contents

4 SHELL @ B rranal)
cost of characters........ 4 EMULATOR
meet the shell......... 5 meet the terminal emulator.. 14
gﬁ:]r’ﬂ*g 555] escope codes...........15
Htps............. _ : colours. 16
history.................. 8 vim | fish [+ python3 the mouse 17
J(?b COFﬁTO!............q o $ python3 hlpy Cop5+p<1$'t'e..........18
filename tips .- 10-11 \JERM19)
stdin/stderr/stdout. .. .12 © hello world "
uedire cts. o 13 / CEEEEEE s ~T/
L IEIIIIIEINTI T E
L LIIIII I I I I IT c
) 2])
PROGRAMS TTY DRIVER
‘;2225 O—F programs....... g? P BYTES R meet the TTY Jriver. 24
Keyboard shortcuts....23 canonical mode.26

cast of characters

The "terminal" is actually a bunch of components that work together.

Let's imagine that you're running python3 blah.py.

eyboard
:hg¥+cu+s
/_\
type

BYTES

pair of “Files”

MEEEN
» o hd |y ¢

BYTES

R\

. shell

>
»

S
clicke AT tg—d

you terminal emulator

xterm, iTerm,
GNOME terminal

your terminal emulator
is a translator:

— it franslates all your
typing/clicks info bytes

—and it takes all the
bytes the program
sends and displays them
on the screen

(more on page 14)

l

TTY driver

the TTY driver is part of
your operating system:

— the terminal emulator &
* programs communicate by
reading/writing to a pair

of files

the TTY driver is in the middle
and copies bytes back & forth
with some small changes

(more on page 24)

python

shell and other programs
bash, cat, vim, top

Your shell is a program
that you use to start all
other programs.

The shell doesn't do much
after it starts a program.
Programs get a copy of the
shell's environment variables
& a few other things and
then they're on their own.

SHELL
STUFF

meet the shell

Y 5

the shell starts programs

when you run a program
in the terminal, you're
actually asking your shell
to start it for you

it turns out that starting
programs is a surprisingly
complicated job!

the 3 most
popular shells

there are LOTS of shells
but 45% of people use

bash or ZSh or 'FISh
;7 [
default defquit aims to be

on LinUX 5n Mac more user
(in 2025) friendly

fish: the friendly S
interactive ghell ~ 3

1 love how fish has friendly
defaults that I can use
without configuring it

this is (mostly) not
a fish propaganda
zine though

bash and zsh are
both "POSIX shells"

this means they follow a
standard for how Unix
shells should behave, but
there are still differences

I'll mention when something
varies between shells!

where to find your
shell's config file

bash:

~/.bashrc\ ~/.bash_profile

which one is a rabbit hole,
huge flow chart at
wzrd.page/bashrc

zsh:
~/.zshrc
fish: Sa
~/.config/fish/config.fish

.bashrc vs .bash_profile

here's an trick to figure out
whether bash is using
.bashrc or .bash_profile (or both!)
Add:

echo "this is .bashrc”

echo "this is .bash_profile”

to each file, open a new terminal
tab, and see what it prints out!

PATH

PATH is how your shell knows where to find programs
It's a list of directories that your shell searches in order.

directories are separated by colons
/

PATH=/bin: /home/bork/bin{/usr/bin

Q<lms

[+
)
o/bin/python3? nope, doesn't exist °,
@/home/bork/bin/python3? nope, doesn't exist \ ©, @
@/usr/bin/python3? there it is!!! T'(l run that!
shell

how to add a program
to your PATH

® find the directory the
program is in

@ vpdate PATH in your shell
config with that directory

®restart your shell
for WAY T00 MUCH info
about how to do this, see
https://wzrd.page/path

... but which directory was
the program installed in?

remember how you installed it:
0©

PATH ordering drama

hmm, 1 used the Rust
installer, where does
that install things?

You can prioritize a
directory by adding it to the

beginning of your PATH
e LR

... or do a brute force search:
find / -name python3 | grep bin
(usually T put a 2>/dev/null too)

o ©
ugh, no, don't run THAT
python3, run the other one!

gotcha: not everything
uses your shell's PATH

cron jobs usually have a
very basic PATH, maybe jus+
/bin and /usr/bin

in a cron job I'll vse the
absolute path:

/home/bork/bin/someprogram

SHELL
STUFF

PATH tips

’“7)_

add a directory to
your PATH

at the end:
export PATH=$PATH:/my/dir

at the beginning:
export PATH=/my/dir:$PATH

in fish the syntax is -
different, like: a3
set PATH $PATH /my/dir

look at your PATH

echo $PATH

show each entry on
its own line

echo "$PATH" | tr ':' '\n’
needs quotes to work in fish

show what your shell is

actually going to run
with type

type python3

Your shell doesn't always run
a program! Instead of what's
in PATH, sometimes it'll run a
builtin or alias or cached entry

show the first match on
your PATH for a program

which python3
(but in zsh which acts like type)

show ALL matches on your
PATH for a program, in order

which -a python3

zsh has nice PATH syntax

path=(

$path

~/.cargo/bin

~/bin
)
path is an array that zsh
syncs with the PATH
environment variable

weird fact: bash and zsh
cache PATH entries

this cache gets cleared every
time you restart your shell and
every time you update PATH so
it rarely cauvses problems

but if you need to you can
clear it with:

hash -r

SHELL
STUFF

history

your shell has a history
of the commands you ran

some ways to access history:
¥ press the up arrow
¥ run history
% search it with Ctrl+R

¥% use !33 to rerun line 33
from history (bash/zsh)

how long does your shell
store history for?
A in bash, the default is
500 commands (not enough!)

U in fish, the default is

256,000 commands
if you're using bash, you might
want to set HISTSIZE and
HISTFILESIZE to store more history

in zsh, it's HISTSIZE and SAVEHIST

when does your shell
save history?

— by default, bash and zsh
only save history to a file
when you exit the shell

—» fish saves the history
continuously

where is history stored?

bash: ~/.bash_history
zsh: run echo $HISTFILE
fish: mine is in ~/.local/share/

fish/fish_history

sometimes 1 copy over my
shell history when setting
up a new computer!

history doesn't
include everything
vsually it includes:

— the contents of the history
file when the shell started

— the commands you ran in
this shell session

if 1 want to use the history
from another terminal tab, I'll
open a new tab

a useful history tool:

atvin lets you:
« save unlimited history

esearch history more easily

vsave commands as soon as
you run them

wsync your history (optionally)

SHELL
STUFF

job control

9

your shell lets you run
many programs ('jobs") in
the same fterminal tab

programs can either be:
[Q] foreground

Wy background
(D) stopped (which is
more like "paused")

& runs a program in
the background

for example 1 like to convert
100 files in parallel like this:

for i in ‘seq 1 100"
do

convert $i.png $i.jpg &
done

jobs lists backgrounded
& stopped jobs

$ jobs
[1] Running python blah.py &
[2] Stopped vim

\

use the numbers to bring
them to the foreground or
background (like fg %2), Kill
them (kill %2), or disown them

when you close a terminal
tab all jobs are Killed
with a SIGHUP signal

you can stop this with disown
or by starting the program
with nohup:

«job number

disown %]
= goes here

nohup my_program &

a trick to Kill programs
if Ctrl+C doesn't work

@ press Ctrl+Z to stop the
program

® run kill %1 to kill it (or
kill -9 %1 if you're
feeling extra murderous)

a little flowchart

SV | running in
X/ foreground

&
[54 -7 n

stopped | 8 / fg

%
3| running in

background

SHELL
STUFF

filename tips

(¢

your shell can help you
type weird filenames

ugh how do 1
escape that
filename again?

shell

1 can handle it!
Just use Tab!

cycle through matching
filenames
rm f<Tab><Tab><Tab><Tab>

(doesn't work in bash
unless you configure it)

tab complete from the
middle of a filename

1s *xthing*<Tab>

(or in fish 1s thing<Tab>)

tab completion can
go wrong

programs can change how
tab completion works with
plugins called "completions"

this is usvally GREAT
(git add <Tab> only
completes modified files!)
but sometimes it's buggy

configure bash to cycle through matching filenames

Add this to your ~/.inputrc:

set show-all-if-ambiguous on
set menu-complete-display-prefix on

TAB: menu-complete

quote filenames with spaces

cat "Julia Evans.txt"”

(if you don't do this you get
weird "file not found" errors
for Julia and Evans.txt)

tab completion works
inside quoted strings

cat "File N<Tab

SHELL
STUFF

more filename tips |

handle filenames starting
with a dash with
--or ./

mv -- -file.txt dest
mv ./-file.txt dest

(otherwise mv thinks -file.txt
is an invalid option)

match all filenames
ending in .png
rm *.png

(x.png is called a "glob" and it's
handled by the shell so you can
use it with any program!)

lots of tools support --

for example if you want to
grep a file for the text "-x"
you can run:

grep -- -x file.txt

-- means "nothing after this
is an option"

match .png files in any
subdirectory
rm *x/x.png

(works in zsh/fish, and in
bash with shopt -s globstar)

match filenames
starting with a dot

ls .x

(dotfiles aren't included in
* by default)

gotcha: .x in older versions of
bash (pre 5.2) includes . and ..

you can drag files from
your GUI file manager to
escape the filename

This only works if your
terminal emulator supports it.

* gotcha: regular
expressions

if you want to pass a
regexp with a * fo grep

grep 'def .x' file.txt

you need to quote it
otherwise it will be treated
as a glob

SHELL
STUFF

stdin, stdout, stderr

1L

terminal programs have
1 input and 2 outputs

2,
o] O
{2 £rR]

program

they're numbered: stdin is o,
stdout is 1, stderr is 2

(the numbers are called "file descriptors")

3 things you can set the
inputs/outputs to

the TTY (the default:
display output in your
terminal emulator)

@ a file

a pipe (send output to
another program's input)

your shell is in
charge of setting up
stdin/stdout/stderr

% python3 script.py > out@

ok, T'll set stdout WO o
to out.txt for that
program

when you redirect, the
shell opens the file before
the program starts

sudo echo blah > file.txt

first T'll open file.txt...
o
[
o ,oCTHEN T'll run sudo echo blah

shell this e why file.txt isn't
opened as root!

on 2>&1

2>81 redirects stderr to stdout
,
stderr .\s+dou‘\'
[0 W)
<2 ov]
aza
program

you could also do echo "oops” 1>82
if you want to write a message
to stderr in a script

gotcha: programs
often buffer stdout
but not stderr

when a program writes text to
stdout, it'll often
- check if stdout is a TTY
(using the isatty function)

- if not, "buffer" the writes until
there's 1KB of data to write,
for performance reasons

(this is the default in libc)

redirects

13

redirect to a file:
cmd > file.txt

three gotchas

®cmd file.txt > file.txt

append to a file:
cmd >> file.txt

will delete the contents of file.txt
v

some people use set -o noclobber

(in bash/zsh) to avoid this

send a file to stdin:
cmd < file.txt

= & B

But I juet have "never read from and
redirect to the same file" seared into

my memory.

redirect stderr to a file:
cmd 2> file. txt

o]
> o
Crepy B

@ sudo echo blah > /root/file.txt

doesn't write to /root/file.txt

redirect stdout AND stderr:

cmd > file.txt 2>&1 [X] mn%

as root. Instead, do:
echo blah | sudo tee /root/file.txt

-or-

sudo sh -c 'echo blah > /root/file.txt’

pipe stdout: pee
cmd1 | cmd2

®@cmd 2>&1 > file.txt

doesn't write both stdout and stderr

pipe stdout AND stderr: = D
endi 2261 1 ende (1 U B U B

to file.txt. Instead, do:

H cmd > file.txt 2>&1

cat vs <

A
cat file.txt | cmd
instead of

cmd < file.txt

it usually works
fine & it feels
better to me

using cat can be
slower if it's a
GIANT file though

&> and |&

bash and zsh
support &> and |&
to redirect/pipe
both stdout and
stderr

(in fish it's &|
instead of |3&)

TERM

b

ot

meet the terminal emulator {= 14

your terminal emulator
has fwo main jobs
® turn your actions
(typing & clicking) into
bytes and send them

receive bytes and display
them visually

> —_—
- RYTES
= & program

a little history

it's called an "emulator" becavse
in the 80s a "terminal" was a
separate machine from the
computer

IIII{3as
mEE
®O@|ooo

mainframe.

We still use the same 80s protocol!

what are these "bytes"?
the bytes are either:
— text (like cat blah.txt)

— escape codes (for example
to tell the terminal what
colour to display the text in)

— contfrol characters (for
example Ctrl+C is the byte 3)

it's in charge of
copy and paste

your terminal emulator
lets you select text and
copy/paste it (usvally with
Ctr1+$hift+c or Cmd+C)

\
Linux Mac

(copy & paste tips on page 18!)

it manages
colours and fonts!

some terminal emulators
come with a big library of
colourschemes!

if yours doesn't, this site has
colourschemes for many
terminal emulators:

iterm2colorschemes.com

fun fact: how Ctrl-X
gets translated to bytes

Ctrl-A => 1
Ctrl-B => 2

Ctrl-z => 26

Ctrl and shift are the only
modifiers 1 trust in the terminal,
all of the others work differently
depending on the situation

TERM

b

escape codes

15

a program's input and outputs are streams of bytes

— > [ew)>

A R BYTES "
_ b e O
terminal m
emulator program
except for
everything you type goes into standard input *magbpe Ctrlec/
Z/T/S/U/D/Q

all the output you see comes from either

standard output or standard error

some inputs/outputs
are text and some are
special instructions

examples of special instructions:

make text
orzen
— Lorr=)
(2 RR) make
left arrow cursor
Key press invisible

programs can easily
"break" your terminal by
printing escape codes

oops 1 made your
@ cursor disappear

program

these special instructions
are called "escape codes"

they're called "escape codes"
because they all start with
the ESC character

It's easy to fix though: run
reset to print a special escape
code that resets everything

\@33 A[ESC \e \xlb
N T2 7
five ways people print out ESC

how reset works

reset is basically the same
as running these 3 commands:

tput reset
sleep 1
stty sane
/

tells the TTY

driver to reset

(more on page 25)

prints the
"reset"
escape codes

TERM
>

~

colours

16

your terminal emulator has
16 configurable colours

bright

normal
black
red
green
yellow
blue
purple
cyan
white

Ello

[] [0l =]] I E [0
[l][] =] o]]

these are called
"ANSI colours"

you can configure them in
your terminal emulator's
settings

- OR --

run a shell script that prints
escape codes to magically
set up your colours

https://wzrd.page/scripts
A_(my favourite way!)

programs can use
ANSI colours by printing
an escape code

echo -e "\033[34m blue text”

3 means "normal fg colour"
4 means "blue"

the default ANSI colours
often have bad contrast

1s --color often displays
directories in ANSI "blue"
which can look like this:

ANSI "yellow" on white also
often has bad contrast

Q@ "minimum contrast" @

Picking ANSI colours that
always have good contrast
is impossible.

the only real solution is to use
a terminal emulator with a
"minimum contrast" feature
(like iTerm or Kitty) that will
fix all contrast issves

usvally if a program
is writing to a pipe,
it'll disable colours

$ grep blah file.txt | less

better turn off colours
so that I don't

accidentally show
someone “[[34mtext here

TERM

)

the mouse

't

when you click in the terminal,
it can either be handled by

n
= or J

your terminal the program
emulator

1 f

good if you want (ots of programs
to copy text have mouse support!

programs can tell the
terminal emvulator to (et
them handle the mouse

if there's a mouse click,
il‘; |\ send me escape codes to
program |tell me where it was!

okay! I'll disable all my
usual mouse functions
like "selecting text"! o

this is called "mouse reporting"

some programs that
have mouse support

{@5 ')

resize a pane! right click to sort

click for a menu! columns!
@ and LOTS
¢ p more Y
text editor :
with good click on the (lazygit, mc,
tab bar! zellij, btop...)

mouse support

how to force the terminal
emulator to handle the mouse:
press shift or Option*

ugh no 1 don't
want to focus that
pane, I want to

COPY SOME TEXTI!!

* could be something else tfoo, it
depends on your terminal emulator

the scroll wheel

In some programs (like less) the
scroll wheel does the same thing
as pressing up/down arrow Keys
really fast

UP UP UP UP UP UP UP UP
. UP UP UP UP UP UP UP UP

in other programs (like lazygit)
it uses "mouse reporting" to
report where your mouse was
when you scrolled

other mouse features your
terminal emulator might have

(or something)
—» shift+click'to open a
link in a browser
(or maybe Option)
—» Alt+click¥fo move the
cursor when editing a
command in your shell

TERM

copy and paste

|3

safe multiline paste

It's SO scary when you paste a
bunch of commands by accident
and then it runs them all.

fish, zsh, and newer bash
versions protect you from this:
you have to press Enter before
running the thing you pasted.
This is called "bracketed paste"

problem: copying with
the mouse can go wrong

-» copying 400 lines of text by
dragging is nobody's idea of
a good time

- sometimes extra whitespace
that you didn't want gets
added at the end of lines

copying a LOT of text
is way easier if you

don't use the mouse!
Here are 2 tricks for
copying without the
mouse.

copy trick 1: pbcopy

mac0S comes with two
programs that can copy
from stdin / paste to
stdout, like this:

cat main.go | pbcopy

They're SO useful and on Linux
1 like to write my own versions
of pbcopy/pbpaste using xsel.
There's also wl-copy/wl-paste.

pbcopy over SSH

you can even implement pbcopy
over SSH (yes really!) with this
bash one-liner.

It uses an escape code called
"0sC 52"
printf "\033]52;c;%s\007"
"$(base64 | tr -d '\n’')"
r

get it at https://wzrd.page/pbcopy

copy trick 2: syncing
the vim clipboard

I vse vim as a terminal text
editor, and 1 find it's WAY
easier if T sync my system
clipboard with the vim
clipboard like this:

set clipboard=unnamed

tmux can also copy to your
system clipboard.

TERM

- F

TERM

19

different terminal
emulators use different
escape codes

if you print out ESC[2]
-~ I'll clear the screen!

your system has a database called
"terminfo" with escape codes in it

here's how it plays out when you press Ctrl+L to clear the screen:

ah, she wants to clear the screen! T'll look
@o" © (up how to do that in the terminfo database...

° ®o ok, clearing

. the screen!
terminal emulator

on my machine,
the database is in
/usr/share/terminfo

how programs Know what
terminal you're using:

— TERM «

your terminal emulator sets
the TERM environment variable
when it starts

fun fact: terminal emulators
often say they're "xterm-256color"
even if they're not

this can break when
SSHing into an old system

with a new fterminal
emulator (in a VERY

annoying
I am using) way)
ghostty
)
NOPE never @
heard of it program

some ways to fix TERM
issues

—» install the terminfo file for

your terminal emulator on the
system

—suse a different terminal
emulator

—-vjusf set TERM=xterm-256color,
it'(l often sort of work

4

©) types of programs

20

Knowing what type
of program you're in
really helps

why doesn't Ctrl+C
quit???7 Oh, I'm in a
REPL, T should use
Ctrl+D instead.

REPLS®
(sqlite, ipython, bash)

- you can probably vse
basic readline shortcuts
to edit text

—> Ctrl+D usvally quits

* REPL stands for Read code,
Evalvate it, Print the output,
Loop (repeat)

full screen programs
(top, ncdu)

= g might quit
- ? might open the help

= gotcha: if mouse reporting
is on, you can't select text
without pressing shift

noninteractive programs
(grep, find)

=» Ctr1+C vsvally quits

- gofcha: you can get "stuck"
waiting for input on stdin if
you forget to specify an input

(like if you run cat by itself)

programs that play by
their own rules

vim doesn't act like any
other program.

usually I avoid these unless
(like with vim) I've made a
special effort to learn them

Ctrl+C doesn't always quit

REPLs and full-screen
programs often use
Ctrl+C fo mean "stop the
current operation" instead
of “quit the program"

4

9 less

2]

many programs use less without telling you

less lets you scroll through text, so programs will use less by
defavlt any time they want to display a lot of text

°° I.wam“l‘l‘o disp((_lg.a huge I need to display)° %o
diff... I'll show it in less! a man page... I'll I& ‘
- vse less!
glt man

it's called less because it's an improved version of more

how fo know
you're in less

/V

if it's suddenly full screen and
there's this little colon in the
bottom left, it might be less

a few less tips how to tell a program

quit: q not to use less
help: h
scroll: arrow Keys/spacebar/ you can set the PAGER

environment variable o
something else to tell
programs to use that instead

mouse wheel

search: /banana ENTER

next/prev match: n/N

o to start/end: g/G
S & I've never had any reason to

also piping to less -R will interpret set PAGER though

escape codes like colours

programs will also drop
you into vim sometimes

the default text editor is
often vim. If you don't like
vim you can set the EDITOR
environment variable

export EDITOR=micro

your favourite editor here

4

) editing text in o REPL

12

editing text in a REPL
doesn't always work well

when 1 press my
ARROW KEYS it just
prints out *[[D7??
what?

this is because every
program has fo implement
text editing itself

%6

but 1 just want arrow
keys Yo work?? shouldn't
that be avtomatic?

you do get a few things
avtomatically*
% backspace

(occasionally backspace won't
work and you have fo use
Ctrl+H instead)

¥ Ctrl+W (delete word)

terminal NOPE you v * Ctrl+U (delete line)
program gotta do it) *see page 26 for what
avthor unix "avtomatically" means

REPLs mostly all have the
same Keyboard shortcuts

there's a very popular library
called "readline", and mostly
everyone either uses it or
imitates how it works

for example Ctrl+A ("go to
beginning of line") comes from
readline

rlwrap adds readline
keyboard shortcuts

for example on my machine
the dash shell doesn't use
readline but you can make it
better by running:

rlwrap dash

built-in programs on Mac
don't use readline

(for example sqlite3)

this is probably because
readline is GPL licensed

They use libedit, which is
worse. 1 like to install a
sqlite version with readline
support and use that instead.

=

keyboard shortcuts

13

editing text (always works)
(almost)

backspace
Ctrl+Ww delete previous word
Ctrl+U delete line

(except in text editors)

quitting

Ctrl+C quit (SIGINT)

Ctrl+z stop process (SIGTSTP)
(resume with fg or bg
or Kill with kill)

Ctrl+D qUif (in a REPL)Rmore on

page 20

q quit (in some full
screen programs)

Enter ~ . exit frozen
SSH session

or the nuclear option:

$ ps aux | grep THING
bork 7213 ... THING
$ kill -9 7213

editing text
(these often work in a
readline-like situation)

arrow keys

Ctrl+A - .
or Home beginning of line
Ctrl+E .

or End end of line

arrow .
Ctrl+ keys left/right a word
or sometimes Alt + ﬁ""ow
eys
1 arrow
or Option+ keys

or Alt+b /Alt+f

Ctrl+K delete line forward

Ctrl+Y paste (from Ctrl+K
or Ctrl+U)

Ctrl+H might work if

Backspace doesn't

also many shells have a "vi mode
if that's your jam

other useful stuff

Ctrl+L clear screen
Ctrl+R search history
Ctrl+Q unfreeze screen (that

you froze with Ctrl+S)

2
more on page 25

copy and paste

in your terminal emulator,
it's usually:
Ctrl+Shift+C/V
or Cmd +C/V

mouse stuff that
might work

Option+click

) place cursor
or Alt +click

scroll wheel scroll

= meet the TTY driver |-

24

the TTY driver is the
most obscure part of
the system

You almost never need to
think about it, but when T've
wanted to do something weird
(like put a terminal in a web
browser) understanding the
TTY driver is SO USEFUL

when you start your terminal
emulator, it asks the 0S to
create a "psevdoterminal pair,
which is a pair of special files

= [EF =)
terminal 1 program
emulator TTY

driver ,r,ry

a "TTY" is the program's
side of the pair

programs use it to:

—communicate with the
terminal emulator by
reading/writing bytes

— configure the TTY driver
(more on the next page!)

Run tty to see the current TTY!

the TTY driver is why
Ctrl+C does the same thing
relatively consistently

you press Ctrl+C,
I send a signal!

well, unless the
program tells me it
wants the raw bytes!

some things the TTY driver is in charge of
(you might think "these are all unrelated" and you'd be right)
storing the terminal window's size

% sending a SIGHUP signal when you close your terminal

[4 a basic mode for entering text called "canonical mode"

pausing the output and confusing you when you press Ctrl+s

tracking which process is in the "foreground" and sending

@ what you type there

stty

25

your TTY driver has
configuration

you can see how it's
configured by running:

stty -a

for example it'll print out
the current window size!

Ctrl+S

by default, pressing Ctrl+s
will freeze your terminal
(and Ctr1+Q will unfreeze)

I have never wanted this in
my life, you can turn it off
with stty -ixon

(fish turns it off by default)

fun fact: changing
Ctrl+C
technically you can use stty

to set a different keyboard
shorteut for ctrl+c, like "u”

stty intr u

this is extremely chaotic and
I can't imagine a reason that
1 would ever do this though

programs have to
configure the TTY driver
to get friendly features

1 want arrow Keys fo
work in my program!
developer

better tell the TTY
driver to turn off
cangnica(mode!

S
more on the next page

the TTY driver's
settings are called
"termios settings"

for all the gnarly details:
man termios

but if you're writing a
terminal program libraries like
readline or ncurses will handle
setting up the TTY driver

I've only needed to
use stty once in
the last 20 years
and I mostly don't
understand its
output but T think
it's a fun view into
terminal internals!

cononicol mode

206

We said earlier that every
program has to implement
text editing (on page 21)

This is not 100% true!

The TTY driver technically
has a very limited text
editing system called
“canonical mode" that hasn't
changed since the 80s

what using canonical mode
feels like

I pressed an arrow
key and it just
printed out™ ~[[D???

(P
E what's an :-:
arrow Key? TTY

driver

how canonical mode
works

M you type in text
(helloo<Backspace><Enter>)

@Dthe TTY driver lets you edit
the text until you press
<Enter>

@ the TTY driver sends the
line of text to the program

canonical mode is
incredibly (imited

The only ways it lets you
edit text are:

— backspace
—> Ctrl+W (delete word)
— Ctrl+U (delete line)

The good thing is those 3
things almost always work.

inferactive programs
almost never use
canonical mode...

1 want my users to be
able to vse their arrow
keys! this isn't the 80s!

bash

You can try out canonical mode
by running cat and typing.

.. instead, programs
receive bytes as soon
as you type them

okay, *[[D, that means
"left arrow", T'll tell the
terminal emulator to
move the cursor...

(usvally by using a library
like readline)

thanks for reading

The terminal is honestly a bit of a mess (some parts of it are stuck in the 80s with
no clear way out!) but lots of people are building tools to make things better.

some things 1 think are cool:

@ there are lots of people rebuilding classic command line tools, like I've
been trying eza instead of 1s (more at https://wzrd.page/tools)

® some terminal emulators have really amazing features, like I think the
way iTerm2 allows you to set a minimum color contrast is incredibly useful

wand as a final plug: the fish shell really changed my life in the terminal.
It isn't for everyone but I've used it every day for the last 10 years and
I love it (more at https://wzrd.page/ilovefish)

maybe you'll build the next tool that makes the terminal better!

acknowledgements

Cover illustration: Vladimir kadikovié
Pairing: Marie Claire LeBlanc Flanagan
Technical review: Simon Tatham

Copy editing: Lesley Trites

and thanks to all 95 beta readers

@ this?
more ot
* Wizordzines.com &

